用户名: 密码: 验证码:
钨合金的制备及动态性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究钨合金材料从制备到应用的数值模拟和理论实验研究,对如何通过有效的方法提高钨合金粉末的等离子制备性能进行了分析,数值计算了通过等离子炬方法制备超微钨粉过程中的速度场和温度场;钨粉在等离子烧结过程中的温度场和致密过程,及温度场与材料细微观性能和力学性能之间的关系。将制备出的钨合金成品和不同靶板进行不同温度下的动态的拉伸、压缩和剪切实验,并通过一定的数值方法拟合得到不同材料的参数,将实验得到的数值模型添加到LS-DYNA数值计算软件计算了钨合金长杆弹高速侵彻不同靶板侵彻过程中弹体和靶板的力学性能,为高比重钨合金长杆弹的研制和性能研究提供一定的理论数值支持。全文主要研究内容如下:
     (1)研究了利用等离子炬制备超微钨粉的过程。根据传热学Navier-Stocks方程以及电磁理论,在高频感应等离子炬中建立了电热以及流体耦合控制方程,通过添加有限外场简化对向量势边界条件的描述,首次利用多场耦合软件通过有限元方法对制粉过程中的电热效应以及流体热交互耦合进行了数值模拟,得到了高频等离子炬气动过程中的速度场以及温度场,并依据一定输入功率下高频感应等离子炬的特征探讨了在实际制粉过程中的一些参数。
     (2)研究了利用等离子烧结技术制备钨块体材料过程中的温度场及其对成品的性能影响。根据传热学以及电磁理论,在放电等离子体烧结的典型烧结条件下建立了电热耦合控制方程,利用有限元方法对钨粉试样在烧结中的电热效应进行了数值模拟,得到烧结过程中电流密度,能量密度以及温度场分布,并使用一种适用于导电粉体的等离子烧结机制解释了烧结过程中的一些现象。
     (3)采用自制冷却及加温设备和Hopkinson缸、杆分离式直接拉伸装置、Hopkinson动态压缩装置和冲塞装置测试了钨合金、钢及铝材料在不同温度下的动态拉伸、压缩及剪切性能。采用不同材料模型对几种材料的动态拉伸、压缩及剪切性能进行分析,拟合出不同材料数值模型的参数,并对材料断口的微观形貌进行了分析,为研究钨合金弹体侵彻性能提供理论和数值基础。
     (4)将得到的数值模型输入到LS-DYNA程序中,采用显式动力学有限元计算方法研究了高速钨合金长杆弹对钢/铝复合板的侵彻过程,并对1000-3000m/s范围内钨合金长杆弹对物理非对称半无限混凝土的超高速侵彻及损伤进行了分析,采用在超高速撞击下混凝土Johnson-Holmquist模型分析了弹体和靶板的损伤破坏和能量消耗情况。模型能够有效的模拟岩石及混凝土在高速冲击下的成坑、层裂及裂纹扩展,长杆弹在侵彻中存在弹道偏移和本身变形,给出估算弹体破坏形式临界速度的方法。
Theoretical analysis, experiment investigation and numerical simulation on preparation and application of tungsten alloys were implemented. The way to enhance the preparation properties of tungsten powders was analyzed. The velocity and temperature distribution of induction plasma torch in preparation of superfine tungsten powders, temperature field and densification during spark plasma sintering processing were obtained, and the relationship among temperature field, microscopic properties and mechanical properties were determined by numerical simulation method. Experiments and numerical simulation were carried out to obtain dynamic tensile, compression and shearing properties of tungsten alloys and different targets at vary temperatures and strain rates. And the mechanical properties of long rod tungsten alloys and targets during high speed penetration process were simulated by adding numerical model to LS-DYNA numerical software. The results have certain reference value for preparation and property research of tungsten heavy alloys. The detailed contents are as following:
     (1) Numerical simulation of temperature distribution of induction plasma torch in superfine tungsten powders preparation was carried out. To obtain the velocity and temperature field in radio frequency induction plasma torch, the control equations coupling electric field, temperature field and flow field were set up based on the theory of heat transfer, electromagnetic and incompressible Navier-Stocks equations. An extended field model was proposed for inductively coupled plasma to optimize the simple infinite field boundary condition. The velocity and temperature distribution of inductively coupled plasma in flow process were simulated based on the finite element method, and the vortex was obtained in the flow field. The parameters during powder preparation processing were researched on the different power inputs of induction coupled plasma torch.
     (2) The temperature field during spark plasma sintering processing and its effect on bulk tungsten materials were investigated. The control equations of electrothermal coupling electric field and temperature field were set up based on the theory of heat transfer and electromagnetic under typical spark plasma sintering (SPS) conditions. The electrothermal phenomena of tungsten powder during sintering process were simulated using the software COMSOL MULTIPHYSICS based on the finite element method. The current density, power density and temperature distribution were obtained. And a new sintering mechanism model was carried out to explain the phenomena during the spark plasma sintering processing.
     (3) The dynamic tensile, compression and plugging test were performed to explore the dynamic tensile, compression and shearing properties of tungsten alloys, steels and alumina at different temperatures and strain rates by the self-developed Hopkinson tensile system and improved Hopkinson pressure bar system. These properties were analyzed by vary material models, the parameters of different materials were determined by using the curve fitted method. By means of investigated the fractography of materials, the failure mechanisms of these materials were obtained. The results provide theoretical and numerical basis for researching the penetration property of long rod tungsten heavy alloy.
     (4) The penetration of steel/alumina composite plate by long rod projectile of tungsten heavy alloy at high speed velocity was investigated by adding the numerical model to LS-DYNA explicit dynamic software. To obtain the results of physical asymmetric semi-infinite concrete penetrated by long rod projectile of tungsten alloy at1000-3000m/s, the Johnson-Holmquist concrete model was used to analyze the damage and energy expenditure of projectile and target. The model could simulate the crater formation, spall of concrete target and the fracture occurring inside it during the process of impact effectively. The deformation and ballistic excursion of long rod projectile were obtained in the process of penetration, and a theory method for estimating critical velocity due to different failure types of projectile was given.
引文
[1]Antolini E, Gonzalez E R. Tungsten-based materials for fuel cell applications [J]. Applied Catalysis B:Environmental.2010,96:245-266.
    [2]Koutsospyros A, Braida W, Christodoulatos C, et al. A review of tungsten:From environmental obscurity to scrutiny [J]. Journal of Hazardous Materials.2006, 136:1-19.
    [3]Hong S H, Ryu H J, Beak W H. Matrix pools in a partially mechanically alloyed tungsten heavy alloy for localized shear deformation [J]. Materials Science and Engineering A.2002,333:187-192.
    [4]Shen J, Campbell L, Suri P, et al. Quantitative microstructure analysis of tungsten heavy alloys (W-Ni-Fe) during initial stage liquid phase sintering [J]. International Journal of Refractory Metals and Hard Materials.2005,23:99-108.
    [5]Upadhaya A. Processing strategy for consolidating tungsten heavy alloys for ordnance applications [J]. Materials Chemistry and Physics.2001,67:101-110.
    [6]He Z, Courtney T H. Crystallization and thermal stability of mechanically alloyed W-Ni-Fe noncrystalline materials [J]. Materials Science and Engineering A. 2001,315:166-173.
    [7]Ramesh K T, Coates R S. Microstructural influences on the visco-plastic response of tungsten heavy alloys [J]. Metallurgical Transaction A.1992,23:2625-2630.
    [8]Sauvage X, Wetscher F, Pareige P. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu-Fe composite [J]. Acta Materialia. 2005,53:2127-2135.
    [9]Fan J L, Gong X, Huang B Y, et al. Dynamic failure and adiabatic shear bands in fine grain 93W-4.9Ni-2.1Fe alloy with Y2O3 addition under lower high strain rate (HSR) compression [J]. Mechanics of Materials.2010,42:24-30.
    [10]Gong X, Fan J L, Huang B Y, et al. Microstructure characteristics and a deformation mechanism of fine-grained tungsten heavy alloys under high strain rate compression [J]. Materials Science and Engineering A.2010,527:7565-7570.
    [11]Rittel D, Levin R, Dorogoy A. On the isotropy of the dynamic mechanical and failure properties of swaged tungsten heavy alloys [J]. Metallurgical and Materials Transactions A.2004,35:3787-3795.
    [12]Liu J X, Li S K, Sun H C. Effect of fibrous orientation on dynamic mechanical properties and susceptibility to adiabatic shear band of tungsten heavy alloy fabricated through hot-hydrostatic extrusion [J]. Materials Science and Engineering A. 2008,487:235-242.
    [13]Mathaudhu S N, deRosset A J, Harwig K T, et al. Micro structures and recystallization behavior of severely hot-deformed tungsten [J]. Materials Science and Engineering A. 2009,503:38-31.
    [14]Mayer L W, Hockauf M, Hohenwater A, et al. Ultimate strength of a tungsten heavy alloy after severe plastic deformation at quasi-static and dynamic loading [J]. Materials Science Forum.2008,584-586:405-410.
    [15]Wei Q, Kecskes L J. Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten [J]. Materials Science and Engineering A. 2008,491:62-69.
    [16]Gong X, Fan J L, Ding F, et al. Microstructure and highly enhanced mechanical properties of fine-grained tungsten heavy alloy after one-pass rapid hot extrusion [J]. Materials Science and Engineering A.2011,528:3646-3652.
    [17]鲁利国,夏耀勤.钨合金的开发和应用现状[J].中国钨业.2008,23(3):37-39.
    [18]Smid I, Akiba M, Vieider G, et al. Development of tungsten armor and bonding to copper for plasma-interactive components [J]. Journal of Nuclear Materials. 1998,258-263:160-172.
    [19]田春霞.纳米粉末制备方法综述[J].粉末冶金工业.2001,11(5):19-24.
    [20]German R M, Ma J, Wang X, et al. Processing model for tungsten powders and extension to nanoscale size range [J]. Powder Metallurgy.2006,49:19-27.
    [21]Wei Q, Ramesh K T, Schuster B E, et al. Nanoengineering opens a new era for tungsten as well [J]. Journal of Metals.2006,58:40-44.
    [22]Ryu T, Shon H Y, Hwang K S, et al. Chemical vapor synthesis (CVS) of tungsten nanopowder in a thermal plasma reactor [J]. International Journal of Refractory Metals & Hard Materials.2009,27:149-154.
    [23]Murugan K, Chandrasekhar S B, Joardar J. Nanostructure α/β-tungsten by reduction of WO3 under microwave plasma [J]. International Journal of Refractory Metals and Hard Materials.2011,29:128-133.
    [24]Aravinth S, Sankar B, Chakravarthi S R, et al. Generation and characterization of nano tungsten oxide particles by wire explosion process [J]. Materials Characterization. 2011,62:248-255.
    [25]Wu C H. Preparation of ultrafine tungsten powders by in-situ hydrogen reduction of nano-needle violet tungsten oxide [J]. International Journal of Refractory Metals and Hard Materials.2011,29:686-691.
    [26]Junwu S, Campbell L, Suri P, et al. Quantitative microstructure analysis of tungsten heavy alloy (W-Ni-Cu) during initial stage liquid phase sintering [J]. International Journal of Refractory Metals and Hard Materials.2005,23:99-108.
    [27]German R M, Olevsky E. Mapping the compaction and sintering response of tungsten-based materials into nanoscale size range [J]. International Journal of Refractory Metals and Hard Materials.2005,23:294-300.
    [28]Zhao J F, Holland T, Unuvar C, et al. Sparking plasma sintering of nanometric tungsten carbide [J]. International Journal of Refractory Metals and Hard Materials. 2009,27:130-139.
    [29]Ryu T, Hwang K S, Choi Y J, et al. The sintering behavior of nanosized tungsten powder prepared by a plasma process [J]. International Journal of Refractory Metals and Hard Materials.2009,27:701-704.
    [30]Zhou Z J, Ma Y, Du J, et al. Fabrication and characterization of ultra-fine grained tungsten by resistance sintering under ultra-high pressure [J]. Materials Science and Engineering A.2009,505:131-135.
    [31]Hong S H, Ryu H J. Combination of mechanical alloying and two-stage sintering of a 93W-5.6Ni-1.4Fe tungsten heavy alloy [J]. Materials Science and Engineering A. 2003,344:253-260.
    [32]Jang J S C, Fwu J C, Chang L J, et al. Study on the solid-phase sintering of the nano-structured heavy tungsten alloy powder [J]. Journal of Alloys and Compounds. 2007,434-435:367-370.
    [33]Akhtar F. An investigation on the solid state sintering of mechanically alloyed nano-structured 90W-Ni-Fe tungsten heavy alloy [J]. International Journal of Refractory Metals and Hard Materials.2008,26:145-151.
    [34]Boonyongmaneerat Y. Effect of low-content activators on low-temperature sintering of tungsten [J]. Journal of Materials Processing Technology.2009,209:4084-4087.
    [35]Li X Q, Xin H W, Hu K, et al. Microstructure and properties of ultra-fine tungsten heavy alloying and electric current activated sintering [J]. Transactions of Nonferrous Metals Society of China.2010,20:443-449.
    [36]Mondal A, Upadhyaya A, Agrawal D. Effect of heating mode and sintering temperature on the consolidation of 90W-7Ni-3Fe alloys [J]. Journal of Alloys and Compounds.2011,509:301-310.
    [37]Kim Y, Lee S, Kim E P, et al. Effects of ThO2 on the solid-state sintering behavior of W-Ni-Fe alloy [J]. International Journal of Refractory Metals and Hard Materials. 2011,29:112-116.
    [38]黄晨光,董永香,段祝平等.钨合金的冲击动力学性质和细微观结构[J].力学进展.2003,33(4):433-445.
    [39]宋顺成.穿破甲过程动力有限元近似理论及程序[J].力学进展.1994,34(3): 362-373.
    [40]宋顺成,谭多望,蔡鸿年.穿破甲有限元的几何非线性及物理参数的确定[J].爆炸与冲击.2002,22(2):137-143.
    [41]宋顺成,刘筱玲,史洪刚等.由钨合金的两相参数计算其宏观抗拉强度[J].兵工学报.2008,29(10):1232-1236.
    [42]宋顺成,刘筱玲,史洪刚等.钨合金细观参数对其宏观屈服强度的影响[J].材料科学与工艺.2007,15(5):697-704.
    [43]王庭辉,宋顺成Gruneisen状态方程的数值解及其应用[J].计算物理.2007,24(3):361-366.
    [44]Gaal I, Toth C L. Microstructural evolution upon thermomechanical processing of non-sag tungsten [J]. International Journal of Refractory Metals and Hard Materials. 1998,16:59-70.
    [45]Margevicius R W, Riedle J, Gumbsch P. Fracture toughness of polycrystalline tungsten under mode Ⅰ and mixed mode Ⅰ/Ⅱ loading [J]. Materials Science and Engineering A. 1999,270:197-209.
    [46]Batra R C, Love B M. Consideration of microstructure effects in the analysis of adiabatic shear bands in a tungsten heavy alloy [J]. International Journal of Plasticity. 2006,22:1858-1878.
    [47]Lundberg P, Renstrom R, Lundberg B. Impact of conical tungsten projectiles on flat silicon carbide targets:Transition from interface defeat to penetration [J]. International Journal of Impact Engineering.2006,32:1842-1856.
    [48]Vogler T J, Clayton J D. Heterogeneous deformation and spall of an extruded tungsten alloy:plate impact experiments and crystal plasticity modeling [J]. Journal of Mechanics and Physics of Solids.2008,56:297-335.
    [49]刘筱玲,宋顺成,黄伟等.钨合金基体相原位细观性能的测定[J].西南交通大学学报.2007,42(4):447-451.
    [50]刘筱玲,宋顺成,史洪刚.反向法确定钨合金基体细观性能及其宏观性能[J].材料科学与工艺.2009,17(5):636-640.
    [51]Park J J. Creep strength of a tungsten-rhenium-hafnium carbide alloy from 220-2400K [J]. Materials Science and Engineering A.1999,265:174-178.
    [52]Watts J, Hilmas G. Crack deflection in tungsten carbide based laminates [J]. International Journal of Refractory Metals and Hard Materials.2006,24:222-228.
    [53]Gludovatz B, Wurster S, Hoffmann A, et al. Fracture toughness of polycrystalline tungsten alloy [J]. International Journal of Refractory Metals and Hard Materials. 2010,28:674-678.
    [54]Wurster S, Gludovatz B, Pippan R. High temperature fracture experiments on tungsten-rhenium alloys [J]. International Journal of Refractory Metals and Hard Materials.2010,28:692-697.
    [55]Das J, Rao G A, Pabi S K, et al. Deformation behavior of newer tungsten heavy alloy [J]. Materials Science and Engineering A.2011,528:6235-6247.
    [56]Greger M, Cizek L, Widomaska M. Structure and mechanical properties of formed tungsten based materials [J]. Journal of Materials Processing Technology. 2004,157-158,:683-687.
    [57]Lee W S, Lin C F, Chang S T. Plastic flow of tungsten-based composite under hot compression [J]. Journal of Materials Processing Technology.2000,100:123-130.
    [58]Zhang Z H, Wang F C, Li S K, et al. Deformation characteristics of the 93W-4.9Ni-2.1Fe tungsten heavy alloy deformed by hydrostatic extrusion [J]. Materials Science and Engineering A.2006,435-436:632-637.
    [59]Prink E, Kumar S. Deformation mechanisms operating in a tungsten heavy alloy [J]. Materials Science and Engineering A.1997,234-236:102-105.
    [60]Gero R, Borukhin L, Pikus I. Some structural effects of plastic deformation on tungsten heavy metal alloy [J]. Materials Science and Engineering A. 2001,302:162-167.
    [61]Gong X, Fan J L, Ding F, et al. Effect of tungsten content on microstructure and quasi-static tensile fracture characteristics of rapidly hot-extruded W-Ni-Fe [J]. International Journal of Refractory Metals and Hard Materials.2012,30:71-77.
    [62]Liu J X, Li S K, Zhou X Q, et al. Adiabatic shear banding in a tungsten heavy alloy processed by hot-hydrostatic extrusion and hot torsion [J]. Scripta Materialia. 2008,59:1271-1274.
    [63]Liu J X, Li S K, Fan A L, et al. Effect of fibrous orientation on dynamic mechanical properties and susceptibility to adiabatic shear band of tungsten heavy alloy fabricated through hot-hydrostatic extrusion [J]. Materials Science and Engineering A. 2008,487:235-242.
    [64]Peng L, Li S K, Zhou X Q, et al. Adiabatic shear localization and microcracks initiation in an extrusion tungsten heavy alloy [J]. Rare Metal Materials and Engineering.2010,39(12):2084-2087.
    [65]Wei Z G, Yu J L, Hu S S, et al. Influence of microstructure on adiabatic shear localization of pre-twisted tungsten heavy alloys [J]. International Journal of Impact Engineering.2000,24:747-758.
    [66]Kim D K, Lee S, Baek W H. Microstructural study of adiabatic shear bands formed by high-speed impact in a tungsten heavy alloy penetrator [J]. Materials Science and Engineering A.1998,249:197-205.
    [67]Hohler V, Stilp A J, Weber K. Hypervelocity penetration of tungsten sinter-alloy rods into aluminum [J]. International Journal of Impact Engineering.1995,17:409-418.
    [68]Pappu S, Kennedy C, Murr L E, et al. Microstructure analysis and comparison of tungsten alloy rod and [001] oriented columnar-grained tungsten rod ballistic penetrators [J]. Materials Science and Engineering A.1999,262:115-128.
    [69]Pappu S, Sen S, Murr L E, et al. Deformation twins in oriented, columnar-grained tungsten rod ballistic penetrators [J]. Materials Science and Engineering A. 2001,298:144-157.
    [70]Conner R D, Dandliker R B, Scruggs V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. International Journal of Impact Engineering.2000,24:435-444.
    [71]Westerling L, Lundberg P, Lundberg B. Tungsten long-rod penetration into confined cylinders of boron carbide at and above ordnance velocity [J]. International Journal of Impact Engineering.2001,25:703-714.
    [72]Upadhyaya A. Processing strategy for consolidating tungsten heavy alloy for ordnance application [J]. Materials Chemistry and Physics.2001,67:101-110.
    [73]宋顺成,田时雨Hopkinson冲击拉杆的改进及应用[J].爆炸与冲击.1992,12(1):301-306.
    [74]宋顺成,王庭辉,刘筱玲.缸、杆分离式气动直接动态拉伸实验装置.发明专利公报,2007,22,CN1971244A.国家知识产权局知识产权出版社.
    [75]宋顺成,王庭辉,刘筱玲.一种气动拉伸性能测试设备.实用新型专利公报,2007,47,CN200979519Y.国家知识产权局知识产权出版社.
    [76]李树奎,王富耻,郭启雯等.钨合金圆筒爆破试验破片分布的统计分析[J].兵器材料科学与工程.2001,25(4)24-27.
    [77]李树奎,杨卓越,王富耻等.爆破圆筒管壁分界面形成规律初探[J].兵器材料科学与工程.2002,25(4):28-32.
    [78]李树奎,张朝晖,王富耻等.易碎型钨合金动态拉伸强度测试方法研究[J].北京理工大学学报.2001,21(4):429-433.
    [79]Lennon A M, Ramesh K T. The thermoviscoplastic response of polycrystalline tungsten in compression [J]. Materials Science and Engineering A.2000,276:9-21.
    [80]Lee W S, Xiea G L, Lin C F. The strain rate and temperature dependence of the dynamic impact response of tungsten composite [J]. Materials Science and Engineering A.1998,257:256-257.
    [81]Humail I S, Akhtar F, Askari S J, et al. Tensile behavior change depending on the varying tungsten content of W-Ni-Fe alloys [J]. International Journal of Refractory Metals and Hard Materials.2007,25:380-385.
    [82]Lee W S, Chiou S T. The influence of loading rate on shear deformation behavior of tungsten composite [J]. Composites Part B:Engineering.1996,27(2):193-200.
    [83]Couque H, Nicolas G, Altmayer C. Relation between shear banding and penetration characteristics of conventional tungsten alloys [J]. International Journal of Impact Engineering.2007,34:412-423.
    [84]Wei Q, Jiao T, Ramesh K T, et al. Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression [J]. Acta Materialia.2006,54:77-87.
    [85]Gong X, Fan J L, Huang B Y, et al. Microstructure characteristics and a deformation mechanism of fine-grained tungsten alloy under high strain rate compression [J]. Materials Science and Engineering A.2010,527:7565-7570.
    [86]Kim D K, Lee S, Noh J W. Dynamic and quasi-static torsional behavior of tungsten heavy alloy specimens fabricated through sintering, heat-treatment, swaging and aging [J]. Materials Science and Engineering A.1998,247:285-294.
    [87]Yadav S, Ramesh K T. The mechanical properties of tungsten-based composites at very high strain rates [J]. Materials Science and Engineering A.1995,203:140-153.
    [88]Ma H L, Hu G K, Tan C W, et al. Damage mechanisms for 93W and 97W tungsten-based alloys [J]. Rare Metal Materials and Engineering.2010,39:1344-1347.
    [89]Bless S J, Tarcza Km Chau R, et al. Dynamic fracture of tungsten heavy alloys [J]. International Journal of Impact Engineering.2006,33:100-108.
    [90]Ogundipe A, Greenberg B, Braida W, et al. Morphological characterization and spectroscopic studies of the corrosion behavior of tungsten heavy alloy [J]. Corrosion Science.2006,48:3281-3297.
    [91]Nygren R E, Youchison D L, Watson R D, et al. High heat flux tests on heat sinks armored with tungsten rods [J]. Fusion Engineering and Design.2000,49-50:303-308.
    [92]Jartych E, Zurawucz J K, Oleszak D, et al. Structure and magnetic properties of mechanosynthesized iron-tungsten alloys [J]. Journal of Magnetism and Magnetic Materials.2000,218:247-255.
    [93]Fortuna E, Zielinski W, Sikorski K, et al. TEM characterization of the microstructure of a tungsten heavy alloy [J]. Material Chemistry and Physics.2003,81:469-471.
    [94]Pintsuk G, Prokhodtseva A, Uytdenhouwen I. Thermal shock characterization of tungsten deformed in two orthogonal directions [J]. Journal of Nuclear Materials. 2011,417:481-486.
    [95]宋顺成,才鸿年.弹丸侵彻混凝土的SPH算法[J].爆炸与冲击.2003,23(1):56-60.
    [96]宋顺成,王军,王建军.钨合金长杆弹侵彻陶瓷层合板的数值模拟[J].爆炸与冲击.2005,25(2):102-106.
    [97]宋顺成,李国斌,才鸿年等.战斗部对混凝土先侵彻后爆轰的数值模拟[J].兵工学报.2006,27(2):230-234.
    [98]李永池,袁福平,胡秀章等.卵形头部弹丸对混凝土靶板侵彻的二维数值模拟[J].弹道学报.2003,14(1):14-19.
    [99]黄晨光,段祝平.含热传导的冲击动力学有限元程序的研究和应用[J].爆炸与冲击.2001,21(4):253-258.
    [100]Mrovec M, Elsasser C, Gumbsch P. Atomistic simulation of lattice defects in tungsten [J]. International Journal of Refractory Metals and Hard Materials.2010,28:698-702.
    [101]Kennedy C, Murr L E. Comparison of tungsten heavy-alloy rod penetration into ductile and hard metal targets:microstructural analysis and computer simulations [J]. Materials Science and Engineering A.2002,325:131-143.
    [102]Zohoor M, Mehdipoor A. Explosive compaction of tungsten powder using a converging underwater shock wave [J]. Journal of Materials Processing Technolory. 2009,209:4201-4206.
    [103]Li J R, Yu J L, Wei Z G. Influence of specimen geometry on adiabatic shear instability of tungsten heavy alloys [J]. International Journal of Impact Engineering. 2003,28:303-314.
    [104]Zhou Y X, Wang Y, Mallick P K, et al. Strain softening constitutive equation of tungsten heavy alloy under tensile impact [J]. Materials Letters.2004,58:2752-2729.
    [105]Rohr I, Nahme H, Thoma K, et al. Material characterization and constitutive modelling of a tungsten-sintered alloy for a wide range of strain rate [J]. International Journal of Impact Engineering.2008,35:811-819.
    [106]Rajendran A M. Penetration of tungsten alloy rods into shallow-cavity targets [J]. International Journal of Impact Engineering.1998,21(6):451-460.
    [107]Zheng Z X, Wei X, Zhou Z Y, et al. Numerical simulation of tungsten alloy in powder injection modling process [J]. Transaction of Nonferrous Metals Society of China. 2008,18:1209-1215.
    [108]Xue S, Proulx P, Boulos M I. Modelling the effect of ferrite on an inductively coupled plasma torch:I. Infinite ferrite permeability [J]. Journal of Physics D:Applied Physics. 2002,35:1123-1130.
    [109]Xue S, Proulx P, Boulos M I. Modelling the effect of ferrite on an inductively coupled plasma torch:II. Finite ferrite permeability [J]. Journal of Physics D:Applied Physics. 2002,35:1131-1140.
    [110]Reed T B. Induction-Coupled Plasma Torch [J]. Journal of Applied Physics. 1961,32(5):821-824.
    [111]Miller R C, Ayen R J. Temperature profile and energy balances for an inductively coupled plasma torch [J]. Journal of Applied Physics.1969,40(13):5260-5273.
    [112]Eckert H U. Analysis of thermal induction plasmas dominated by radial conduction losses [J]. Journal of Applied Physics.1970,41(4):1520-1528.
    [113]Mostaghimi J, Proulx P, Boulos M I. Parametric study of the flow and temperature fields in an inductively coupled r.f. plasma torch [J]. Plasma Chemistry and Plasma Processing.1984,4(3):199-217.
    [114]Proulx P, Mostaghimi J, Boulos M I. Heating of powders in an r.f. inductively coupled plasma under dense loading conditions [J]. Plasma Chemistry and Plasma Processing. 1987,7(1):29-53.
    [115]陈熙,陈允明.高频感应热等离子体发生器的完整的二维数值模拟[J].中国科学A辑.1989,12:1279-1287.
    [116]陈熙.高频热等离子体发生器数值模拟最近进展[J].力学进展.1991,21(3):297-309.
    [117]万德成,陈允明.高频感应热等离子体中颗粒运动和加热的研究[J].上海大学学报(自然科学版).1995,1(6):605-615.
    [118]万德成,戴世强,陈允明.颗粒与高频感应热等离子体流相互作用的数值研究[J].水动力学研究与进展A辑.1996,11(2):213-220.
    [119]万德成,戴世强,陈允明.颗粒与高频感应热等离子体流的迭代计算[J].计算物理.1997,14(1):91-98.
    [120]Jiang Xian-Liang, Boulos M I. Effect of process parameters on induction plasma reactive deposition of tungsten carbide from tungsten metal powder [J]. Transactions of Nonferrous Metals Society of China.2001,11(5):639-643.
    [121]Jiang Xian-Liang, Boulos M I. Induction plasma spheroidization of tungsten and molybdenum powders [J]. Transactions of Nonferrous Metals Society of China. 2006,16:13-17.
    [122]侯玉柏,曾克里,于月光等.等离子球化钨粉[J].有色金属.2008,60(2):41-43.
    [123]Xue S, Proulx P, Boulos M I. Extended-field electromagnetic model for inductively coupled plasma [J]. Journal of Physics D:Applied Physics.2001,34:1897-1906.
    [124]Watanabe T, Fujiwara K. Nucleation and growth of oxide nanoparticles prepared by induction thermal plasma [J]. Chemical Engineering Communica-tions. 2004,191:1343-1361.
    [125]Atsuchi N, Shigeta M, Watanabe T. Modeling of non-equilibrium argon-oxygen induction plasmas under atmospheric pressure [J]. International Journal of Heat and Mass Transfer.2006,49:1073-1082.
    [126]Goortani B M, Poulx P, Xue S, et al. Controlling nanostructure in thermal plasma processing:Moving from highly aggregated porous structure to spherical silica nanoparticles [J]. Powder Technology.2007,175:22-32.
    [127]Proulx P, Morsli M E. Mathematical modelling of advanced thermal plasma reactors and application to nanoparticle production [J].5th International Workshop on Complex Systems. AIP Conference Proceedings.2008,982:569-576.
    [128]金佑民,樊友三.低温等离子体物理基础[M].清华大学出版社.1983:48-52.
    [129]Chen W. Anselmi-Tamburini U, Garaya J E, et al. Fundamental investigations on the spark plasma sintering/synthesis process I. Effect of dc pulsing on reactivity Materials Science and Engineerin [J]. Materials Science and Engineering A.2005,394:132-138.
    [130]张久兴,刘科高,周美玲.放电等离子烧结技术的发展和应用[J].粉末冶金技术.2002,20(3):129-135.
    [131]马壵,周张建,姚伟志等.放电等离子烧结(SPS)制备金属材料研究进展[J].材料导报.2008,22(7):60-64.
    [132]Mamedov V. Spark plasma sintering as advanced PM sintering method [J]. Powder Metallurgy.2002,45(4):322-328.
    [133]Bennett C E G, Kinnon N A, Williams L S. Sintering in gas discharges [J]. Nature. 1968,217:1287-1289.
    [134]Pfender E.热等离子体技术:现状及发展方向[J].力学进展.1999,29(2):251-267.
    [135]宋小艳,刘雪梅,张久兴.SPS过程中导电粉体的显微组织演变规律及机理[J].中国科学E辑.2005,35(5):459-469.
    [136]Tokita M. Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering [J]. Materials Science Forum.1999,308-311:83-88.
    [137]林峰,王兴庆,戴瑞光.脉冲电流在SPS工艺中的作用[J].粉末冶金工业.2008,18(2):33-39.
    [138]汪胜洋,郑勇,刘文俊.SPS烧结技术及其在陶瓷材料制备中的应用[J].硬质合金.2003,20(4):232-236
    [139]张东明.陶瓷材料脉冲电流烧结机理研究[D].武汉理工大学博士论文.2002.
    [140]白玲,葛昌纯,沈卫平.放电等离子烧结技术[J].粉末冶金技术.2007,25(3):217-223.
    [141]Wang S W, Chen L D, Hirai T. Microstructure inhomogenety in Al2O3 sintered bodies formed during the plasma activated sintering process [J]. Journal of Materials Science Letters.1999,18:1119-1121.
    [142]Wang S W, Chen L D, Kang Y S, et al. Effect of plasma activated sintering (PAS) parameters on densification of copper powder [J]. Materials Research Bulletin. 2000,35:619-628.
    [143]Wang S W, Chen L D, Hirai T. Densification of A12O3 powder using spark plasma sintering [J]. Journal of Materials Research.2000,15:982-987.
    [144]Mats N, Shen Z J. On the preparation of bio-, nano-and structural ceramics and composites by spark plasma sintering [J]. Solid State Sciences.2003,5:125-131.
    [145]Anselmi-Tamburini U, Garay J E, Munir Z A. Fundamental investigation on the spark plasma sintering/synthesis process III. Current effect on reactivity [J]. Materials Science and Engineering A.2005,407:24-30.
    [146]Kim Y, Lee K H, Kim E P, et al. Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process[J]. International Journal of Refractory Metals & Hard Materials.2009,27:842-846.
    [147]Hayun S, Paris V, Dariel M P, et al. Static and dynamic mechanical properties of boron carbide process by spark plasma sintering [J]. Journal of the European Ceramic Society.2009,29:3395-3400.
    [148]Wang C, Cheng L F, Zhao Z. FEM analysis of the temperature and stress distribution in spark plasma sintering:Modelling and experimental validation [J]. Computational Materials Science.2010,49:351-362.
    [149]梅雪珍,贾成厂,尹法章等W-Ni-Fe高比重合金的SPS烧结行为[J].北京科技大学学报.2007,29(5):475-478.
    [150]向道平,李元元,李小强.放电等离子烧结时间对高密度W-7Ni-3Fe合金组织性能的影响[J].材料热处理学报.2010,31(1):96-99.
    [151]李小强,辛红伟,胡可.放电等离子烧结温度对W-9.8Ni-4.2Fe合金摩擦磨损特性的影响[J].粉末冶金工业.2010,20(3):21-25.
    [152]王迎春,李树奎,王富耻等.放电等离子烧结温度对钨合金的组织及动态力学性能的影响[J].稀有金属材料与工程.2010,39(10):1807-1810.
    [153]Hu K, Li X Q, Yang C, et al. Densification and microstructure evolution during SPS consolidation process in W-Ni-Fe system [J]. Transactions of Nonferrous Metals Society of China.2011,21:493-501.
    [154]饶磊,杨小军.ESC渣池中热电耦合过程的数值模拟[J].中国铸造装备与技术.2004,3:20-23.
    [155]王维斌,陈东等.超级钢闪光对焊电热耦合过程温度场分布的有限元分析[J].金属成形工艺.2003,21(3):40-42.
    [156]Anselmi-Tamburini U, Garay J E, Munir Z A. Fundamental investigation on the spark plasma sintering/synthesis process Ⅱ. Modeling of current and temperature distributions [J]. Materials Science and Engineering A.2005,394:139-148.
    [157]朱桂森.高比重钨合金(一)[J].稀有金属材料与工程.1988,2:34-41.
    [158]李会谦,林涛,郭志猛等.纳米钨粉的烧结工艺[J].北京科技大学学报.2008,30(3):272-275.
    [159]杨世铭,陶文铨.传热学第四版[M].高等教育出版社.2006:555-557.
    [160]Oda E, Fujiwara H, Ameyama K, et al. Microstructure and sinter ability of nano-crystal tungsten powders [J]. Japan Institute of Metals.2005,69(11):967-972.
    [161]杨俊逸,李元元,李小强等.电场活化烧结温度场的数值模拟[J].机械工程材料.2006,30(11):73-76.
    [162]辛红伟.高密度W-9.8Ni-4.2Fe合金的放电等离子烧结(SPS)技术研究[D].华南理工大学硕士学位论文.2010:31-32.
    [163]刘雪梅,宋晓艳,张久兴.放电等离子烧结过程中粉末颗粒内部温度场的模拟及颈部演变[J].金属学报.2006,42(7):757-762.
    [164]Zhou X G, Zhang J. Effect of different materials on the behavior of concrete members under fire [J]. Journal of Basic Science and Engineering.2002,10(3):277-286.
    [165]Rittel D, Frageand N, Darie M P. Dynamic mechanical and fracture properties of an infiltrated TiC-1080 steel cermets [J]. International Journal of Solids and Structures. 2005,42(2):697-715.
    [166]Van S J, Verleysen P, Degrieck J, et al. Dynamic response of aluminum containing TRIP steel and its constituent phases [J]. Materials Science and Engineering:A. 2007,460-461:516-524.
    [167]Sanchez-Santana U, Gonzalez C, Mesmacque G, et al. Effect of fatigue damage on the dynamic tensile behavior of 6061-T6 aluminum alloy and AISI 4140T steel [J]. International Journal of Fatigue.2009,31(11):1928-1937.
    [168]Muszka K, Hodgson P D, Majta J. Study of the effect of grain size on the dynamic mechanical properties of micro alloyed steels [J]. Materials Science and Engineering: A.2009,500(1):25-33.
    [169]Nemat-Nasser S, Guo W G, Cheng J Y. Mechanical properties and deformation mechanisms of a commercially pure titanium[J]. Acta Materialia.1999,47(13): 3705-3720.
    [170]Lennon A M, Ramesh K T. The influence of crystal structure on the dynamic behavior of materials at high temperatures [J]. International Journal of Plasticity. 2004,20(2):269-290.
    [171]Vaidya R U, Zhe J, Carl C, et al. A comparative study of the strain rate and temperature dependent compression behavior of Ti-46.5Al-3Nb-2Cr-0.2W and-25Al-10Nb-3V-lMo intermetallic alloys [J]. Scripta Materialia.1999,41(6): 569-574.
    [172]Mostafa S, Vikas P, Susan D. Mechanical behavior of Gamma-Met PX under uniaxial loading at elevated temperatures and high strain rates [J]. International Journal of Solids and Structures.2004,41(22):6485-6503.
    [173]Sturges J L, Cole B N. The flying wedge:A method for high-strain rate tensile testing. Part 1 Reasons for its development and general description [J]. International Journal of Impact Engineering.2001,25(3):251-264.
    [174]Lindholm U S, Yeakley L M. High strain rate testing:tension and compression [J]. Experimental Mechanics.1968,8(1):1-9.
    [175]Nicholas T. Tensile testing of materials at high rates of strain [J]. Experimental Mechanics.1981,21(5):177-185.
    [176]龚自明,方秦,张亚东等.钢制长杆弹斜侵彻中厚靶板数值模拟[J].解放军理工大学学报.2001,2(4):66-70.
    [177]Henze F E. An overview of projectile penetration into geologic materials with emphasis on rocks [J]. Int J Rock Mech Min Sci.1990,27(1):1-14.
    [178]李永池,袁福平,胡秀章等.卵形头部弹丸对混凝土靶板侵彻的二维数值模拟[J].弹道学报.2002,14(1):14-19.
    [179]楼建锋,洪涛,王政等.钨合金杆材料属性与侵彻性能的关系[J].计算力学学报.2009,26(3):433-436.
    [180]姜春兰,张宝平.93钨合金材料的模量、比热及热膨胀系数的温度效应[J].兵器材料科学与工程.2000,23(3):3-6.
    [181]Galvez F. Cendon D. Garcia N, et al. Dynamic fracture toughness of a high strength armor steel [J]. Engineering Failure Analysis.2009,16(8):2567-2575.
    [182]Lach E, Koerber G, Scharf M, et al. Comparison of nitrogen alloyed austenitic steels and high strength armor steels impacted at high velocity [J]. International Journal of Impact Engineering.1999,23:509-517.
    [183]Martin N R, Claire D K. Metallographic observations of armor steel specimens from plates perforated by shaped charge jets [J]. International Journal of Impact Engineering.1999,23:757-770.
    [184]Ubeyli M, Yildirim R O, Ogel B. On the comparison of the ballistic performance of steel and laminated composite armors [J]. Materials and Design.2007,28(4):1257-1262.
    [185]Shokrieh M M, Javadpour G H. Penetration analysis of a projectile in ceramic composite armor [J]. Composite Structures.2008,82(2):269-276.
    [186]Karamis M B, Nair F, Cerit A A. The metallurgical and deformation behaviors of laminar metal matrix composites after ballistic impact [J].2009,209(10):4880-4889.
    [187]李进忠,蔡汉文,崔炳贵等.混凝土侵彻的工程计算模型[J].兵工学报.1995,4:86-88.
    [188]张凤国,李恩征.混凝上撞击损伤模型参数的确定方法[J].弹道学报.2001,13(4):12-16.
    [189]Holmquist T J, Johnson G R. Computational constitutive model for concrete subjected to large strains, high strain rates and high pressure [A].14th International Symposium on Ballistics[C].1995,591-600.
    [190]郁时炼,梁雷.细长杆弹侵彻半无限混凝土的二维数值模拟研究[A].第14届全国结构工程学术会议论文集(第一册).2005,560-566.
    [191]张凤国,李维新,洪涛等.超高速钨合金长杆弹对混凝土侵彻及损伤破坏的数值模拟[J].弹道学报.2008,20(3):64-74.
    [192]门建兵,隋树元,蒋建伟等.网格对混凝土侵彻数值模拟的影响[J].北京理工大学学报.2005,25(8):659-662.
    [193]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显示动力学分析[M].北京:清华大学出版社,2005:116-118.
    [194]宋萍,蔡灵仓.Gruneisen系数与铝的高温高压状态方程[J].物理学报.2009,58(3):1879-1884.
    [195]楼建锋,洪滔,王政等.钨合金杆材料属性与侵彻性能的关系[J].计算力学学报.2009,26(3):433-436.
    [196]杨圣奇,徐卫亚,韦立德等.单轴压缩下岩石损伤统计本构模型与试验研究[J].河海大学学报.2004,32(2):200-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700