用户名: 密码: 验证码:
基于UV-LIGA光刻技术的曝光及后烘过程仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着MEMS研究及其应用的快速发展,微细加工技术作为其中的一个重要组成部分,获得了长足的进步。UV-LIGA技术是现代微细加工中的热门技术之一,与使用X射线的LIGA技术相比,其光刻工艺中采用传统紫外光源,故其有着工艺简单,成本低廉的优势,可以进行大规模成批量的生产,因此受到广泛的关注和研究。
     光刻技术作为UV-LIGA中的关键一环,对其进行理论仿真研究一直都是热点。随着具有复杂高深宽比结构的MEMS器件获得越来越多的需求,采用计算机模拟的方法对光刻工艺仿真,可以降低研制成本,缩短研制周期,并对于提高微机电产品质量、指导实际加工过程等方面都有着极其重要的意义。
     UV-LIGA工艺主要采用接近式光刻,接近式曝光和后烘过程作为接近式光刻中的两个重要组成部分,首先应当考虑。曝光过程的研究主要集中对胶表面曝光图形和胶体深层曝光图形的预测两个方面。后烘过程则主要是对曝光过程的延续,也是胶体发生实质改变的一个重要步骤。而SU-8负性化学放大胶由于其优秀的性质也获得了微细加工领域的广泛关注,是UV-LIGA技术中主要使用的一种胶体。
     本文就SU-8胶接近式光刻曝光工艺中的曝光和后烘机理展开研究,以期获得能够完整地反映UV-LIGA工艺中SU-8曝光后烘过程的理论模型。不论是曝光过程还是后烘过程,无法用单一的学科理论进行解释,需要交叉学科知识的支持,这正是MEMS领域研究的特点之一。本文以国家自然科学基金(NO.60473133)“基于准LIGA技术的MEMS制造误差修正方法计算机仿真研究”为基础而展开研究,对接近式紫外光刻工艺的曝光及后烘过程中涉及的理论进行深入研究,克服了光刻技术中交叉学科应用带来的难点,对曝光及后烘工艺实质进行深层分析,提出了能充分反映工艺过程的理论模型。
     对于胶表面曝光,本文以纯光学标量衍射理论为基础,结合课题组的研究,提出用模拟退火算法结合波前分割法对光场影响最大掩模范围进行灰阶编码掩模矫正。通过在一定范围内对二元灰阶编码掩模的面元网格进行局部搜索优化,最终得到光学临近矫正后的掩模编码及其矫正光场。
     此外,在深度曝光过程仿真方面,以Dill曝光模型为代表的光化学曝光模型更能反映其主要实质。本文以Dill经典曝光模型为基础,对该模型在时间轴和深度轴方向进行扩展,形成了更为完整的曝光仿真理论。在时间轴模型的扩展方面,分析了SU-8光刻胶的组成及其曝光交联化学反应过程,建立了适合于SU-8胶的光交联反应动力学模型。而在深度轴上,以复折射率扩展下的基尔霍夫衍射公式为基础,利用光束传播法的思想分阶段计算某曝光时刻下胶体内部的光场分布。本文在深度轴上建立的光学模型解决了接近式光刻中光束传播路线上折射率跳变问题,且对标量衍射理论在微不均匀介质的应用上进行扩展。最后,通过复折射率分布作为纽带,将两个轴上的模型耦合起来,形成了能够反映SU-8曝光实质的新型光化学曝光模型。
     在后烘仿真方面,本文从SU-8后烘反应过程中的光聚合反应入手,分析了SU-8后烘过程中的主要机理,并以Ferguson后烘反应动力学模型为基础,并加入光致酸的扩散模型,形成新的后烘反应-扩散模型。本文着重介绍了Vrentas-Duda渗透剂-高分子聚合物体系自由体积扩散理论,通过对Vrentas-Duda扩散系数公式按SU-8后烘扩散过程的需要进行简化,结合Ferguson后烘反应动力学模型,最终形成了可以描述SU-8后烘过程中光致酸-环氧交联链扩散体系的后烘反应-第二类扩散模型。
     实验结果表明,本文建立的曝光后烘耦合模型可以一定程度上反映加工图形轮廓,是完整而有效的微细加工过程模拟理论。
With the fast development of research and application of MEMS in recent years, micromachining technology has made great progress as an important part of MEMS as well. UV-LIGA technique is a hot technology of modern micromachining, which adopt tradition ultraviolet light system as illumination source. Comparing to the LIGA technique using X ray, it has virtue of briefness of technology, low system cost, and possibility of large-scale mass production, so it has been paid wide attention to.
     Photolithography technology is a key step of UV-LIGA, and it always is a hotspot of theory simulation research of it. Along with the more and more requirements of MEMS devices with complex high aspect ratio structures, simulations of lithography technique with cyber-simulant methods can reduce cost of design and shorten research cycle. Besides, it is of great significance for lithography simulation to increase micromachining product quality, guide the actual manufacturing process and so on.
     UV-LIGA technology mainly uses proximity lithography. It has proximity exposure and post exposure bake(PEB) as the two important components, which should be considered first. The study of exposure process mainly focus on the exposure figure on the surface of photoresist and the deep exposure figure inside the photo resist. PEB process is a kind of continued process of exposure, and it is a very important process in which photoresist changes essentially. The SU-8 photoresist is a kind of negative chemically amplified resists, which has been paid attention to in micromachining field because of its excellent character, and it is a kind of photoresist mainly used in UV-LIGA technology.
     This paper deals with reaction mechanisms of photoresist in exposure and PEB processes in lithography technology, and its purpose is to get appropriate models which can inextenso reflect the exposure and PEB process of SU-8 in UV-LIGA technology. Not only exposure process and also PEB process, can not be explained by the single discipline theory. It is necessary to be supported by interdisciplinary knowledge, which right is the characteristic of research in MEMS field. This paper based on the Chinese National Natural Science Foundation(No.60473133)—Simulation research of MEMS manufacturing error correction method based on UV-LIGA technology, make in-depth research on the theories of exposure and PEB processes in proximity UV-lithography technology. We overcomed the difficulties brought by interdisciplinary application in lithography, and built theory models which can fully simulate exposure and PEB processes.
     As for exposure on the surface of photoresist, this paper based on the optical scalar diffraction theory, rectified the binary gray-tone coding mask within the limit of most effective on the illumination by simulated annealing algorithm and division of wave front method, combined with the research of our group. Through the local searching and partially optimization on the binning grid of binary gray-tone coding mask, the optical proximity corrected mask code was obtained finally.
     Furthermore, for the simulation of deep exposure process, the photochemistry exposure model represented by the Dill's exposure model is more reasonable and applicable. This paper based on the classical Dill's exposure model, generalized its time and depth exposure model, and the more reasonable and integrated emulational theory methods were proposed. To generalize the time axis exposure model, the components of SU-8 photoresist and its photopolymerisable reaction in exposure process were analyzed, and a reaction kinetics model befitting SU-8 was built. In the depth axis, based on the Kirchhoff's diffraction formula generalized by the complex refractive index, the illumination distributing inside the photoresist at some moment was calculated by stages, using the beam propagation method. In this paper, the optical exposure model built on the depth axis can solve the problem of the jumping refractive index in the propagating path in proximity lithography, and the scalar diffraction theory was generalized to apply in micro-heterogeneous medium. Finally, the two models were coupled by complex refractive index, forming a new photochemistry exposure model which can reflect the essential process of SU-8 exposure. As for simulation of PEB, this paper started with analysis of SU-8 photopolymerisable reaction, discussed the main mechanism of the reactions in PEB process. Based on the Ferguson PEB reaction kinetics model, the diffusion model of photoacid was considered, and a new PEB reaction-diffusion model was built. In this paper, the Vrentas-Duda free volume diffusion theory of solvent-polymer system was introduced. According to the simplification to the Vrentas-Duda free volume diffusion coefficient calculating formula and combining with the Ferguson PEB reaction kinetics model, the PEB reaction-second-style-diffusion model of photoacid-epoxy crosslinked chain system was built to describe SU-8 PEB process finally.
     The experimental results indicate that the improved exposure and PEB model built in this paper can reflect the actual situation of experiment figure in a certain degree, and it is an integrated and effective simulation theory of micromachining process.
引文
[1]深入DLPTM技术,http://www.proj ector-window.com/proj ector/benq/benq-dlp-1.htm
    [2]Nexus Report, Market analysis for microsystems:an interim report from nexus
    [3]J. Knutti, Finding markets for microstructures. Micromachining and Fabrication Process Technology IV Proceedings, SPIE, Vol.3511,1998:17-23
    [4]Job Elders, Vincent Spiering, Steve Walsh. Microsystems technology (mst) and mems applications:An overview. MRS Bulletin,2001,26(4):312-315
    [5]Asad M. Madni, Lawrence A. Wan. Microelectromechanical systems (MEMS): An overview of current state-of-the-art. IEEE Aerospace Applications Conference Proceedings,1998,1:421-427
    [6]张栋.对微机电系统发展趋势和面临挑战的思考.科技情报开发与经济,2006,24(16):180-181
    [7]Tai R. Hsu著,王晓浩等译.MEMS和微系统——设计与制造.机械工业出版社,2004.1
    [8]张永华.MEMS中的牺牲层技术.MEMS器件与技术,2005,2:73-77
    [9]吴晓,周星元.基于MEMS牺牲层技术的发展现状.现代制造工程,2007(9):86-116
    [10]Fukuda, Menz W (Edited by). Micro mechanical systems:principles and technology. Elsevier Science B V,1998
    [11]A.B. Frazier and M.G. Allen. J, Microelectromechanical System,1990, Vol.2, No.2,87-94
    [12]李太和,李晔辰.硅片键合技术的研究进展.传感器世,2002,8(9):6-10
    [13]李雄.UV-LIGA技术光刻工艺的研究.华中科技大学硕士学位论文,2004.3
    [14]李木军.接近式光刻仿真研究.中国科学技术大学博士学位论文,2007.9
    [15]激光微加工技术的应用及其进展,http://www.zt-laser.com/gsjs/jgyy/JGZS/200611/408.html
    [16]王振龙等.电火花加工技术的发展趋势与工艺进展.制造技术与机床,2001(7):8-11
    [17]顾文琪.聚焦离子束微纳加工技术.北京工业大学出版社,2006.12
    [18]葛璜.电子束、离子束、光子束纳米微细加工技术的进展.仪器仪表学报,1996,17(1):70-74
    [19]焦永伟.微波、毫米波部件高速加工技术.第九届机械加工技术学术年会会议论文集,2004.10.1:92-95
    [20]田扬超.LIGA和UV-LIGA技术工艺标准化研究.国家863计划技术成果,2007
    [21]陈宏圣.微细加工技术的原理和应用研究.机电产品开发与创新,2008,21(5):191-192
    [22]汪国宝.微机电系统设计与制造.化学工业出版社,2004.3
    [23]王立鼎,罗怡.中国MEMS的研究与开发进程.仪表技术与传感器,2003(1):1-3
    [24]汪培霞,贾育秦.从物理学发展看MEMS的跨学科研究.物理与工程,2005,15(5):39-50
    [25]冯伯儒.光刻技术及其极限和发展前景.光电工程,1994,21(2):57-64
    [26]肖啸,刘世杰.光刻技术发展现状分析.乐山师范学院学报,2004,19(5):26-29
    [27]伊福廷,张菊芳,彭良强,韩勇.利用紫外光刻技术进行SU8胶的研究.微纳电子技术,2003(7/8):126-141
    [28]郑金红.光刻胶的发展及应用.精细与专用化学品,2006,14(16):24-30
    [29]楼祺洪等.用紫外准分子激光器进行接触式光刻的初步研究.光学学报,1986,6(3):274-276
    [30]李木军等.光刻图形失真的部分相干光理论分析.纳米技术与精密工程,2007,5(3):224-229
    [31]徐文祥等.步进投影数字光刻技术研究.中国仪器仪表,2008(12):48-50
    [32]曾交龙,高城,袁建民.极端远紫外光刻的等离子体光源及其光学性质研究进展.物理,2007,36(7):537-542
    [33]林景全.日本极紫外光刻.光机电信息,1997,14(6):13-15
    [34]田学红.深度光刻计算机模拟及实验研究.中国科学技术大学博士学位毕业论文,2003.6
    [35]彭力.电子束掩模制造技术及其发展方向.第十三届全国电子束、离子束、光子束学术年会论文集,2005.12:109-112
    [36]胡广荣.0.5微米掩模制造曝光及显影工艺改进.苏州大学硕士学位论文,2007.11
    [37]掩膜版制造工艺:迎接45和32nm节点新挑战,http://www.2ic.cn/html/60/t-329760.html
    [38]余国彬,姚汉民,胡松,陈兴俊.深紫外深度光刻蚀在LIGA工艺中的应用.微纳电子技术.2004(4):30-31
    [39]LIU R, ZHENG J J, ZHOU H J, et al. A Generalized Dill Exposure Model for Negative Thick Photoresist. Proceedings of the 2007 International Conference on Information Acquisition, Jeju City, Korea, July 9-11,2007:285-291.
    [40]http://cuervo2.eecs.berkeley.edu/
    [41]Dill F H, Hornberger W P. Characterization of Positive Photoresist [J]. IEEE Trans. Electron Devices(S0018-9383),1975, ED-22(7):445-451
    [42]W. G. Oldham, S. N. Nandgaonkar, et al. A general simulator for VLSI lithograpy and etching process:Part I-Application to projection lithography. IEEE Trans. Electron Devices,1979, ED-26(4), p717-722
    [43]http://www.2ic.cn/bbs/viewthread.php?action=printable&tid=243442 [44] http://www.eecs.berkeley.edu/IPRO/Software/Catalog/Description/splat.html
    [45]付萍等.一种基于SPLAT的离轴照明成像算法的研究与实现.微电子学,2003,33(3):180-183
    [46]崔滨等.SOC光刻仿真3D实时显示方法研究.系统仿真学报,2008,20(23):6383-6386
    [47]C. A. Mack. PROLITH:A comprehensive optical lithography model. SPIE Vol. 538,1985, p207-220
    [48]http://www.enet.com.cn/enews/arss5500.shtml
    [49]范建兴,冯伯儒等.投影式光刻技术的计算机模拟研究.微细加工技术,1996(4):23-31
    [50]唐波,王效才等.部分相干成像的模拟计算方法.光电工程,1996,23(2):20-27
    [51]石瑞英,杜开瑛,郭永康等.光学邻近效应与掩模特征尺寸的关系.光电工程,1998,25(6):55-59
    [52]http://www.enet.com.cn/enews/arss5500.shtml
    [53]王国雄,史峥等.用于光刻模拟的快速计算稀疏空间点光强的方法.计算机辅助图形设计与图形学学报,2003,15(7):783-786
    [54]郑津津,陈有梅等.SU-8紫外深度光刻的误差及修正.光学精密工程,2007,15(12):1926-1931
    [55]李晓光,沈连婠等.接近式光刻的角谱法仿真研究.微细加工技术,2007(4):22-26
    [56]李木军,沈连婠等.接近式紫外光刻中图形失真的分析与预修正仿真.机械工程学报,2008,44(11):69-74
    [57]REN Yang, WANG Wan-jun. A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures. Sensors and Actuators, B:Chemical(S0925-4005),2005, 110(2):279-288
    [58]K. A. Valiev, I. V. Velikov, G. S. Volkov, and D. Yu. Zaroslov, The Coherence factors of excimer laser radiation in projection lithography, J. Vac. Sci. Technol. B 7(6), Nov/Dec 1989
    [59]Richard A. Ferguson, Modeling and simulation of a deep-ultraviolet acid hardening resist[J]. J VAC. Sci. Technol B,1990,8(6):1423
    [60]Atsushi Sekiguchi,Mikio Kadoi, et al., Measuring System for Simulation Parameters of Chemical Amplification Resist Systems, Electronics and Communications in Japan, Part 2, Vol.82, No.2,1999, Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J81-C-II, No.6, June 1998, pp.542.549
    [61]Yoshihisa Sensu, Atsushi Sekiguchi, et al., Modeling of Cross-linking Reactions for Negative-type Thick film Resists, Journal of Photoploymer Science and Technology, Vol.19,No.(2006)51-56 (?)2006TAPJ
    [62]Yoshihisa Sensu, Atsushi Sekiguchi, et al., Profile Simulation of SU-8 Thick Film Resist, Journal of Photoploymer Science and Technology, Vol.18, No.(2005)125-132 (?)2005TAPJ
    [63]K. L. Konnerth, F. H. Dill. In-situ measurement of dielectric thickness during etching or development pocesses, IEEE Trans. Electr. Dev.,1975,22(7):452
    [64]D. J. Kim, W. G. Oldham, A. R. Neureuther. Characterization and modeling of a resist with built-in induction effect, Proc. Kodak Microelec Seminar,1983,112
    [65]C. A. Mack. Development of positive photoresist. J. Electrochem. Soc.,1987, 134(1):148
    [66]C. A. Mack. New kinetic model for resist dissolution. J. Electrochem. Soc.,1992, 139(4):L35
    [67]S. Robertson, E. Pavelcheck, W. Hoppe, et al. Improved notch model for resist dissolution in lithography simulation. Proceedings of SPIE,2001,4345(11):912-920
    [68]刘世杰.厚胶光刻技术研究.四川大学硕士学位论文,2004.5
    [69]肖啸.厚层抗蚀剂成像特性研究.四川大学硕士学位论文,2003.5
    [70]唐雄贵,郭永康,杜惊雷,刘世杰,高福华.基于角谱理论的厚层光刻胶衍射光场研究.光学学报,2004,24(12):1692-1696
    [71]刘世杰,杜惊雷,段茜,罗伯靓,唐雄贵,郭永康,杜春雷.厚层抗蚀剂曝光模型及其参数测量.半导体学报,2005,26(5):1065-1071
    [72]刘世杰,杜惊雷,肖啸,彭钦军,刘驰,郭永康.厚层抗蚀剂显影轮廓分析.光学与光电技术,2003,1(4):43-46
    [73]段茜,姚欣,陈铭勇,马延琴,刘世杰,唐雄贵,杜惊雷.用改进曝光模型模拟厚胶显影轮廓.光电工程,2006,33(4):50-54
    [74]TANG X G, YANG X Y, GAO F H, GUO Y K. Simulation and analysis for microstructure profile of optical lithography based on SU-8 thick resist. Microelectronic Engneering.2007(84):1100-1103
    [75]卢伟.SU-8胶接触式UV光刻模拟.东南大学硕士学位论文,2006.3
    [76]卢伟,黄庆安,李伟华,周再发.负性化学放大胶的光刻模型及模拟.微电子学.2005,35(6):568-576
    [77]ZHOU Z F, HUANG Q A, LI W H. Photolithography Process Simulation for INtegrated Circuits and Microelectromechanical System Fabrication. CHINESE JOURNAL OF SEMICONDUCTORS,2006,27(4):705-711
    [78]冯明,黄庆安,李伟华,周再发,朱真.SU-8胶在深紫外光源下的光强分布模拟.传感技术学报,2006,19(5):1470-1476
    [79]周再发,黄庆安,李伟华,卢伟.光刻胶刻蚀过程模拟的三维动态CA模型.中国科学E辑:科学技术,2007,37(1):32-42
    [80]冯明,黄庆安,李伟华,周再发,朱真.SU-8胶深紫外光刻模拟.半导体学报,2007,28(9):1465-1470
    [81]朱真,黄庆安,李伟华,周再发,冯明.SU-8胶曝光衍射效应的模拟及丙三醇补偿方法.半导体学报,2007,28(12):2011-2017
    [82]周再发,黄庆安,李伟华,卢伟.光刻胶刻蚀过程模拟的元胞自动机算法研究.中国集成电路.2005(74):68-73
    [83]英特神斯公司在国内主页:http://www.intellisense.com.cn/,英特神斯公司在美国总部的主页:http://www.intellisense.com/
    [84]余国彬,姚汉民,胡松.高深宽比的微细加工技术——UV-LIGA技术.第十二届全国化合物半导体材料、微波器件和光电器件学术会议论文集,2002.10:252-256
    [1]Ehrfeld w, Lehr H. Deep x-ray lithography for the production of three-dimensional microstructures from metals, polymers and ceramics. Radiation Physics and Chemistry. Volume:45, Issue:3, March,1995:349-365.s
    [2]Khan Malek, Chantal G. Su8 Resist for low-cost X-ray patterning of high-resolution, high-aspect-ratio MEMS. Microelectronics Journal. Volume:33,Issue:1-2,January 2,2002, PP.101-105
    [3]LaBianca N,Gelorme J D. high aspect ratio resist for thick film applications. SPIE,1995,2438:846-852.
    [4]李雄.UV-LIGA技术光刻工艺的研究.华中科技大学硕士论文,2004.3
    [5]孙再吉.i线光学光刻技术及其发展潜力.固体电子学研究与进展,1999,19(4):438-447
    [6]电子胶水学习指南,http://blog.21ic.com/userl/5470/index.html
    [7]郑津津,陈有梅,周洪军,田杨超,刘刚,李晓光,沈连婠.SU-8紫外深度光刻的误差及修正.2007中德双边高级专家X射线光学研讨会,2007
    [8]李晓光.紫外光刻仿真及掩模优化设计研究.中国科学技术大学博士论文,2007.5
    [9]李木军,沈连婠等.接近式紫外光刻中图形失真的分析与预修正仿真.机械工程学报,2008,44(11):69-74
    [10]REN Yang, WANG Wan-jun. A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures. Sensors and Actuators, B:Chemical(S0925-4005),2005, 110(2):279-288
    [11]F. H. Dill, W. P. Hornberger, P. S. Hauge, J. M. Shaw. Characterization of Positive Photoresist. IEEE TRANSACTIONS ON ELECTRON DEVICES,1975, ED22(7):445-452
    [12]刘世杰,杜惊雷,段茜,罗伯靓,唐雄贵,郭永康.厚层抗蚀剂曝光模型及其参数测量,半导体学报,2005,26(5):1065-1071
    [13]杜立群,朱神渺.微机电系统中SU8厚光刻胶的内应力研究.光学精密工程,2007,15(9):1377-1382
    [14]杜立群,朱神渺,喻立川.后烘温度对SU8光刻胶热溶胀性及内应力的影响.光学精密工程,2008,16(3):500-504
    [15]Richard A. Ferguson, Modeling and simulation of a deep-ultraviolet acid hardening resist[J]. J VAC. Sci. Technol B,1990,8(6):1423-1427
    [16]卢伟,黄庆安,李伟华,周再发.负性化学放大胶的光刻模型及模拟.微电子学.2005,35(6):568-576
    [17]K. L. Konnerth, F. H. Dill. In-situ measurement of dielectric thickness during etching or development pocesses, IEEE Trans. Electr. Dev.,1975,22(7):452
    [18]D. J. Kim, W. G. Oldham, A. R. Neureuther. Characterization and modeling of a resist with built-in induction effect, Proc. Kodak Microelec Seminar,1983,112
    [19]C. A. Mack. Development of positive photoresist. J. Electrochem. Soc.,1987, 134(1):148
    [20]C. A. Mack. New kinetic model for resist dissolution. J. Electrochem. Soc.,1992, 139(4):L35
    [21]S. Robertson, E. Pavelcheck, W. Hoppe, et al. Improved notch model for resist dissolution in lithography simulation. Proceedings of SPIE,2001,4345(11):912-920
    [22]蔡懿慈,周强,洪先龙,石蕊,王旸.光学邻近效应矫正(OPC)技术及其应用.中国科学E辑,2007,37(12):1607-1618
    [23]郑津津,陈有梅等.SU-8紫外深度光刻的误差及修正.光学精密工程,2007,15(12):1926-1931
    [24]李晓光,沈连婠等.接近式光刻的角谱法仿真研究.微细加工技术,2007(4)22-26
    [25]李木军.接近式光刻仿真研究.中国科学技术大学博士论文,2007.3
    [26]刘世杰,杜惊雷,段茜,罗伯靓,唐雄贵,郭永康,杜春雷.厚层抗蚀剂曝光模型及其参数测量.半导体学报,2005,26(5):1065-1071
    [27]段茜,姚欣,陈铭勇,马延琴,刘世杰,唐雄贵,杜惊雷.用改进曝光模型模拟厚胶显影轮廓.光电工程,2006,33(4):50-54
    [28]张帅,贾育秦.MEMS技术的研究现状和新进展.现代制造工程,2005(9):109-112
    [29]中国科学院光电技术研究所.URE-2000系列紫外深度光刻机.中国集成电路,2008,17(4):20-21
    [30]LIN D J, ZHOU C X, YIN Y. Construction principle of i-line illumination optical system and simulation calculation of the intensity distribution. Microfabrication Technology,1999(4):24-27
    [31]陈有梅,郑津津,周洪军,沈连婠,张自军.接近式光刻衍射光场的快速计算机模拟.中国科学技术大学学报,2007,37(1):30-34
    [32]郁道银,谈恒英.工程光学.北京:机械工业出版社,1999
    [33]Marie May, Anne-Marie Cazabat. Optique. DUNOD. Paris,1996
    [34]李俊昌.激光的衍射及热作用计算.北京:科学出版社,2002.3
    [35]Max Born and Emil Wolf. Principles of Optics[M].7th(expanded) edition. United States of America:Cambridge University Press,1999
    [36]谢建平,明海,王沛.近代光学基础.北京:高等教育出版杜,2006
    [37]苏显渝,李继陶.信息光学.北京:科学出版社,1999.9
    [38]波恩(M.Born),沃尔夫(E.Wolf).光学原理.北京:科学出版社,1985
    [39]唐雄贵,郭永康,杜惊雷等.基于角谱理论的厚层光刻胶衍射光场研究.光学学报,2004,24(12):1691-1696
    [40]Chen J F, Laidig T L, Wampler K E, et al. Practical method for full-chip optical proximity correction. SPIE,1997,3051:790-803
    [41]Dolainsky D, Maurer W. Application of a simple resist model to fast optical proximity correction. SPIE,1997,3051:774-780
    [42]Berman P, Kahng A B, Vidhani D, et al. Optimal phase conflict removal for layout of dark field alternating phase shifting masks. IEEE Trans Computer-aided Des Integr Circuits Syst,2000,19(2):175-187
    [43]Liu Y, Zakhor A. Binary and phase shifting mask design for optical lithography. IEEE Trans Semicond Manuf,1992,5(2):138-152
    [44]Liu Y, Zakhor A, Zuniga M A. Computer-aided phase shift mask design with reduced complexity. IEEE Trans Semicond Manuf,1996,9(2):170-181
    [45]Moniwa A, Terasawa T, Nakajo K, et al. Heuristic method for phase-conflict minimization in automatic phase-shift mask design. Jpn J Appl Phys,1995,34: 6584-6589
    [46]陈有梅.紫外深度光刻的计算机模拟及误差修正.中国科学技术大学硕士论文,2007.5
    [47]石蕊,蔡懿慈,洪先龙,吴为民,杨长旗.基于规则的光学邻近矫正中规则的相关处理.半导体学报,2002,23(7):701-706
    [48]蔡懿慈,周强,洪先龙,石蕊,王肠.光学邻近效应矫正(OPC)技术及其应用.中国科学E辑,2007,37(12):1607-1618
    [49]冯伯儒.什么是相移掩模.光的世界,1992,10(3):10-11
    [50]冯伯儒,陈宝钦.相移掩模的制作.微细加工技术,1997(1):8-16
    [51]冯伯儒,张锦,陈宝钦,侯德胜,苏平.亚分辨图形相移掩模的制作方法.微细加工技术,2001(2):14-19
    [52]蔡懿慈,周强,洪先龙,石蕊,王旸.相移掩模和光学邻近效应校正光刻技术.光电工程,2001,28(1):1-5
    [53]沈锋,冯伯儒,孙国良.相移掩模对曝光图形空间像光强分布影响的计算机模拟.光电工程,2001,28(1):1-5
    [54]谌廷政.微光学器件灰度掩模制作及应用技术的研究.国防科学技术大学博士学位论文,2004.9
    [55]杜惊雷,黄奇忠,姚军,粟敬钦,郭永康,崔铮,沈锋.灰阶掩模实现光学邻近校正及计算模拟研究.光学学报,1999(5):698-702
    [56]杜惊雷,粟敬钦,罗克俭,张怡霄,郭永康,崔铮,周崇喜.用灰阶编码掩模实现邻近效应精细校正的研究.光学学报,2000(4):518-524
    [57]李晓光,沈连婠,李木军,郑津津,张四海.基于遗传算法的接近式紫外光刻中掩模补偿优化研究.系统仿真学报,2008,20(17):4601-4604
    [58]李木军,沈连婠,李晓光,赵玮,刘雳霆,郑津津.接近式紫外光刻中图形失真的分析与预修正仿真.机械工程学报,2008,44(11):69-74
    [59]刘驰.DMD用于数字光刻成像研究.四川大学硕士学位论文,2005.6
    [60]白鹭 高益庆.基于DMD的数字灰阶编码掩模的设计.光电技术应用,2007,22(4):35-37
    [61]LIU R, ZHENG J J, ZHOU H J, et al. A Generalized Dill Exposure Model for Negative Thick Photoresist. Proceedings of the 2007 International Conference on Information Acquisition, Jeju City, Korea, July 9-11,2007:285-291.
    [62]肖啸.厚层抗蚀剂成像特性研究.四川大学硕士学位论文,2003.5
    [63]卢伟.SU-8胶接触式UV光刻模拟.东南大学硕士学位论文,2006.3
    [64]J. M. J. Frechet, H. Ito, C. G. Willson. Proc Microcircuit Eng,1982,82:260-261
    [65]H. Ito, C. G. Willson, J. M. J. Frechet. Proc of 1982 Symposium on VLSI Technology,1982:86-87
    [66]田丰,韩立,杨忠山.化学放大胶在电子束光刻技术中的应用.微纳电子技术,2003,40(12):43-46
    [67]王春伟,李弘,朱晓夏.化学放大光刻胶高分子材料研究进展.高分子通报,2005(2):70-80
    [68]L. Capodieci, A Krasnoperova, F Cerrina, et al. New models for the simulation of post-exposure bake of chemically amplified resist. Proc. SPIE,2003,5039: 1132-1142
    [69]K. L. Konnerth, F. H. Dill. In-situ measurement of dielectric thickness during etching or development pocesses, IEEE Trans. Electr. Dev.,1975,22(7):452
    [70]D. J. Kim, W. G. Oldham, A. R. Neureuther. Characterization and modeling of a resist with built-in induction effect, Proc. Kodak Microelec Seminar,1983,112
    [71]C. A. Mack. Development of positive photoresist. J. Electrochem. Soc.,1987, 134(1):148
    [72]C. A. Mack. New kinetic model for resist dissolution. J. Electrochem. Soc.,1992, 139(4):L35
    [73]S. Robertson, E. Pavelcheck, W. Hoppe, et al. Improved notch model for resist dissolution in lithography simulation. Proceedings of SPIE,2001,4345(11):912-920
    [74]R. E. Jewett, P. I. Hagouel, A. R. Neureuther, et al. Line-profile resist development simulation techniques. Polymer Engineering Science,1977,17(6): 381-384
    [75]P. I. Hagouel, A. R. Neureuther. Modeling of X-ray resist for high-resolution lithography. ACS Organic Coating and Plastics Preprints,1975,35(2):258-265
    [76]F. H. Dill, A. R. Neureuther, J. A. Tuttle, et al. Modeling projection printing of positive photoresist. IEEE Transactions on Electron Devices,1975, ED-22(9): 456-464
    [77]I. Karafyllidis, A. Thanailakis. Simulation of two-dimensional photoresist etching process in integrated circuit fabrication using cellular automata. Modeling Simulation and Material Science Engneering,1995,3(5):629-642
    [78]周再发,黄庆安,李伟华,卢伟.用于光刻胶刻蚀过程模拟的二维动态CA模型.电子学报,2006(5):1132-1142
    [79]周再发,黄庆安,李伟华,卢伟.光刻胶刻蚀过程模拟的元胞自动机算法研究.中国集成电路.2005(74):68-73
    [1]http://baike.baidu.com/view/57271.htm
    [2]S. Kirkpatrick, C. D. Gelatt, M. P. Vechi Jr. Optimization by simulated annealing. Science,1983(220):671-680
    [3]刘怀亮.模拟退火算法及其改进.广州大学学报(自然科学版),2005,4(6):503-506
    [4]蒋龙聪,刘江平.模拟退火算法及其改进.工程地球物理学报,2007,4(2):135-140
    [5]田学红,刘刚,田扬超等.接近式光刻的计算机模拟研究.微纳电子技术,2003,40(7):181-185
    [6]李木军,沈连婠,赵伟,郑津津,周杰.接近式光刻衍射光场的有效波前作用规律分析.光学学报,2010,30(2):525-530
    [7]Max Born, Emil Wolf. Principles of Optics.7th(expanded) edition. United States of America:Cambridge University Press,1999.514-515,426-427,413-416
    [8]http://www.jeolusa.com/PRODUCTS/SemiconductorEquipment/ElectronBeamLit hography/JBX5500FS/tabid/480/Default.aspx
    [9]F. H. Dill, W. P. Hornberger, P. S. Hauge, J. M. Shaw. Characterization of Positive Photoresist. IEEE TRANSACTIONS ON ELECTRON DEVICES,1975, ED22(7):445-452
    [10]医用化学, http://www.zysj.com.cn/lilunshuji/yiyonghuaxue/index.html
    [11]陈有梅,郑津津,周洪军,沈连婠,张自军.接近式光刻衍射光场的快速计算机模拟.中国科学技术大学学报,2007,37(1):30-34
    [12]李俊昌.激光的衍射及热作用计算.北京:科学出版社,2002.
    [13]M. D. Feit, J. A. Fleck. Appl Opt,1978,17:3990-3998
    [14]李安英.光波导光束传输法数值分析新进展.激光技术,2000,24(4):236-240
    [15]REN Y, WANG W J. A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures. Sensors and Actuators, B:Chemical(S0925-4005),2005,110(2): 279-288
    [16]刘景全,蔡炳初,陈迪,朱军,赵小林,杨春生.SU-8胶及其在MEMS中的应用.微纳电子技术,2003,40(7):132-136
    [17]伊福廷,张菊芳,彭良强,韩勇.利用紫外光刻技术进行SU8胶的研究.微纳电子技术,2003,40(7):126-128
    [18]LIU R, ZHENG J J, ZHOU H J, et al. A Generalized Dill Exposure Model for Negative Thick Photoresist [C]//Proceedings of the 2007 International Conference on Information Acquisition, Jeju City, Korea, July 9-11,2007:285-291
    [19]任华,张秋禹,李丹,陈晓伟.阳离子型光引发聚合.化学通报,2006(69):w055
    [20]Heinrich Kirchauer, Photolithography Simulation, PhD thesis, Wien, im Marz,1998.4 http://www.iue.tuwien.ac.at/phd/kirchauer/diss.html
    [21]Yoshihisa Sensu, Atsushi Sekiguchi, et al. Profile Simulation of SU-8 Thick Film Resist, Journal of Photoploymer Science and Technology(0914-9244),2005,18(1): 125-132
    [22]Permanent Epoxy Negative PhotoresistPROCESSING GUIDELINES FOR:SU-8 2000.5, SU-8 2002, SU-8 2005, SU-8 2007, SU-8 2010 and SU-8 2015[EB/OL], http://microchem.com
    [23]Electromagnetic properties of the SU-8 photoresist[EB/OL], http://memscyclopedia.org/su8.html
    [24]宁青菊,谈国强,史永胜,高淑雅.无机材料的物理性能.化学工业出版社,2006.1
    [1]任华,张秋禹,李丹,陈晓伟.阳离子型光引发聚合.化学通报,2006(69):w055
    [2]Hubert Lorenz. SU-8:A Thick Photo-resist for MEMS. http://www.gule.umd.edu/-shengli/SU-8.html.2002.8.12
    [3]Maggie Marie Bobbitt Bump. The effect of chemistry and network structure on morphological and mechanical properties of diepoxide precursors and poly (hydroxyethers):Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the degree of Doctor of Philosophy In Chemistry,2001.4
    [4]Richard A Ferguson. Modeling and simulation of a deep-ultraviolet acid hardening resist[J]. J VAC. Sci. Technol B,1990,8(6):1423-1427
    [5]Richard A Ferguson. Modeling and Simulation of Reaction Kinetics in Advanced Resist Processes for Optical Lithograpy. Memorandum No. UCB/ERL M91/78, Electronics Research Laboratory, College of Engineering University of California, Berkeley,1991.9
    [6]卢伟,黄庆安,李伟华,周再发.负性化学放大胶的光刻模型及模拟.微电子学.2005,35(6):568-576
    [7]何龙庆,林继成,石冰.菲克定律与扩散的热力学理论.安庆师范学院学报(自然科学版),2006,12(4):38-39
    [8]P.C乔丹著,宋心琦等译.化学动力学与传递,清华大学出版社,1985.6
    [9]卢伟.SU-8胶接触式UV光刻模拟.东南大学硕士学位论文,2006.3
    [10]Tollkuehn B, Erdmann A, Kivel N, et al. New methods to calibrate simulation parameters for chemically amplified resist. Proc SPIE,2002(4691):1168
    [11]徐晖,王绍宁,郑俊民.用自由体积理论描述扩散现象[J].中国药剂学杂志,2004,2(1):7-12
    [12]Cukier R I. Diffusion of brownian spheres in semidilute polymer solutions. Macromolecules,1984,17:252-255
    [13]Fircke H. A mathematical treatment of the electric conductivity and capacity of disperse systems. Phys. Rev.,1984,24575-582
    [14]Yasuda H, Lamaze C E, Ikenberry L D. Permeability of solutes through hydrated polymer membranes. Part I. Diffusion of sodium chloride. Die. Makro. Chem.,1968, 118:19-27
    [15]Vrentas J S, Duda J L. Molecular diffusion in polymer solutions. AIChE J,1979, 25:1-24
    [16]Fujita H. Diffusion in polymer-diluent systems. Fortschr Hochpolym-Forsch, 1961,3:1-47
    [17]Vrentas J S, Duda J L. Diffusion in polymer-solvent system. I. Reexamination of free-volume theory. J Polym Sci:Polym Phys Ed,1977,15:403-416
    [18]Vrentas J S, Duda J L. Diffusion in polymer-solvent system. II. A predictive theory of the dependence of diffusion coefficients on temperature, concentration, and molecular weight. J Polym Sci:Polym Phys Ed,1977,15:417-439
    [19]Vrentas J S, Duda J L. Diffusion in polymer-solvent system. III. Construction of deborah number diagrams. J Polym Sci:Polym Phys Ed,1977,15:441-453
    [20]Hong S U, Prediction of polymer/solvent diffusion behavior using free-volume theory[J]. Ind. Eng. Chem. Res.,1995,34:2536-2544
    [21]Yamaguchi T, Wang B G, Matsuda E, Suzuki S, Nakao S I. Prediction and estimation of solvent diffusivities in polyacrylate and polymethacrylates[J]. J. Polym. Sci., Part B, Polym. Phys.,2003,41:1393-1400
    [22]Dullien F A L. Predictive equations for self-diffusion in liquids:A different approach. AIChE J,1972,18:62-70
    [23]Haward R N. Occupied volume of liquids and polymers. J. Macrmol. Sci.-Rev. Macromol. Chem.,1970.C4:191-242
    [24]何平笙.WLF方程——链段运动的特殊温度依赖关系.高分子通报,2002(2):75-78
    [25]Hong S U. Predicting ability of free-volume theory for solvent self-diffusion coefficients in rubbers. J. Appl. Polym. Sci.,1996,61:833-841
    [26]吕宏凌,王保国.高分子聚合物中溶剂扩散系数的预测.化工学报,2006,57(1):6-12.
    [27]吕宏凌,王保国高.分子中的扩散系数——Vrentas-Duda模型及其发展.功能高分子学报,2005,18(2):353-360
    [28]田学红.深度光刻计算机模拟及实验研究.中国科学技术大学国家同步辐射实验室博士学位论文,2003
    [29]DeWitt D P, Niemoeller T C, Mack C A, Yetter G. Thermal design methodology of hot and chill plates for photolithography, Proc. SPIE,2196:432-448,1994
    [30]李宗隆.深紫外光线阻曝光后烘烤制程模拟之理及算法.奈米通讯,7(a),http://www.ndl.org.tw/old/ndlcomm/P7_2/P7_2.htm
    [31]Yoshihisa Sensu, Atsushi Sekiguchi, Satoshi Mori, et al. Profile simulation of SU-8 thick film resist. Proceedings of SPIE,5753:1170-1185
    [32]王增会,陈尔奎,孙艳霞,钟军伟,陈增强.基于神经网络的故障诊断与容错控制及在加热炉控制系统的应用.第19届中国过程控制会议论文集,2008.7:304-308
    [33]郭彦伟.基于并行结构的BP改进算法研究.山东师范大学硕士学位论文,2009
    [34]吴炜烨.基于神经网络语音识别算法的研究.中南大学硕士学位论文,2009
    [35]管昌生,王雨齐.基于BP神经网络的氯离子扩散系数预测模型.国外建材科技,2006(4):85-87
    [36]夏勇 陈卫昌等,基于神经网络的传质系数模型建立及应用.计算机测量与控制,2002,10(2):109-111
    [37]阎建民,罗先金,Krishna R.多组分溶液扩散系数的理论预测研究.第二届全国化学工程与生物化工年会,2005.10
    [38]阎建民,罗先金,Krishna R.非电解质溶液扩散系数的理论研究评述.化工学报,2006,57(10):2263-2269
    [39]阎建民,罗先金,Krishna R.二元液体混合物扩散系数的理论计算.高校化学工程学报,2007,21(6):919-923
    [40]毛科峰,郑建军,丁建江.混凝土Cl-扩散系数预测的有限元方法.建筑材料学报,2007,10(2):230-234
    [41]刘庆林,龚雄辉.UNIFAC-ZM活度系数模型预测聚合物溶液中溶剂扩散系数.计算机与应用化学,2003,20(3):225-228
    [42]张运宏.基于数字图像全息干涉法测量液相扩散系数的研究.大连交通大学硕士学位论文,2007
    [43]何茂刚,郭盈,钟秋,张颖.一种新的测定流体质扩散系数的全息干涉图像处理方法.西安交通大学学报,2008,42(11):1350-1355
    [1]石蕊,蔡懿慈,洪先龙,吴为民,杨长旗.基于规则的光学邻近矫正中规则的相关处理[J].半导体学报,2002,23(7):701~706.
    [2]彭宗举,陈芬,周亚训,冯伯儒,张锦.全息微光刻中全息掩模衍射特性的理论研究[J].光电子技术与信息,2004(6):67~71
    [3]FujitaJ, MitakeS, ShimizuF. Interferometric modulation of an atomic beam by an electric field:a phase hologram for atoms[J]. Phys Rev Lett,2000,84(18):4027-4030.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700