用户名: 密码: 验证码:
双苯氟嗪胃内滞留漂浮型缓释片的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:双苯氟嗪(Dipfluzine,Dip)是河北医科大学率先研制开发的新一代哌嗪类钙拮抗剂,可以选择性的作用于脑血管,扩张基底动脉,椎动脉及冠状动脉血管,其作用强于桂利嗪。药理研究发现,它可以降低脑水肿、增加脑血流量、改善脑缺血症状、缩小梗塞范围,能显著改善和保护大鼠缺血性脑损伤,极有可能发展成为治疗缺血性脑血管疾病的一种新型药物。根据该药物的处方前研究表明,其在酸性条件下溶解性好,在中性和碱性条件下几乎不溶,因此有必要将其制成胃内滞留漂浮型缓释片,以增加药物吸收,稳定血药浓度,降低毒副反应和提高生物利用度,为临床研究及应用提供一种很有前景的缓释剂型
    方法:在大量文献资料和预实验的基础上,以不同比例的阻滞剂硬脂酸和致孔剂聚乙二醇-6000(PEG-6000)与Dip制成固体分散体(Dip-SD),并采用差示扫描量热法(DSC)验证固体分散体的形成。确定选用羟丙甲基纤维素(HPMC)为亲水凝胶骨架材料,加入助漂剂十八醇,发泡剂碳酸镁(MgCO3),和Dip-SD以不同条件制备漂浮型缓释片,考虑片剂漂浮性能的同时,进行影响药物释放速率的单因素考察,确定影响胃漂浮制剂中药物释放的主要因素为工艺因素(片剂硬度,干法和湿法,颗粒大小)和上述几种处方因素。选取合适的制备工艺,以HPMC,聚乙二醇-6000,十八醇,碳酸镁进行四因素三水平的正交设计,综合评价片剂释放度
    
    
    和漂浮性能,通过极差分析,确定优化处方组成。
    双苯氟嗪胃漂浮型缓释片的释放度测定方法,根据2000版中国药典溶出实验转篮法要求,以500ml0.1mol·L-1 HCL为溶出介质,转速为100r·min-1,温度37±0.5℃,分别在0.5,1,2,3,4,5,6,7,8,10,12h取样5ml滤过,随即补充等温等体积的空白介质,取续滤液,照分光光度法在249nm波长下测定吸收度A值,根据标准曲线方程计算药物浓度,求得双苯氟嗪胃内滞留漂浮型缓释片的累计释放百分率。同法考察自制双苯氟嗪普通片释放度。以优化处方制备三批胃漂浮片,进行含量测定和溶出度试验,考察制备工艺稳定性,并将溶出数据分别用Higuchi模型,零级方程和一级方程进行拟合。将自制的双苯氟嗪胃内漂浮缓释片(Dip-HBS)进行高湿度、高温和强光照射下的稳定性考察,以及密封自然放置条件下分别于制备后一个月、两个月、三个月和六个月时测定其漂浮性能和体外累计释放百分率,考察其稳定性。
    漂浮性能考察:于37±0.5℃的人工胃液中,分别采用搅拌桨转速为50r·min-1及转篮法转速为100r·min-1,模拟胃的蠕动,考察自制的双苯氟嗪胃内漂浮缓释片的形态变化,起漂时间和持漂时间。同时采用自制的浮力测定仪对Dip-HBS体外漂浮力进行测定,并同法考察双苯氟嗪普通片漂浮性能作对比。
    胃内滞留性试验:家兔口饲Dip-HBS和普通片后,分别于不同时间处死一只,解剖动物胃肠道,观察片剂所在部位及形态。
    体内释药特性的研究以家兔为实验动物,12只分两组
    
    
    (每组6只)研究Dip-HBS和对照普通速释片的体内药物动力学过程,给药后于不同时间点经家兔耳缘静脉取血样,以桂利嗪为内标物经过预处理后,采用简便、快速、灵敏的反相高效液相色谱法,测定血浆中双苯氟嗪的浓度。测定结果用3p97药代动力学程序进行处理,模拟药时曲线,并计算各项药代动力学参数。以Tmax、Cmax和AUC为指标,综合评价Dip-HBS和Dip普通片的相对生物利用度。同时以Dip-HBS不同时间的体内吸收分数Fa对其相应时间的体外释放百分率Fr进行回归,求回归直线方程和相关系数,考察Dip-HBS的体内吸收与体外释放的相关性。
    结果:通过DSC,证明了Dip以非晶态分散于载体中,形成了固体分散体。单因素考察确定的制备工艺为:以75%乙醇为润湿剂,采用湿法制粒压片法制备Dip-HBS片,确定了处方各主要因素用量的水平。通过L9(34)正交实验设计得到优化处方为A2B2C1D1,HPMC45mg,硬脂酸-PEG- 6000-Dip(20:10:5) SD 35mg,十八醇10mg,MgCO310mg,根据极差大小可知,各因素对药物释放性能和漂浮性能的影响程度为C>A>B>D。制得的片剂表面光洁圆整,外观较好,硬度为4~5kg。处方中HPMC遇水膨胀形成凝胶屏障,阻止内部片心进一步水化,可控制药物释放;硬脂酸和PEG6000作为载体制成固体分散体,可使双苯氟嗪均匀分散,调节药物释放。十八醇为助漂剂和辅助阻滞剂,MgCO3为发泡剂,均可显著提高片剂漂浮性能。根据优化处方制备了三批片剂,同一批6片取样时间点具均一性,三批片剂药物释放具有重现性,说明制备工艺稳定。将本品释放曲线分别用零级方程、Higuchi模型、一级方程进行拟合,回归方
    
    
    程分别为:
    Ft=7.401t+15.33,r=0.9865
    Ft=31.54t1/2-13.09,r=0.9955
    ㏒(F∝-Ft)=-0.1033t+2.087,r=-0.9766
    说明释药特性更符Higuchi模型,Dip-HBS片具有明显的缓释特征。释放度数据以Peppas方程进行拟合,释放机制为药物的扩散和骨架溶蚀协同作用。高温、高湿度、强光影响因素实验结果表明:Dip-HBS片对三者均不稳定,但含量下降均在5%以下,且片剂在RH75% 10d的吸湿增重小于5%,均符合药典规定。以处方量80%、100%、120%的双苯氟嗪及相应辅料进行了回收率实验,回收率分别为:(99.32±0.57)%,(99.61±0.41)%?
Objectives: Dipfluzine (Dip), a novel piperazines calcium antagonist, can selectively dilate vertebral artery, basilar artery and coronary artery. Its effects is more potential than Cinnarizine’s. Pharmacological researches show that: it can abate hydrocephalus, increase cerebral blood stream, improve brain ischemia, and attenuate the infarct size after occlusion. It may be potentially effective to treat ischemic brain injury. According to Dip’s pre-preparation research, it is well soluble in acid medium and poorly soluble under neutral and alkaline circumstances. In order to increase Dip’s in vivo absorption, steady the drug concentration in blood, reduce its adverse effects, and enhance its bioavailability, the intragastric floating sustained-release tablet was prepared with HPMC hydrophilic matrix. It will provide a potential sustained-release dosege form for Dip’s clinical research and application.
    Methods: On the basis of scientific materials and the pre-preparation investigation, we select HPMC as the hydrophilic matrix, add PEG-6000 as the porogeneous compound, stearic acid and stearylalcohol as the retarder, and MgCO3 as the gas-generating agent in the formulation. Considering the release properties and floating ability of the
    
    
    tablet , We carried through monofactorial investigations. After choosing suitable preparation technics, we use L9(34) orthogonal design to select the optimum formulation in terms of the floating capabilities and in vitro accumulative release percentage.
    Cylindrical basket was used in the experiment of in vitro dissolution test . The dissolution test is carried out in simulated gastric fluid 0.1mol·L-1HCL with rotation rate 100r·min-1 at temperature 37±0.5℃. Samples were withdrawn periodically at 0.5,1,2,3,4,5,6,7,8,10,12h from the dissolution medium, replenished with the same volume of fresh medium each time, and then analyzed and determined for their drug contents at 249nm by ultraviolet spectrophotometer. The conventional Dip tablet was studied by the same means. Three batches of Dip-HBS were prepared and studied through release experiment to investigate the stability of formulation and technics。The release data were analyzed with three models: Higuchi equation, zero order kinetics, and first order kinetics. We studied the stability of Dip-HBS under following circumstances: high humidities, high temperature, strong light and natural store condition. To elucidate the mechanism of drug release we used Peppas equation to analyze the release data. Its floating properties was investigated in 37±0.5℃ 0.1mol·L-1HCL under two conditions: under 50r·min-1 paddle agitation, and with cylindrical basket method(100r·min-1).
    In vivo study: The intragastric residence experimemt was
    
    
    carried in rabbits. The release properties in vivo were investigated as following: 12 rabbits were divided into two groups.One was given Dip-HBS, and the other group was given the conventional tablet. Plasma samples were obtained at different time after the administration. Choose Cinnarizine as the internal standard. The plasma concentration of Dip was determined by High performance Liquid Chromatograph with Ultraviolet detector.
    Results: Through the L9(34) orthogonal design, the optimum formulation was founded: A2B2C1D1, that is:
    HPMC(A) 45mg
    stearic acid-PEG6000(B)-Dip(20:10:5)SD 35mg
    stearyl alcohol(C) 10mg
    MgCO3 (D) 10mg
    The factors influence the tablet’s release and floating properties as following turn: C>A>B>D. Three batches HBS tablets were prepared according to the optimum formulation. The release data were analyzed with three models: Higuchi equation, zero and first order kinetics, the regression equations:
    Ft=7.401t+15.33, r=0.9865
    Ft=31.54t1/2-13.09, r=0.9955
    ㏒(F∝-Ft)=-0.1033t+2.087, r=-0.9766
    The results showed that Dip-HBS conformed to Higuchi equation better than the other two models. The drug release mechanism was non-Fick’s diffusion, that was concurrence of the
引文
Wang YL, He RR.Selective vasodilatory effect of dipfluzine on vertebral artery in anesthetized dogs. Acta Pharmacol Sina, 1993,14(2):124~127.
    Wang YL, He RR. Effect of dipfluzine on cortical somatosensory evoked potentials and amino acid contents in ischemic rat brain. Acta Pharmacol Sina, 1996,17(1):41~44.
    Wang YL, He RR. Effect of dipfluzine on platelet aggregation and thrombus formation. Acta Pharmacol Sina, 1994,15(5):443~446.
    Wang YL, He RR. Protective effect of dipfluzine on experimental brain edema in rats. Acta Pharmacol Sina, 1994,15(3):201~205.
    Wang YL, Li YS, Fu SX. Improving effect of dipfluzine on
    
    
    amnesia in mice. Chinese Journal of Pharmacology and Toxicology,1992,6(4):246~249.
    陈桂兰,王巧,张剑峰,等.尼莫地平缓释片的制备及稳定性初步考察.中国医药工业杂志,1995,26(7):299~301.
    Teresa Marín, M. Victoria Margarit, Gloria E. Salcedo. Characterization and solubility study of solid dispersions of flunarizine and polyvinylpyrrolidone. Il Farmaco, 2002, 57(9):723~727.
    程紫骅,刘燕,朱家壁.盐酸雷尼替丁HPMC骨架片药物释放影响因素研究.中国药科大学学报,1998,29(4):275~ 277.
    黄东坡,王远,陈军,等.盐酸二甲双胍胃漂浮缓释片的制备及体外释放.中国医药工业杂志,2002,33(10):483~ 486.
    张朔,姜典卓,邹宇清,等.VB1胃内滞留漂浮型缓释片释放度及漂浮性能的研究.沈阳药科大学学报,2002,19 (4):253~256.
    曾环想,潘卫三,等.法莫替丁缓释片的制备工艺及其体外释放特性的研究.中国药学杂志,1997,32(4):213.
    Ritger P L, Peppas N A. A simple equation for description of solute release ⅡFickian and anomalous expression from swellable devices. J Control Rel, 1987,5:37~42.
    梁文权主编.生物药剂学与药物动力学,2000,36.
    王慧珍,郭金凤,鲁云兰,等.盐酸氟桂利嗪胶囊与片剂的溶出度测定.中国药学杂志,1996,31(10):621~622.
    王芳芳,杜蓉,刘祖雄,等.盐酸昂丹斯琼胃漂浮型缓释
    
    
    片的制备及质量控制.中国药学杂志,2002,37(9):678~680.
    冯浩,王志民,陈大为.马来酸罗格列酮胃漂浮型缓释片的研究. 中国药科大学学报,2002,33(3):196~199.
    Timmermans J, AJ. Measuring the resultant weight of an immersed test material. Part 2 Examples of kinetic determinations applied to monolithic dosage forms. Acta. Pharm. Technol,1990,36(3),176~180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700