用户名: 密码: 验证码:
应用荧光共振能量转移(FRET)法研究瘦素及外力刺激对于软骨细胞骨架调控蛋白RhoA的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的:骨关节炎(OA)是骨科的常见疾病之一,是一种退行性关节疾病,其病因尚不明了。其中,长期超负荷的外力作用是较为公认的OA危险因素之一,因而在体重超重人群中,OA的发病率显著增加。瘦素(leptin)是一种白色脂肪组织分泌的小分子量蛋白,在体重超重人群中其血清含量往往升高。2003年Dumond等人发现OA患者关节液中瘦素(leptin)含量明显高于正常人,提示瘦素可能在OA的发病过程中起到某种作用。RhoA蛋白是调控细胞骨架的重要分子之一,OA软骨细胞与正常软骨细胞的显著差异之一就是细胞骨架含量的明显升高。本文拟通过荧光共振能量转移(FRET)法,研究活细胞条件下瘦素及外力刺激对于正常软骨细胞RhoA蛋白的作用,分别探讨瘦素、外力对于软骨细胞细胞骨架的影响,为OA的病因研究提供参考。
     研究方法:以编码YFP-RhoA-PKN-CFP融合蛋白的pRaichu-1237x质粒电转染正常人软骨细胞。观察在200ng/ml瘦素刺激下,RhoA蛋白的FRET信号改变。另外,应用原子力显微镜(AFM)作为施力工具,观察在AFM的轻敲模式与接触模式作用下,RhoA蛋白的FRET信号改变。
     研究结果:在200ng/ml的瘦素作用下,软骨细胞伪足迅速回缩,FRET信号逐渐减弱消失,直至最终细胞皱缩,形成许多细胞膜周围的小泡。
     软骨细胞在接受AFM轻敲模式刺激后逐渐出现胞质回缩,FRET信号明显增强,以接触探针刺激处最为明显。
     软骨细胞在接受AFM接触模式刺激后,细胞形态无明显改变,FRET信号明显增强,以接触探针刺激处最为明显。
     研究结论:
     (1)以大剂量瘦素(200ng/ml)刺激软骨细胞,不但不能激活RhoA蛋白,反而会使RhoA蛋白的FRET信号明显减弱,并导致软骨细胞逐渐皱缩,最终在细胞膜表面出现类似凋亡小体的小泡,提示大剂量的瘦素可能诱导软骨细胞的凋亡。
     (2)AFM作为施力工具可以直接给予体外培养的软骨细胞以力学刺激。以AFM的轻敲模式和接触模式作用于软骨细胞可以分别模拟垂直方向的压力和水平方向的剪切力。软骨细胞在AFM的外力作用下均发生了较强的FRET现象。细胞对于垂直方向的压力更为敏感,FRET信号更强,并出现了胞质回缩。提示外力作用可以显著激活细胞骨架的调控蛋白RhoA。
Background:Osteoarthritis is a kind of degenerative disease,which represents one of the most frequent diseases encountered in the clinics.However,the pathophysiology of OA is still unclear.It is believed that obesity represents one of the significant risk factors for OA.Many studies have demonstrated a clear link between obesity and OA.Leptin is a small polypeptide excreted by white adipose tissue, whose circulating concentrations are proportional to the degree of adiposity.In 2003, Dumond et al.found that leptin was strongly overexpressed in human OA cartilage and synovial fluid,which indicates leptin may play a key role in the pathophysiology of OA.RhoA is a significant molecular switch,which regulates a wide spectrum of cellular functions such as remodeling of the actin cytoskeleton.Many studies showed that OA chondrocytes have an elevated level of cytoskeletal component.Our research hypothesizes that leptin and external force may affect the activity of RhoA in normal chondrocytes,consequently induce some changes of the cytoskeleton.We believe that fluorescent resonance energy transfer(FRET) could be a proper method to demonstrate the changes of RhoA in a single living chondrocyte.
     Methods:pRaichu-1237x vector,encoding YFP-RhoA-PKN-CFP fusion protein, was transfected into normal chondrocytes via Human Chondrocyte Nucleofector~(TM) Kit(Amaxa Corporation,Germany).Chondrocytes were incubated with 200ng/ml leptin for 30 minutes.The FRET signal of RhoA was recorded during the incubation. Besides,we also used AFM as an apparatus to apply external force to the chondrocytes,with the purpose of observing the change of RhoA FRET signal.
     Results:During the incubation,we observed a pseudopodium contraction and cytoplasm streaming.The FRET signal gradually vanished.The whole chondrocyte collapsed in the end.Many small bubbles could be found around the plasma membrane.
     After applying external force to the chondrocytes by AFM,we observed an obvious enhancement of the RhoA FRET signal.Cell accepted a tapping mode of external force also appeared an obvious pseudopodium contraction,whereas cell accepted a contact mode of external force did not show any change of the outline.
     Conclusions:1.Incubating chondrocytes with high-dose leptin(200ng/ml) could not activate RhoA,but lead to FRET signal vanishing.Cell collapse and small bubbles around the membrane may indicate cell apoptosis.2.AFM has been proved to be a successful method to apply external force to the living cells.Tapping mode and contact mode could simulate pressure and shearing force separately.It seemed that chondrocytes were more sensitive to the tapping mode,which induced stronger RhoA FRET signal and more visible change of the cell outline.All the evidences show that external force could obviously activate RhoA
引文
[1] Felson DT, Naimark A, Anderson J, Kazis L, Castelli W, Meenan RF. The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 1987; 30(8):914-8.
    [2] Zigang Ge, Yang Hu, Boon Chin Heng et al. Osteoarthritis and Therapy. Arthritis Rheum 2006; 55(3):493-500.
    [3] Kuettner KE, Goldberg VM. Introduction. In: Kuettner KE, Goldberg VM, editors. Osteoarthritic disorders. Rosemont (IL): American Academy of Orthopaedic surgeons; 1995. p.xxi - xxv.
    [4] Buckwalter JA, Saltzman C, Brown T. The impact of osteoarthritis: implications for research. Clin Orthop Relat Res 2004;427 Suppl:S6 - 15.
    [5] Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007 Dec; 213(3):626-34.
    [6] A.J. Teichtahl, A.E. Wluka, J. Proietto, F.M. Cicuttini, Obesity and the female sex, risk factors for knee osteoarthritis that may be attributable to systemic or local leptin biosynthesis and its cellular effects. Medical Hypotheses 2005; 65(2), 312-315
    [7] Cicuttini FM, Baker JR, Spector TD. The association of obesity with osteoarthritis of the hand and knee in women: a twin study. J Rheumatol 1996; 23(7): 1221-6.
    [8] Hart DJ, Spector TD. The relationship of obesity, fat distribution and osteoarthritis in women in the general population: the Chingford Study. J Rheumatol 1993;20(2):331-5.
    [9] Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994 Dec 1;372(6505):425-32.
    [10] Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998 Oct 22;395(6704):763-70.
    [11] Simopoulou T, Malizos KN, Iliopoulos D, Stefanou N, Papatheodorou L, Ioannou M, Tsezou A. Differential expression of leptin and leptin's receptor isoform (Ob-Rb) mRNA between advanced and minimally affected osteoarthritic cartilage; effect on cartilage metabolism. Osteoarthritis Cartilage. 2007 Aug;15(8):872-83.
    [12] Figenschau Y,Knutsen G,Shahazeydi S,Johansen O,Sveinbjornsson B.Hunan articular chondrocytes express functional leptin receptors.Biochen Biophys Res Commun 2001;287:190-7.
    [13] Dumond H, Presle N, Terlain B, Mainard D, Loeuille D, Netter P, Pottie P. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 2003 Nov; 48(11):3118-29.
    [14] Scharstuhl A, Glansbeek HL, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB. Inhibition of endogenous TGF- 3 during experimental osteoarthritis prevents osteophyte formation and impairs cartilage repair. J Immunol 2002; 169:507- 14.
    [15] Glansbeek GL, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB. Stimulation of articular cartilage repair in established arthritis by local administration of transforming growth factor-beta into murine knee joints. Lab Invest 1998;78:133-42.
    [16] Grimaud E, Heymann D, Ré dini F. Recent advances in TGF- β effects on chondrocyte metabolism: potential therapeutic roles of TGF- β in cartilage disorders. Cytokine Growth Factor Rev 2002;13:241 - 57.
    [17] Van Beuningen HM,Glansbeek HL,van der Kraan PM,van den Berg WB.Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-f} injections.Osteoarthritis Cartilage.2000;8:25-33.
    [18] Hulth A,Johnell O,Miyazono K,Lindberg L,Hernegard D,Heldin CH.Effect of transforming growth factor-beta and platelet-derived growth factor-BB on articular cartilage in rats.J Orthop Res. 1996; 14:547-53.
    [19] Iliopoulos D, Malizos KN, Tsezou A. Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes:possible molecular target for osteoarthritis therapeutic intervention.Ann Rheum Dis.2007 Dec;66(12):1616-21.
    [20]李兵 邱贵兴 瘦素对于体外培养人类软骨细胞影响的初步研究 中国协和医科大学硕士学位论文2007;Jun。
    [21]Capin-Gutierrez N,Yalamas-Rohana P,Gonzalez-Robles A,et al.Cytoskeleton disruption in chondrocytes from a rat osteoarthrosic(OA) -induced model:its potential role in OA pathogenesis.Histol Histopathol.2004 Oct;19(4):1125-32.
    [22]Zeidan A,Paylor B,Steinhoff K J,Javadov S,Rajapurohitam V,Chakrabarti S,Karmazyn M.Actin cytoskeleton dynamics promotes leptin-induced vascular smooth muscle hypertrophy via RhoA/ROCK- and phosphatidylinositol 3-kinase/protein kinase B-dependent pathways.J Pharmacol Exp Ther.2007Sep;322(3):1110-6.
    [23]Hall,A.Rho GTPases and the actin cytoskeleton.Science.1998 Jan 23;279(5350):509-14.
    [24]王进军 陈小川 刑达.FRET技术及其在蛋白质-蛋白质分子相互作用研究中的应用.生物化学与生物物理进展2003;30(6):980-4。
    [25]周新社,戴克戎,汤亭亭等.人负重关节软骨细胞的体外分离与培养.临床骨科杂志 2004 Jun 7(2):209-13.
    [26]周新社,戴克戎,汤亭亭等.单层培养的人类关节软骨细胞生物学行为研究.解剖与临床2006 11(1):14-17.
    [27]Mulligan RC.The basic science of gene therapy.Science 1993;260(5110):926
    [28]Gresch O,Engel FB,Nesic D et al.New non-viral method for gene transfer into primary cells.Methods.2004 Jun:33(2):151-63.
    [29]G(a|¨)rtner A,Collin L,Lalli G.Nucleofection of primary neurons.Methods Enzymol.2006;406:374-88.
    [30]Rohr UP,Kronenwett R,Grimm D,Kleinschmidt J,Haas R.Primary human cells differ in their susceptibility to rAAV-2-mediated gene transfer and duration of reporter gene expression.J Virol Methods.2002 Sep;105(2):265-75.
    [31]Nakamura T,Kurokawa K,Kiyokawa E,Matsuda M.Analysis of the spatiotemporal activation of rho GTPases using Raichu probes.Methods Enzymol. 2006;406:315-32.
    [32] Loirand G, Guerin P, Pacaud P, et al. Rho kinases in cardiovascular physiology and pathophysiology. Circ Res, 2006,98(3):322-334.
    [33] Pollok BA, Heim R. Using GFP in FRET-based applications. Trends Cell Biol. 1999 Feb;9(2):57-60.
    [34] Trinkle-Mulcahy L, Sleeman JE, Lamond AI. Dynamic targeting of protein phosphatase 1 within the nuclei of living mammalian cells. J Cell Sci. 2001 Dec;114(Pt 23):4219-28.
    [35] Clegg, R.M. The vital contribution of Perrin and Forster Biophotonics Int. 2004 11,42-44
    [36] David W. Piston, Gert-Jan Kremers. Fluorescent protein FRET: the good, the bad and the ugly. Trends in Biochemical Sciences 2007 Vol.32 No.9
    [37] Vogel, S.S. et al. Fanciful FRET. Sci. STKE 2006, re2
    
    [38] Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 1998 (67):509-544
    [39] Heim, R. and Tsien, R.Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 1996(6): 178-182
    [40] Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 1997(388):882-887
    [41]Paterson HF. J CeB Biol, 1990, 111(3):1001-1007
    [42]侯成千 梁卫红 王军. Rho 蛋白和细胞骨架的关系.生命的化学.2007,(27)2; 130-3
    [43] Valerie E Meyers 1. et al. RhoA and Cytoskeletal Disruption Mediate Reduced Osteoblastogenesis and Enhanced Adipogenesis of Human Mesenchymal Stem Cells in Modeled Microgravity. J Bone Miner Res. 2005 October ; 20(10):1858-1866.
    [44] Hisayoshi Yoshizaki. et al. Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J Cell Bio. 2003, 162(2):223-32.
    [45] Olivier Pertzl. et al. Spatiotemporal dynamics of RhoA activity in migrating cells. 2006,April,440(20):1069-72.
    [46]Takeshi Nakamura.et al.FRET imaging in nerve growth cones reveals a high level of RhoA activity within the peripheral domain.Molecular Brain Research 139(2005) 277 - 287
    [47]李兵 邱贵兴.瘦素对于体外培养人类软骨细胞影响的初步研究.中国协和医科大学博士学位论文.2007
    [48]Nerem RM.Shear force and its effect on cell structure and function.ASGSB Bull.1991 Jul;4(2):87-94.
    [49]Schwarzbauer JE.Cell migration:may the force be with you.Curr Biol.1997May 1;7(5):R292-4.Review.
    [50]Stephanou A,Tracqui P.Cytomechanics of cell deformations and migration:from models to experiments.C R Biol.2002 Apr;325(4):295-308.
    [51]王小虎,卫小春,陈维毅.软骨细胞力学特性的研究进展.中华医学杂志2006,86(21):1502-04.
    [52]Wilkins RJ,Browning JA,Urban JP.Chondrocyte regulation by mechanical load.Biorheology.2000;37(1-2):67-74.
    [53]Zeng C,Morrison AR.Disruption of the actin cytoskeleton regulates cytokine-induced iNOS expression.Am J Physiol Cell Physiol.2001Sep;281(3):C932-40.
    [54]G.Binning,C.F.Quate,C.Rohrer.Atomic Force Microscope.Phys,Rev,Lett,56(9):1986:930-933.
    [55]白春礼.田芳,罗克.扫描力显微术.北京:科学出版社,2000.7-32
    [56]P.P.Lehenkari,G.T.Charras,A.Nyka K,M.A.Horton.Adapting atomic force microscopy for cell biology.Uitramicroscopy.2000,(82):289-295.
    [57]Dufrene Y F.Atomic force microscopy,a powerful tool in microbiology.J Bacteriol.2002,184(19):5205-13.
    [58]Daniel M C,Iw amoto H,Shao ZF.Atomic force microscopy in structural biology:from the subcellular to the submolecular.Journal of Electron Microscopy.2000;49(3):395-406
    [59]刘广源 邱贵兴.运用原子力显微术磁驱动模式研究骨关节炎软骨细胞生物力学特性的改变.中国协和医科大学博士学位论文.2007
    [60]Smith RL,Carter DR,Schurman DJ.Pressure and shear differentially alter human articular chondrocyte metabolism:a review.Clin Orthop Relat Res.2004Oct;(427 Suppl):S89-95.
    [61]Henderson E,Haydon PG,Sakaguchi DS,et al.Actin filament dynamics in living glial cells imaged by atomic force microscopy.Science.1992 Sep 25;257(5078):1944-6
    [62]May RC,Machesky LM.Phagocytosis and the actin cytoskeleton.J Cell Sci,2001,114(pt 6):1061-77.
    [63]Dickson BJ.Rho GTPases in growth cone guidance.Curr Opin Neurobiol,2001,11(1):103-10.
    [1]王进军 陈小川 刑达.FRET技术及其在蛋白质-蛋白质分子相互作用研究中的应用.生物化学与生物物理进展2003;30(6):980-4。
    [2]郑文富.FRET在生物科学中的应用.hnp://www.bbioo.com/instrument/2007
    [3]Clegg,R.M.The vital contribution of Perrin and F(o|¨)rster Biophotonics Int.2004 11,42-44
    [4]David W.Piston,Gert-Jan Kremers.Fluorescent protein FRET:the good,the bad and the ugly.Trends in Biochemical Sciences 2007 Vol.32 No.9
    [5]Nakamura T,Kurokawa K,Kiyokawa E,Matsuda M.Analysis of the spatiotemporal activation of rho GTPases using Raichu probes.Methods Enzymol.2006;406:315-32.
    [6]Chen,H.et al.Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells.Biophys.J.2006,91,L39-L41
    [7]Miyawaki,A.and Tsien,R.Y.Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein.Methods Enzymol.2000,327,472-500
    [8]孙学刚,张丽华,姜勇.FRET的理论基础及应用.中国病理生理杂志2004,20(9):1721-4,1738.
    [9]Prasher DC,Eckenrode VK,Ward WW,et al.Primary structure of the aequorea victoria green fluorescent protein.Gene,1992,111(2):229-33.
    [10]Truong K,Ikura M.The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo.Curr Opin Struc Biol,2001,11(5):573-8.
    [11]Heim R,Prasher DC,Tsien RY.Wavelength mutations and posttranslational autoxidation of green fluorescent protein.Proc Natl Acad Sci USA,1994,91(26):12501-4.
    [12]Heim R,Tsien RY.Engineering green fluorescent protein for improved brightness,longer wavelengths and fluorescence resonance energy transfer.Curr Biol,1996,6(2):178-82.
    [13]Heim,R.and Tsien,R.Y.Engineering green fluorescent protein for improved brightness,longer wavelengths and fluorescence resonance energy transfer.Curr.Biol.1996(6):178-82
    [14]Miyawaki,A.et al.Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin.Nature 1997(388):882-887
    [15]Paterson HF.J CeB Biol,1990,111(3):1001-1007
    [16]侯成千梁卫红王军.Rho蛋白和细胞骨架的关系.生命的化学.2007,(27)2;130-3
    [17]Valerie E Meyersl.et al.RhoA and Cytoskeletal Disruption Mediate Reduced Osteoblastogenesis and Enhanced Adipogenesis of Human Mesenchymal Stem Cells in Modeled Microgravity.J Bone Miner Res.2005 October;20(10):1858-1866.
    [18]Loirand G,Guerin P,Pacaud P,et al.Rho kinases in cardiovascular physiology and pathophysiology.Circ Res,2006,98(3):322-334.
    [19]Miyawaki,A.Visualization of the spatial and temporal dynamics of intracellular signaling.Dev.Cell 2003b:4,295-305.
    [20]Trinkle-Mulcahy L,Sleeman JE,Lamond AI.Dynamic targeting of protein phosphatase 1 within the nuclei of living mammalian cells.J Cell Sci.2001Dec;114(Pt 23):4219-28.
    [21]齐小娟,王政,蔡朱男et al.构建以荧光共振能量转移技术为基础的生物学活性前列腺特异抗原检测器.中国药理学与毒理学杂志.2005;19(3):229-36.
    [22]Youvan,D.C.et al.Calibration of fluorescence resonance energy transfer in microscopy using genetically engineered GFP derivatives on nickel chelating beads.Biotechn.1997,et alia 3,1-18
    [23]Hoppe,A.et al.Fluorescence resonance energy transfer-based stoichiometry in living cells.Biophys.J.2002,83,3652-3664
    [24]Periasamy,A.and Day,R.N.Visualizing protein interactions in living cells using digitized GFP imaging and FRET microscopy.Methods.Cell Biol.1999,58,293-314
    [25]Erickson,M.G.et al.FRET two-hybrid mapping reveals function and location of L-type Ca~(2+) channel CaM preassociation. Neuron 2003, 39,97-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700