用户名: 密码: 验证码:
脂肪酸及其代谢产物和相关基因在癌症代谢中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
参与癌症的特定分子的识别和阻止这些分子的抑制剂的开发,作为靶治疗,是目前癌症研究的一个令人兴奋和感兴趣的领域。在很多疾病(包括癌症)中都发现了多不饱和脂肪酸(polyunsaturated fatty acids, PUFAs)[例如:花生四烯酸arachidonic acid, AA, C20:4(6)]及其代谢产物(例如:Prostagland E2, PGE2)的重要作用。然而,它们是如何参与癌细胞代谢,在此代谢中起到什么样的作用仍不清楚。本研究以癌细胞(MDA-MB-231细胞、MCF-7细胞、ZR-75-1细胞、]HT-29细胞和B16细胞)、人乳腺癌样本(正常组织、癌旁组织和乳腺癌组织)和转△6去饱和酶(delta-6 desaturase, D6D)基因的黑色素瘤小鼠模型为研究对象,在分子水平、细胞水平和动物载体实验,通过观察AA、AA代谢产物PGE2、与AA合成相关的去饱和酶(D6D)和与癌症的发生和发展相关的一系列基因的改变,来探讨D6D与癌症的发生是否有相关性。为进一步的体内和临床研究奠定基础。主要研究方法和结果如下:
     一、抗癌药物对癌细胞内长链脂肪酸及其代谢产物和相关基因的影响
     方法:采用XTT方法检测癌细胞增殖;气相色谱(Gas chromatography, GC)分析脂肪酸含量;实时定量PCR (real time PCR)检测硬脂酰-CoA去饱和酶-1(stearoyl-CoAdesaturase-1, SCD1)、Δ5去饱和酶(delta-5-desaturase, D5D)、D6D、环氧酶Ⅱ(cyclooxygenaseⅡ, COX-2) mRNA表达水平;Western Blotting检测D5D和D6D蛋白表达水平;酶联免疫吸附法(ELISA)测定PGE2浓度。
     结果:
     1.随CPT浓度从0.0625~2μmol/L增大,对癌细胞的抑制率增加(P<0.05或P<0.01);随Ber浓度从4-64μg/ml增大,对癌细胞的抑制率增加(P<0.05或P<0.01)。
     2. Ber(终浓度8μg/ml或者16μg/ml)和CPT(终浓度0.25μmol/L或者0.5μmol/L)分别处理5株癌细胞,各癌细胞株内PUFAs占总脂肪酸的百分比发生了变化,但共同特点是:所有癌细胞株内的AA发生的变化最明显(P<0.05)。
     3.和对照组比较,Ber和CPT处理组,所有癌细胞株的D5D和D6D mRNA表达水平都显著性提高(P<0.05或者P<0.01);HT-19细胞的CPT处理组,SCD1mRNA表达水平非常显著性提高(P<0.01);B16细胞的CPT处理组,SCD1 mRNA表达水平显著性降低(P<0.05);其余细胞株的Ber或者CPT处理组,SCD1 mRNA表达水平变化不明显;MDA-MB-231细胞、MCF-7细胞和ZR-75-1细胞的Ber和CPT处理组,COX-2 mRNA表达水平都显著性提高(P<0.05或者P<0.01);HT-29细胞和B16细胞,COX-2 mRNA表达水平都显著性降低(P<0.05或者P<0.01)。
     4.5株癌细胞的Ber和CPT处理组和对照组比较,D5D和D6D蛋白质表达水平明显提高。
     5.和对照组比较,除了B16细胞的Ber和CPT处理组,PGE2产量减少外,其余4株癌细胞的Ber和CPT处理组,PGE2产量全部被提高。
     结论:D5D和D6D表达水平的提高导致了AA的增加,同时PGE2的产量也明显增加;D5D和D6D表达水平的降低导致了AA的减少,同时PGE2的产量也明显减少。这暗示了D5D和D6D可以作为发现和治疗癌症的生物学靶点。
     二、人乳腺癌组织中D6D的变化
     方法:GC分析脂肪酸含量;D6D的活性检测通过测量LA/AA的比率;realtime PCR检测D6D mRNA表达水平;Western Blotting检测D6D蛋白表达水平;ELISA测定PGE2浓度。
     结果:
     1.与正常组织和癌旁组织比较,在癌症组织中LA和ALA的转换显著性增加,说明D6D的活性显著性增高。
     2.与正常组织和癌旁组织比较,在癌症组织中D6D mRNA表达分别增高64和50倍;通过Western blot检测也发现,癌症组织和临近组织内D6D蛋白质表达比正常组织有显著性增高;正常组织和癌旁组织之间比较,D6D mRNA表达和蛋白质没有发生显著性变化。
     3.在癌症组织中PGE2含量比正常组织和癌旁组织中PGE2含量显著性增高。正常组织和癌旁组织比较,PGE2含量无明显变化。
     结论:D6D活性和表达水平的增高导致了AA的增加,同时PGE2的产量也明显增加,暗示D6D可以作为治疗癌症的生物学靶点。
     三、体外和体内肿瘤生成过程中D6D的作用
     方法:B16细胞用表皮生长因子(epidermal growth factor, EGF)、成纤维细胞生长因子(fibroblast growth factor, FGF)、反应氧化种类(例如H2O2)、辐射(例如UV光和X-射线)、酸性条件(pH 6.5)和缺氧条件处理。处理后的细胞用GC来分析脂肪酸含量,real time PCR检测D6D和PPARa mRNA表达和Western blotting检测D6D蛋白质表达;将D6D基因转入B16黑色素瘤细胞使D6D基因过表达,通过RNAi技术来降低D6D基因表达;细胞生长曲线和迁移实验评测体外肿瘤生成过程中D6D的作用;分别注射D6D过表达(D6D-over)和空载体(Vector-control)的B16细胞进入C57BL/6小鼠体内,肿瘤生长情况每天用卡尺通过测量肿瘤的长和宽来监控,按照以下公式计算肿瘤体积:volume=(1/2)Lw2,评定肿瘤形成的影响和肿瘤生长率;PCR array分析癌症相关基因。
     结果:
     1.所用到的生长因子和死亡挑战因子都显著性加强LA向AA的转换,增加了D6D的活性。
     2. D6D mRNA表达被生长因子和死亡挑战因子上调,D6D蛋白水平除了在酸性条件(pH 6.5)下没有被提高外,在上面提到的所有因子的作用下都被上调。
     3.在B16细胞内PPAR-a被生长和死亡挑战因子显著性提高,个别因子对PPAR-a mRNA表达的调节与相应的D6D表达不成比例。
     4.在体外过表达D6D促进B16细胞增长,而敲除D6D则抑制B16细胞增长;在体外过表达D6D促进B16细胞迁移,而敲除D6D则抑制B16细胞迁移。
     6.在体内过表达D6D促进B16黑色素瘤生长。
     7.与Vector-control组比较,在D6D-over B16组黑色素瘤中AA和PGE2含量较高。
     8.肿瘤生成时,抗凋亡基因(bax、bcl-2、bcl-2l1和survivin)、原癌基因(brcal、fos、jun、met和myc)、转录因子(nfkbl和nfkbia)和血管形成相关基因(pdgfa、pdgfb、vegfa、vegfb和vegfc)被上调,而癌症抑制基因pten被下调约64倍。
     结论:证明了AA、D6D和PGE2与癌症发生密切相关,D6D可以作为一个新的抗癌靶点。
     总之,本研究发现多不饱和脂肪酸参与了肿瘤的发生,D6D的活性和表达量的提高可以促进癌症的发生和迁移,提示D6D可以作为一个新的抗癌靶点。
Identification of specific molecules involved in cancer and the development of inhibitors to block these molecules-targeted therapies-is an exciting and interesting area of current cancer research. polyunsaturated fatty acids (PUFAs) (such as, arachidonic acid, AA) and their metabolites (such as, prostaglandin E2, PGE2) were found in many disease, including cancer. However, how they participate in the cancer cells metabolism and What kind of role play in the metabolism is still not clear. In this study, cancer cell, breast cancer sample and transfer delta-6 dehydrogenase genes in mice model as research object, at the molecular level, cell and animal level, through observing the change of AA, AA metabolites PGE2 and AA synthesis of related desatuarase (D6D) and a series of gene related to the occurrence and the development of cancer, to explore whether D6D correlated with cancerogenesis. This will lay the foundation for further clinical studies in vivo and clinic study. Main research methods and the results are as follows:
     1. Effect of anti-cancer drug on PUFAs, their metabolites and related gene in cancer cells
     Methods:The proliferation of cells was detected by XTT, and the profile of fatty acids was examined by Gas chromatography (GC). In addition, stearoyl-CoA desaturase-1 (SCD1), delta-5-desaturase (D5D), D6D and cyclooxygenase II (COX-2) mRNA expression were measured by the real-time reverse transcription. D5D and D6D protein expression were measured by Western Blotting.The PGE2 production was determined by enzyme-linked immunosorbent assay.
     Results:
     a. After being treated with CPT (0.0625-2μM), the Inhibiton ratio of cancer cells gradually increased (P<0.05 or P<0.01); After being treated with Ber (0.0625-2μM), the Inhibiton ratio of cancer cells gradually increased (P<0.05 or P<0.01).
     b. After being treated with Ber (8μg/ml or16μg/ml) and CPT (0.25μMor0.5μM), respectively, the percent of PUFAs in these five cancer cell lines change, but the common characteristics is:the chang of AA is significant in all cancer cell lines (P<0.05).
     c. Compared to control group, the expression of D5D and D6D mRNA were significantly increased in Ber and CPT treated group (P<0.05 or P<0.01); CPT treated in HT-29 cell group, the expression of SCD1 mRNA were significantly increased (P<0.01); CPT treated in B16 cell group, the expression of SCD1 mRNA were significantly decreased (P<0.05); Ber or CPT treated in other cell groups, the expression of SCD1 mRNA were not changed; Ber and CPT treated in MDA-MB-231, MCF-7 and ZR-75-1 cell group, the expression of COX-2 mRNA were significantly increased (P<0.01); Ber and CPT treated in HT-29 and B16 cell group, the expression of SCD1 mRNA were significantly decreased (P<0.05 or P<0.01).
     d. Ber or CPT treated in all cell groups, the expression of D5D and D6D protein were obversely increased.
     e. Ber or CPT treated in other four cell groups, the product of PGE2 were raised except for B16 cell.
     Conclusions:the improvement of expression of D5D and D6D induced the increase of AA, and the product of PGE2 were obversely raised; the reduce of expression of D5D and D6D induced the decrease of AA, and the product of PGE2 were obversely reduced. This suggests D5D and D6D can be as the biological targets of the found and treatment of cancer biology.
     2. Change of D6D in human Breast cancertissue
     Methods:the profile of fatty acids was examined by GC. the activity of D6D was measured by the ratio of LA/AA. D6D mRNA expression were measured by the real-time reverse transcription. D5D and D6D protein expression were measured by Western Blotting. The PGE2 production was determined by enzyme-linked immunosorbent assay.
     Results:
     a. The conversion of LA and ALA, as indicated by the ratio of LA/AA and ALA/EPA, were significantly enhanced in tumor tissues comparing to normal and adjacent tissues, suggest the acivity of D6D was significantly improved.
     b. Expression of D6D mRNA was up-regulated by 64 folds and 50 folds in human breast cancer comparing to normal and adjacent tissues; Expression of D6D protein was up-regulated in human breast cancer comparing to normal and adjacent tissues; Expression of D6D mRNA and protein were changed in normal tissues comparing to adjacent tissues.
     c. The product of PGE2 was significantly raised in human breast cancer comparing to normal and adjacent tissues; The product of PGE2 was changed in normal tissues comparing to adjacent tissues.
     Conclusions:State the up-regulation of activity and expression of D6D induced the increase of AA, at the same time, the product of PGE2 was also obversely improved, suggest D6D can be as the biology target of treating cancer.
     3. Role of D6D in vitro and in melanoma growth in vivo
     Methods:B16 cell treated with growth factors, including epidermal growth factor (EGF), fibroblast growth factor (FGF), et al, Oxidation reaction type (H2O2), radiation (UV light and X-array), Acidic conditions (pH 6.5) and hypoxia conditions. After B16 cell was treated by these factors, the profile of fatty acids was examined by GC, the activity of D6D was measured by the ratio of LA/AA, D6D and PPARa mRNA expression were measured by the real-time reverse transcription, D6D protein expression were measured by Western Blotting. Inoculate Cancer cells into mouse, tumor growth will be monitored everyday by measuring the length (L) and width (w) of the tumor with a caliper and calculating tumor volume on the basis of the following formula:volume= (1/2)Lw2, to assess he incidence of tumor formation and tumor growth rate. cancer-related genes were analysed by PCR array. The PGE2 production was determined by ELISA,
     Results:
     a. The activity of D6D is significantly higher in growth and death-challenging factors than in control, and the activity of D6D is increased.
     b. The expression of D6D mRNA was up-regulated by growth and death-challenging factors, The expression of D6D protein was up-regulated by growth and death-challenging factors except for Acidic conditions (pH 6.5).
     c. PPAR-a was significantly up-regulated in B16 cells by both growth and death-challenging factors, However, the regulation of PPAR-a mRNA expression by individual factors was not proportional to the corresponding levels of D6D expression.
     d. Over-expression of D6D promoted B16 cell growth while knock-down of D6D inhibited B16 cell growth in vitro.
     e. Over-expression of D6D promoted B16 cell migration while knock-down of D6D inhibited B16 cell migration in vitro.
     f. Over-expression of D6D promoted B16 melanoma growth in vivo.
     g. AA and PGE2 was higher in D6D-over B16 melanoma than in Vector-control.
     h. Expression of several genes that are involved in tumorigenesis, such as anti-apoptotic genes (bax, bcl-2, bcl-211 and survivin), oncogenes (brcal,fos,jun, met and myc), transcriptional factors (nfkbland nfkbia), and angiogenesis related genes (pdgfa, pdgfb, vegfa, vegfb and vegfc) were up-regulated, while the cancer-suppressor gene pten was down-regulated by 64 folds.
     Conclusions:Testify AA, D6D and PGE2 Closely related with cancer, and D6D can be used as a new anti-cancer targets.
     In summary, the study suggest PUFAs involve in the cancerogenesis and the up-regulation of the activity and expression of D6D can promote cancerogenesis and migration, then, D6D act as a new anti-cancer target.
引文
1. Menendez, J.A., et al. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer.2007,7:763-777.
    2. Kuhajda, F.P. Fatty acid synthase and cancer:new application of an old pathway. Cancer Res.2006,66:5977-5980.
    3. Sun, H.G., et al. Peroxisome Proliferator-Activated Receptor y-Mediated Up-regulation of Syndecan-1 by n-3 Fatty Acids Prometes Apoptosis of Human Breast Cancer Cells. Cancer Res.2008,68:2912-2919.
    4. Roxana, V.R., et al. Nutrition and immunity in cancer. British Journal of Nutrition. 2007,98:S127-S132.
    5. Cho HP, Nakamura MT,& Clarke SD. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J Biol Chem.1999,274: 471-477.
    6. Cho HP, Nakamura M,& Clarke SD. Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J Biol Chem.1999,274: 37335-37339.
    7. Brenner RR. Regulatory function of delta6 desaturate—key enzyme of polyunsaturated fatty acid synthesis. Adv Exp Med Biol.1997,83:85-101.
    8. Horrobin DF. Fatty acid metabolism in health and disease:the role of delta-6-desaturase. Am J Clin Nutr.1993,57:732S-736S; discussion 736S-737S
    9. Davis, D., et al. The need to develop centers for environmental oncology. Biomed Pharmacother.2007,61:614-622.
    10. Liu, C.Y., et al. Levamisole modulates prostaglandin E2 production and cyclooxygenase Ⅱ gene expression in human colonic cancer cells. Journal of surgical research.2004,117:223-231.
    11. Bennett, A., et al. Prostaglandins from tumors of human large bowel. Br. J. Cancer. 1977,35:881-884.
    12. Oka, M., et al. Prostaglandin E2 levels and lymphocyte subsets in portal venous drainage of colorectal cancers. Am. J. Surg.1994,167:264-267.
    13. Metzer, U., et al. Influence of various prostaglandin synthesis inhibitors on DMH-induced rat colon cancer. Dis. Colon Rectum.1984,27:366-369.
    14. Lupulescu, A.Enhancement of carcinogenesis by prostaglandins in male albino Swiss mice. J. Natl. Cancer Ins.1978,61:97-106.
    15. Kojima, M., et al. Association of enhanced cyclooxygenase-2 expression with possible local immunosuppression in human colorectal carcinomas. Ann. Surg. Oncol.2001,8:458-465.
    16. Elliott, L. H., et al. Costimulation with dexamethasone and prostaglandin E2:A novel paradigm for the induction of T-cell anergy. Cell Immunol.1997,180: 124-131.
    17. Smith, W. L., et al. Prostaglandin endoperoxide H synthases-1 and-2. Adv. Immunol.1998,62:167-215.
    18. Smith, W. L., et al. Pharmacology of prostaglandin endoperoxide synthase isozymes-1 and -2. Ann. NY Acad. Sci.1994,714:136-142.
    19. Masferrer, J. L., et al. In vivo glucocorticoids regulate cyclooxygenase-2 but not cyclooxygenase-1 in peritoneal macrophages. J. Pharmcol. Exp. Ther.1994 270: 1340-1345.
    20. Williams, C. S., et al. Aspirin use and potential mechanisms for colorectal cancer prevention. J. Clin. Invest.1997 100:1325-1329.
    21. Prescott, S. M., et al. Cyclooxygenase-2 and carcinogenesis. Biochim. Biophys. Acta,2000,1470:M69-78.
    22. Eberhart, C. E., et al. Up-regulation of cyclooxy cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 1994,107:1183-1188.
    23. Sano, H., et al. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res.1995,55:3785-3789.
    24. Kutchera, W., et al. Prostaglandin H synthase-2 is expressed abnormally in human colon cancer:Evidence for a transcriptional effect. Proc. Natl. Acad. Sci.USA. 1996,93:4816-4820.
    25. Steinbach, G., et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med.2001,342:1946-1952.
    26. O'Brien M, Eckardt J, Ramlau R. Recent advances with topotecan in the treatment of lung cancer. Oncologist.2007,12 (10):1194-1204.
    27. Lane J., et al. Expression of human delta-6-desaturase is associated with aggressiveness of human breast cancer. Int J Mol Med.2003,12:253-257.
    28. Scudiero, D.A., et al. Evaluation of a soluble terazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res.1988 48:4827-4833.
    29. koren, R., et al. Synergistic anticancer activity of 1,25-dihydroxyvitamin D (3) and immune cytokines:the involvement of reactive oxygen species. J. Steroid Biochem. Mol. Biol.2000,73:105-112.
    30. Liu J., et al. Coptis extracts enhance the anticancer effect of estrogen receptor antagonists on human breast cancer cells. Biochemical and Biophysical Research Communications.2009,378:174-178.
    31. Popeijus, H.E., et al. Role of stearoyl-CoA desaturases in obesity and the metabolic syndrome. International journal of Obesity.2008,32:1076-1082.
    32. Enoch H.G., et al. Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J Biol Chem.1976,251:5095-5103.
    33. Roberto J. de A., et al. Acitivty and mRNA abundance of Δ-5 and Δ-6 fatty acid desaturases in two human cell lines. FEBS Letter.2001,491:247~251.
    34. Brock T.G., et al. Activation and regulation of cellular eicosanoid biosynthesis. Sci World J.2007,7:1273-1284.
    35. Khanapure S.P., et al. Eicosanoids in inflammation:biosynthesis, pharmacology, and therapeutic frontiers. Curr Top Med Chem.2007,7:311-340.
    36. Wang D., et al. Prostaglandins and cancer. Gut.2006,55:115-122.
    37. Rose DP, et al. Regulation of tumor angiogenesis by dietary fatty acids and eicosanoids. Nutr Cancer.2000,37:119-127.
    38. Gonzalez-Periz A., et al. New approaches to the modulation of the cyclooxygenase-2 and 5-lipoxygenase pathways. Curr Top Med Chem.2007,7: 297-309.
    39. Monjazeb A.M., et al. Arachidonic acid-induced gene expression in colon cancer cells. Carcinogenesis.2006,27:1950-1960.
    40. Dempke W., et al. Cyclooxygenase-2:anovel target for cancer chemotherapy? J Cancer Res Clin Oncol.2001,127:411-417.
    41. Gupta S, Sreivastava M, Ahmad N, Sakamoto K, Bostwick DG, Mukhtar H. Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer.2001,91: 737-743
    42. Annie L., et al. The role of cyclooxygenase-2 and prostaglandins in colon cancer. Prostaglandins& other Lipid Mediators 2007,82:147-154.
    43. Mihich, E. et al. Immunomodulation by anti-cancer drugs. In:De Vita VT, Hellman S, Rosenburg SA, editors. Biologic Therapy of Cancer. Philadelphia, PA: JB Lippincott.1991:776-786
    44. Alexander G, et al. The COX-2/PGE2 pathway:key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis.2009,30: 377-386.
    45. Mihich, E. Historical overview of biologic response modifiers. Cancer Invest. 2000,18:456-466.
    46. Hyde C.A.C., Missailidis S. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis. International Immunopharmacology.2009,9:701-715.
    47. Ruenwai R, Cheevadhanarak S, Rachdawong S, Tanticharoen M, Laoteng K. Oxygen-induced expression of Delta(6)-, Delta(9)- and Delta(12)-desaturase genes modulates fatty acid composition in Mucor rouxii. Appl Microbiol Biotechnol.2010,86(1):327-334.
    48. Zhou L, Nilsson A. Sources of eicosanoid precursor fatty acid pools in tissues. J. Lipid Res.2001,42:1521-42
    49. Gostincar C, Turk M, Gunde-Cimerman N. The evolution of fatty acid desaturases and cytochrome b5 in eukaryotes. J Membr Biol.2010,233(1-3):63-72.
    50. Zhu H, Fan C, Xu F, Tian C, Zhang F, Qi K. Dietary fish oil n-3 polyunsaturated fatty acids and alpha-linolenic acid differently affect brain accretion of docosahexaenoic acid and expression of desaturases and sterol regulatory element-binding protein 1 in mice.2009 Nov 30. [Epub ahead of print]
    51. Lophatananon A, Archer J, Easton D, et al. Dietary fat and early-onset prostate cancer risk. Br J Nutr.2010 Jan 19:1-6. [Epub ahead of print]
    52. Martinelli N, Consoli L, Olivieri O. A'desaturase hypothesis' for atherosclerosis: Janus-faced enzymes in omega-6 and omega-3 polyunsaturated fatty acid metabolism. J Nutrigenet Nutrigenomics.2009,2(3):129-139.
    53. Lattka E, Illig T, Heinrich J, Koletzko B. FADS gene cluster polymorphisms: important modulators of fatty acid levels and their impact on atopic diseases. J Nutrigenet Nutrigenomics.2009,2(3):119-128.
    54. Warensjo E, Rosell M, Hellenius ML, Vessby B, De Faire U, Riserus U. Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans:links to obesity and insulin resistance. Lipids Health Dis. 2009,27(8):37.
    55. Stroud CK, Nara TY, Roqueta-Rivera M, Radlowski EC, Lawrence P, Zhang Y, Cho BH, Segre M, Hess RA, Brenna JT, Haschek WM, Nakamura MT. Disruption of FADS2 gene in mice impairs male reproduction and causes dermal and intestinal ulceration. J Lipid Res.2009,50(9):1870-1880.
    56. Liu Y, Jandacek R, Rider T, Tso P, McNamara RK. Elevated delta-6 desaturase (FADS2) expression in the postmortem prefrontal cortex of schizophrenic patients: relationship with fatty acid composition. Schizophr Res.2009,109(1-3):113-120.
    57. Lane J, Mansel RE, Jiang WG. Expression of human delta-6-desaturase is associated with aggressiveness of human breast cancer. Int J Mol Med.2003, 12(2):253-257.
    58. Nakamura MT, Cho HP, Xu J, Tang ZR and Clarke SD. Metabolism and functions of highly unsaturated fatty acids:an update. Lipids.2001,36 (9):961-964.
    59. Funk CD. Prostaglandins and leukotrienes:advances in eicosanoid biology.Science.2001,294:1871-1875.
    60. Samuelsson B.1983. From studies of biochemical mechanism to novel biological mediators:prostaglandin endoperoxides, thromboxanes, and leukotrienes.Nobel Lecture,8 December 1982. Biosci. Rep.3:791-813.
    61. Peskar BM, Sawka N, Ehrlich K, Peskar BA. Role of cyclooxygenase-1 and -2, phospholipase C, and protein kinase C in prostaglandin-mediated gastroprotection. J. Pharmacol. Exp. Ther.2003,305:1233-1238.
    62. Wallace JL. Mechanisms of protection and healing:current knowledge and future research. Am. J. Med.2001,110:19-23S22.
    63. Schmidt, A., Wolde, M., Thiele, C., Fest, W., Kratzin, H., Podtelejnikov, A.V., Witke, W., Huttner, W.B., and Soling, H.-D. Endophilin I Mediates Synaptic Vesicle Formation by Transfer of Arachidonate to Lysophosphatidic Acid. Nature.1999,401:133-141.
    64. Leaf, A., and Kang, J.X. Prevention of Cardiac Sudden Death by n-3 Fatty Acids: A Review of the Evidence, J. Intern. Med.1996; 240:5-12.
    65. Mizushima, Y., Tanaka, N., Yagi, H., Kurosawa, T., Onoue, M., Seto, H., Horie, T., Aoyagi, N., Yamaoka, M., Matsukage, A., et al. Fatty Acids Selectively Inhibit Eukaryotic DNA Polymerase Activities in vitro, Biochim. Biophys. Acta.1996, 1308,256-262.
    66. Clarke, S. D., and Jump, D.B. Dietary Polyunsaturated Fatty Acid Regulation of Gene Transcription, Annu. Rev. Nutru,1994,14:83-98.
    67. Forman, B.M., Chen, J., and Evans, R.M. Hypolipidemic Drugs, Polyunsaturated Fatty Acids, and Eicosanoids Are Ligands for Peroxisome Proliferator-Activated Receptors and, Proc. Natl. Acad. Sci. USA.1997; 94:4312-4317.
    68. Kliewer, S.A., Sundseth, S.S., Jones, S.A., Brown, P.J., Wisely, G.B., Koble, C.S., Devchand, P., Wahli, W., Wilson, T.M., Lenhard, J.M., and Lehmann, J.M. Fatty Acids and Eicosanoids Regulate Gene Expression Through Direct Interaction with Peroxisome Proliferator-Activated Receptors. Proc. Natl. Acad. Sci. USA.1997; 94:4318-4323.
    69. Hertz, R., Magenheim, J., Berman, I., and Bar-Tana, J. Fatty Acyl-CoA Thioesters Are Ligands of Hepatic Nuclear Factor-4. Nature.1998,392:512-516.
    70. Xu, J., Nakamura, M.T., Cho, H.P., and Clarke, S.D. Sterol Regulatory Element Binding Protein-1 (SREBP-1) Expression Is Suppressed by Dietary Polyunsaturated Fatty Acids:A Mechanism for the Coordinate Suppression of Lipogenic Genes by Polyunsaturated Fats. J. Biol. Chem.1999,274: 23577-23583.
    71. Xu, J., Teran-Garcia, M., Park, J.H., Nakamura, M.T., and Clarke, S.D. Polyunsaturated Fatty Acids Suppress Hepatic Sterol Regulatory Element-Binding Protein-1 Expression by Accelerating Transcript Decay. J. Biol. Chem.2001,276: 9800-9807.
    72. Das UN. A defect in the activity of Delta6 and Delta5 desaturases may be a factor in the initiation and progression of atherosclerosis. Prostaglandins Leukot Essent Fatty Acids.2007,76(5):251-268.
    73. Poole EM, Hsu L, Xiao L, Kulmacz RJ, Carlson CS, Rabinovitch PS, Makar KW, Potter JD, Ulrich CM. Genetic variation in prostaglandin E2 synthesis and signaling, prostaglandin dehydrogenase, and the risk of colorectal adenoma. Cancer Epidemiol Biomarkers Prev.2010,19(2):547-557.
    74. Xia D, Holla VR, Wang D, Menter DG, DuBois RN. HEF1 is a crucial mediator of the proliferative effects of prostaglandin E(2) on colon cancer cells. Cancer Res. 2010,70(2):824-831.
    75. Bai XM, Jiang H, Ding JX, Peng T, Ma J, Wang YH, Zhang L, Zhang H, Leng J. Prostaglandin E2 upregulates surviving expression via the EP1 receptor in hepatocellular carcinoma cells. Life Sci.2010,86(5-6):214-223.
    76. Itadani H, Oshima H, Oshima M, Kotani H. Mouse gastric tumor models with prostaglandin E2 pathway activation show similar gene expression profiles to intestinal-type human gastric cancer. BMC Genomics.2009,17(10):615.
    77. Volanis D, Kadiyska T, Galanis A, Delakas D, Logotheti S, Zoumpourlis V. Environmental factors and genetic susceptibility promote urinary bladder cancer. Toxicol Lett.2010,193(2):131-137.
    78. Jeong YM, Lee JE, Kim SY, Yun HY, Baek KJ, Kwon NS, Kim DS. Enhanced effects of citrate on UVB-induced apoptosis of B16 melanoma cells. Pharmazie. 2009,64(12):829-833.
    79. Saladi RN, Nektalova T, Fox JL. Induction of skin carcinogenicity by alcohol and ultraviolet light. Clin Exp Dermatol.2010,35(1):7-11.
    80. Ehrenreiter K, Kern F, Velamoor V, Meissl K, Galabova-Kovacs G, Sibilia M, Baccarini M. Raf-1 addiction in Ras-induced skin carcinogenesis. Cancer Cell. 2009,16(2):149-160.
    81. Bucan V, Adili MY, Choi CY, Eddy MT, Vogt PM, Reimers K. Transactivation of lifeguard (LFG) by Akt-/LEF-1 pathway in MCF-7 and MDA-MB-231 human breast cancer cells. Apoptosis.2010 Mar 25. [Epub ahead of print]
    82. Fei DL, Li H, Kozul CD, Black KE, Singh S, Gosse JA, DiRenzo J, Martin KA, Wang B, Hamilton JW, Karagas MR, Robbins DJ. Activation of Hedgehog signaling by the environmental toxicant arsenic may contribute to the etiology of arsenic-induced tumors. Cancer Res.2010,70(5):1981-1988.
    83. Halper J. Growth factors as active participants in carcinogenesis:a perspective. Vet Pathol.2010,47(1):77-97.
    84. Yang G, Yang X. Smad4-mediated TGF-beta signaling in tumorigenesis. Int J Biol Sci.2010,6(1):1-8.
    85. Ahsan A, Hiniker SM, Ramanand SG, Nyati S, Hegde A, Helman A, Menawat R, Bhojani MS, Lawrence TS, Nyati MK. Role of Epidermal Growth Factor Receptor Degradation in Cisplatin-Induced Cytotoxicity in Head and Neck Cancer. Cancer Res.2010 Mar 9. [Epub ahead of print]
    86. Nishida N. Impact of hepatitis virus and aging on DNA methylation in human hepatocarcinogenesis. Histol Histopathol.2010,25(5):647-654.
    87. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology:opening the X-files.Science.2001,294:1866-1870.
    88. Gulick T, Cresci S, Caira T, Moore DD, Kelly DP. The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc. Natl. Acad.Sci. USA.1994,91:11012-11016.
    89. Rodriguez JC, Gil-Gomez G, Hegardt FG, Haro D. Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids. J. Biol. Chem.1994,269: 18767-18772.
    90. Kroetz DL, Yook P, Costet P, Bianchi P, Pineau T. Peroxisome proliferatoractivated receptor alpha controls the hepatic CYP4A induction adaptive response to starvation and diabetes. J. Biol. Chem.1998,273: 31581-31589.
    91. Marcus SL, Miyata KS, Zhang B, Subramani S, Rachubinski RA, Capone JP. Diverse peroxisome proliferatoractivated receptors bind to the peroxisome proliferator-responsive elements of the rat hydratase/dehydrogenase and fatty acyl-CoA oxidase genes but differentially induce expression. Proc. Natl. Acad. Sci. USA.1993,90:5723-5727.
    92. Tang C, Cho HP, Nakamura MT, Clarke SD. Regulation of human delta-6 desaturase gene transcription:identification of a functional direct repeat-1 element. J Lipid Res.2003,44(4):686-695.
    93. Kawashima Y, Hanioka N, Matsumura M, Kozuka H. Induction of microsomal stearoyl-CoA desaturation by the administration of various peroxisome proliferators. Biochim. Biophys. Acta.1983,752:259-264.
    94. Kawashima Y, Musoh K, Kozuka H. Peroxisome proliferators enhance linoleic acid metabolism in rat liver:increased biosynthesis of ω6 polyunsaturated fatty acids. J. Biol. Chem.1990,265:9170-9175.
    95. He WS, Nara TY, Nakamura MT. Delayed induction of delta-6 and delta-5 desaturases by a peroxisome proliferator. Biochem. Biophys. Res. Commun.2002,299:832-838.
    96.19Tang C, Cho HP, Nakamura MT, Clarke SD.2003. Regulation of human delta-6 desaturase gene transcription:identification of a functional direct repeat-1 element. J. Lipid Res.2003,44:686-695.
    97. Miller CW, Ntambi JM.1996. Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression. Proc. Natl. Acad. Sci. USA.1996,93:9443-9448.
    98. Martin PG, Guillou H, Lasserre F, Dejean S, Lan A, Pascussi JM, Sancristobal M, Legrand P, Besse P, Pineau T. Novel aspects of PPARalpha-mediated regulation of lipid and xenobiotic metabolism revealed through a nutrigenomic study. Hepatology.2007, (3):767-777.
    99. Guillou H, Martin PG, Pineau T. Transcriptional regulation of hepatic fatty acid metabolism. Subcell Biochem.2008,49:3-47.
    100. Theodoratou E, McNeill G, Cetnarskyj R, Farrington SM, Tenesa A, Barnetson R, et al. Dietary fatty acids and colorectal cancer:a case-control study. Am J Epidemiol.2007,166(2):181-195.
    101. Sun WH, Sun YL, Fang RN, Shao Y, Xu HC, Xue QP, et al. Expression of cyclooxygenase-2 and matrix metalloproteinase-9 in gastric carcinoma and its correlation with angiogenesis. Jpn J Clin Oncol.2005,35(12):707-713.
    102. Kelavkar UP, Hutzley J, McHugh K, Allen KG, Parwani A. Prostate tumor growth can be modulated by dietarily targeting the 15-lipoxygenase-1 and cyclooxygenase-2 enzymes. Neoplasia.2009,11(7):692-699.
    103. Bai XM, Jiang H, Ding JX, Peng T, Ma J, Wang YH, Zhang L, Zhang H, Leng J. Prostaglandin E2 upregulates surviving expression via the EP1 receptor in hepatocellular carcinoma cells. Life Sci.2010,86(5-6):214-223.
    104. Moore AE, Greenhough A, Roberts HR, Hicks DJ, Patsos HA, Williams AC, Paraskeva C. HGG/Met signaling promotes PGE(2) biogenesis via regulation of COX-2 and 15-PGDH expression in colorectal cancer cells. Carcinogenesis.2009, 30(10):1796-1804.
    1. Magnuson K, Jackowski S, Rock CO, Cronan JE Jr. Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol. Rev 1993,57:522-542.
    2. Shanklin J, Cahoon EB. Desaturation and related modifications of fatty acids. Annu. Rev. Plant Physiol. Plant Mol. Biol.1998,49:611-641.
    3. Sperling P, Ternes P, Zank TK, Heinz E. The evolution of desaturases. Prostaglandins Leukot. Essent. Fatty Acids.2003,68:73-95.
    4. Tocher DR, Leaver MJ, Hodgson PA. Recent advances in the biochemistry and molecular biology of fatty acyl desaturases. Prog. Lipid Res.1998,37:73-117.
    5. Nishida I, Murata N. Chilling sensitivity in plants and cyanobacteria:the crucial contribution of membrane lipids. Annu. Rev. Plant Physiol. Plant Mol. Biol.1996, 47:541-568.
    6. Strittmatter P, Spatz L, Corcoran D, Rogers MJ, Setlow B, Redline R. Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc. Natl. Acad. Sci. USA.1974,71:4565-4169.
    7. ThiedeMA,Ozols J, Strittmatter P. Construction and sequence of cDNA for rat liver stearyl coenzyme A desaturase. J. Biol. Chem.1986,261:13230-13235.
    8. Thiede MA, Strittmatter P. The induction and characterization of rat liver stearyl-CoA desaturase mRNA. J. Biol. Chem.1985,260:14459-14463.
    9. Saether T, Tran TN, Rootwelt H, Christophersen BO, Haugen TB. Expression and regulation of delta5-desaturase, delta6-desaturase, stearoyl-coenzyme A (CoA) desaturase 1, and stearoyl-CoA desaturase 2 in rat testis. Biol Reprod.2003, 69(1):117-124.
    10. You M, Cao Q, Liang X, Ajmo JM, Ness GC. Mammalian sirtuin 1 is involved in the protective action of dietary saturated fat against alcoholic fatty liver in mice. J Nutr.2008,138(3):497-501.
    11. Shanklin J, Whittle E, Fox BG. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monoxygenase. Biochemistry.1994, 33:12787-12794.
    12. Miyazaki M, Jacobson MJ, Man WC, Cohen P, Asilmaz E, et al. Identification and characterization of murine SCD4, a novel heart-specific stearoyl-CoA desaturase isoform regulated by leptin and dietary factors. J. Biol. Chem.2003, 278:33904-33911.
    13. Ntambi JM, Miyazaki M. Recent insights into stearoyl-CoA desaturase-1. Curr. Opin. Lipidol.2003,14:255-261.
    14. Reddy AS, Nuccio ML, Gross LM, Thomas TL. Isolation of a delta 6-desaturase gene from the cyanobacterium Synechocystis sp. strain PCC 6803 by gain-of-function expression in Anabaena sp. strain PCC 7120. Plant Mol. Biol.1993,27:293-300.
    15. Sayanova O, Smith MA, Lapinskas P, Stobart AK, Dobson G, et al. Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of delta 6-desaturated fatty acids in transgenic tobacco. Proc. Natl.Acad. Sci. USA.1997,94:4211-4216.
    16. Napier JA, Hey SJ, Lacey DJ, Shewry PR.1998. Identification of a Caenorhabditis elegans delta-6-fattyacid-desaturase by heterologous expression in Saccharomyces cerevisiae. Biochem. J.1998,330:611-614.
    17. Cho HP, Nakamura MT, Clarke SD. Cloning, expression, and nutritional regulation of the mammalian delta-6 desaturase. J. Biol. Chem.1999,274: 471-477.
    18. Aki T, Shimada Y, Inagaki K, Higashimoto H, Kawamoto S, et al. Molecular cloning and functional characterization of rat delta-6 fatty acid desaturase.1999, 255:575-579.
    19. Li MC, Liu L, Hu GW, Xing LJ. Expression of Mortierella isabellina delta6-fatty acid desaturase gene in gamma-linolenic acid production in production in transgenic tobacco. Sheng Wu Gong Cheng Xue Bao.2003,19(2):178-184.
    20. Sayanova O, Beaudoin F, Libisch B,vShewry P, Napier J. Mutagenesis of the borage delta(6) fatty acid desaturase. Biochem. Soc. Trans.2000,28:636-638.
    21. Guillou H, D'Andrea S, Rioux V, Barnouin R, Dalaine S, et al. Distinct roles of endoplasmic reticulum cytochrome b5 and fused cytochrome b5- like domain for rat delta 6-desaturase activity. J. Lipid Res.2004,45:32-40.
    22. Cho HP, Nakamura M, Clarke SD. Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J. Biol. Chem.1999 274:37335-37339.
    23. Zolfaghari R, Cifelli CJ, BantaMD,Ross AC.2001. Fatty acid delta(5)-desaturase mRNA is regulated by dietary vitamin A and exogenous retinoic acid in liver of adult rats. Arch. Biochem. Biophys.2001,391:8-15.
    24. Watts JL, Browse J. Isolation and characterization of a delta 5-fatty acid desaturase from Caenorhabditis elegans. Arch. Biochem. Biophys.1999,362: 175-182.
    25. Hastings N, Agaba M, Tocher DR, Leaver MJ, Dick JR, et al. A vertebrate fatty acid desaturase with delta 5 and delta 6 activities. Proc. Natl. Acad. Sci. USA. 2001,98:14304-9
    26. Marquardt A, Stohr H, White K, Weber BH. cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics.2000,66:175-183.
    27. Miyazaki M, Sampath H, Liu X, Flowers MT, Chu K, Dobrzyn A, Ntambi JM. Stearoyl-CoA desaturase-1 deficiency attenuates obesity and insulin resistance in leptin-resistant obese mice. Biochem Biophys Res Commun.2009,380(4): 818-822.
    28. Sampath H, Flowers MT, Liu X, Paton CM, Sullivan R, Chu K, Zhao M, Ntambi JM. Skin-specific deletion of stearoyl-CoA desaturase-1 alters skin lipid composition and protects mice from high fat diet-induced obesity. J Biol Chem. 2009,284(30):19961-19973.
    29. Miyazaki M. Role of stearoyl-CoA desaturase in regulation of energy metabolism Tanpakushitsu Kakusan Koso.2008,53(11):1375-1382.
    30. Mauvoisin D, Prevost M, Ducheix S, Arnaud MP, Mounier C. Key role of the ERK1/2 MAPK pathway in the transcriptional regulation of the Stearoyl-CoA Desaturase (SCD1) gene expression in response to leptin. Mol Cell Endocrinol. 2010,319(1-2):116-128.
    31. Conte G, Mele M, Chessa S, Castiglioni B, Serra A, Pagnacco G, Secchiari P. Diacyglycerol acyltransferase 1, stearoyl-CoA desaturase 1, and sterol regulatory element binding protein 1 gene polymorphisms and milk fatty acid composition in Italian Brown cattle. J Dairy Sci.2010,93(2):753-763.
    32. Kang K, Miyazaki M, Ntambi JM, Pariza MW. Evidence that the anti-obesity effect of conjuganted linoleic acid is independent of effects on stearoyl-CoA desaturase 1 expression and enzyme activity. Biochem Biophys Res Commun. 2004,315(3):532-537.
    33. Chen C, Shah YM, Morimura K, Krausz KW, Miyazaki M, Richardson TA, Morgan ET, Ntambi JM, Idle JR, Gonzalez FJ. Metabolomics reveals that hepatic stearoyl-CoA desaturase 1 downregulation exacerbates inflammation and acute colitis. Cell Metab.2008,7(2):135-147.
    34. Glaser C, Heinrich J, Koletzko B. Role of FADS 1 and FADS2 polymorphisms in polyunsaturated fatty acid metabolism. Metabolism.2009 Dec 30. [Epub ahead of print]
    35. Zhang L, Ramtohul Y, Gagne S, Styhler A, Wang H, Guay J, Huang Z. A multiplexed cell assay in HepG2 cells for the identification of delta-5, delta-6, and delta-9 desaturase and elongase inhibitors. J Biomol Screen.2010,15(2):169-176.
    36. Warensjo E, Riserus U, Gustafsson IB, Mohsen R, Cederholm T, Vessby B. Effects of saturated and unsaturated fatty acids on estimated desaturase acitivities during a controlled dietary intervention. Nutr Metab Cardiovasc Dis.2008,18(10): 683-690.
    37. Zhou L, Nilsson A. Sources of eicosanoid precursor fatty acid pools in tissues. J. Lipid Res.2001,42:1521-42
    38. Peskar BM, Sawka N, Ehrlich K, Peskar BA. Role of cyclooxygenase-1 and -2, phospholipase C, and protein kinase C in prostaglandin-mediated gastroprotection. J. Pharmacol. Exp. Ther.2003,305:1233-1238.
    39. Wallace JL. Mechanisms of protection and healing:current knowledge and future research. Am. J. Med.2001,110:19-23S22.
    40. Schmidt, A., Wolde, M., Thiele, C., Fest, W., Kratzin, H., Podtelejnikov, A.V., Witke, W., Huttner, W.B., and Soling, H.-D. Endophilin I Mediates Synaptic Vesicle Formation by Transfer of Arachidonate to Lysophosphatidic Acid. Nature.1999,401:133-141.
    41. Leaf, A., and Kang, J.X. Prevention of Cardiac Sudden Death by n-3 Fatty Acids: A Review of the Evidence, J. Intern. Med.1996; 240:5-12.
    42. Mizushima, Y., Tanaka, N., Yagi, H., Kurosawa, T., Onoue, M., Seto, H., Horie, T., Aoyagi, N., Yamaoka, M., Matsukage, A., et al. Fatty Acids Selectively Inhibit Eukaryotic DNA Polymerase Activities in vitro, Biochim. Biophys. Acta.1996, 1308,256-262.
    43. Oshima H, Oguma K, Du YC, Oshima M. Prostaglandin E2, Wnt, and BMP in gastric tumor mouse models. Cancer Sci.2009,100(10):1779-1785.
    44. Janakiram NB, Rao CV. Role of lipoxins and resolvins resolvins as anti-inflammatory and proresolving mediators in colon cancer. Curr Mol Med. 2009,9(5):565-579.
    45. Spencer L, Mann C, Metcalfe M, Webb M, Pollard C, Spencer D, Berry D, Steward W, Dennison A. The effect of omega-3 FAs on tumor angiogenesis and their therapeutic potential. Eur J Cancer.2009,45(12):2077-2086.
    46. Graham S, Gamie Z, Polyzois I, Narvani AA, Tzafetta K, Tsiridis E, Helioti M, Mantalaris A, Tsiridis E. Prostaglandin EP2 and EP4 receptor agonists in bone formation and bone healing:In vivo and in vitro evidence. Expert Opin Investig Drugs.2009,18(6):746-766.
    47. Voss A, Reinhart M, Sankarappa S, Sprecher H. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J. Biol. Chem.1991,266:19995-20000.
    48. Williard DE, Nwankwo JO, Kaduce TL, Harmon SD, Irons M, et al. Identification of a fatty acid delta 6-desaturase deficiency in human skin fibroblasts. J. Lipid Res.2001,42:501-8
    49. D'Andrea S, Guillou H, Jan S, Catheline D, Thibault JN, et al. The same rat delta 6 desaturase not only acts on 18- but also on 24-carbon fatty acids in very-long-chain polyunsaturated fatty acid biosynthesis. Biochem. J.2002,364: 49-55.
    50. Penna F, Bonelli G, Baccino FM, Costelli P. Cytotoxic properties of clofibrate and other peroxisome proliferators:relevance to cancer progression. Curr Med Chem. 2010,17(4):309-320.
    51. Ma C, Subramani S. Peroxisome matrix and membrane protein biogenesis. IUBMB Life.2009,61(7):713-722.
    52. Gale CR, Marriott LD, Martyn CN, Limond J, Inskip HM, Godfrey KM, Law CM, Cooper C, West C, Robinson SM. Breastfeeding, the use of docosahexaenoic acid-fortified formulas in infancy and neuropasychological fuction in childhood. Arch Dis Child.2010,95(3):174-179.
    53. Birch EE, Carlson SE, Hoffman DR, Fitzgerald-Gustafson KM, Fu VL, Drover JR, Castaneda YS, Minns L, Wheaton DK, Mundy D, Marunycz J, Diersen-Schade DA. Calder PC, Yaqoob P. The DIAMOND (DHA Intake and Measurement of Neural Development) Study:a double-masked, randomized controlled clinical trial of the maturation of infant visual acuity as a function of the dietary level of docosahexaenoic acid. Understanding omega-3 polyunsaturated fatty acids. Postgrad Med.2009,121(6):148-157.
    54. Allayee H, Roth N, Hodis HN. Polyunsaturated fatty acid and cardiovascular disease:implications for nutrigenetics. J Nutrigenet Nutrigenomics.2009, 2(3):140-148.
    55. Kopecky J, Rossmeisl M, Flachs P, Kuda O, Brauner P, Jilkova Z, Stankova B, Tvrzicka E, Bryhn M. n-3 PUFA:bioavailability and modulation of adipose tissue function. Proc Nutr Soc.2009,68(4):361-369.
    56. Le HD, Meisel JA, de Meijer VE, Gura KM, Puder M. The essentiality of arachidonic acid and docosahexaenoic acid. Prostaglandins Leukot Essent Fatty Acids.2009,81(2-3):165-170.
    57. Pauwels EK, Volterrani D, Mariani G, Kairemo K. Fatty acid facts, Part IV: docosahexaenoic acid and Alzheimer's disease. A story of mice, men and fish. Drug News Perspect.2009,22(4):205-213.
    58. Lands B. False profits and silent partners in health care.2009,20(2):79-89.
    59. Lands B. A critique of paradoxes in current advice on dietary lipids. Prog Lipid Res.2008,47(2):77-106.
    60. Bell JG, Sargent JR, Tocher DR, Dick JR. Red blood cell fatty acid compositions in a patient with autistic spectrum disorder:a characteristic abnormality in neurodevelopmental disorders? Prostaglandins Leukot Essent Fatty Acids. 2000,;63(1-2):21-25.
    61. Nakamura MT, Nara TY. Essential fatty acid and synthesis and its regulation in mammals. Prostaglandins Leukot Essent Fatty Acids.2003,68(2):145-150.
    62. Nakamura MT, Cho HP, Xu J, Tang Z, Clarke SD. Metabolism and functions of highly unsaturated fatty acids:an update. Lipids.2001,36(9):961-964.
    63. Garland M, Sacks F, Colditz G, Rimm E, Sampson L, et al. The relation between dietary intake and adipose tissue composition of selected fatty acids in US women. Am. J. Clin. Nutr.1998 67:25-30.
    64. Stark KD. The percentage of n-3 highly unsaturated fatty acids in total HUFA as a biomarker for omega-3 fatty acid status in tissues. Lipids.2008,43(1):45-53.
    65. Wathes DC, Abayasekara DR, Aitken RJ. Polyunsaturated fatty acids in male and female reproduction. Biol Reprod.2007,77(2):190-201.
    66. Igarashi M, Gao F, Kim HW, Ma K, Bell JM, Rapoport SI. Dietary n-6 PUFA deprivation for 15 weeks reduces arachidonic acid concentrations while increasing n-3 PUFA concentrations in organs of post-weaning male rats. Biochim Biophys Acta.2009,1791(2):132-139.
    67. Sioen I, De Henauw S, Van CPTp J. Evaluation of benefits and risks related to seafood consumption. Verh K Acad Geneeskd Belg.2007,69(5-6):249-289.
    68. Koletzko B, Demmelmair H, Schaeffer L, Illig T, Heinrich J. Genetically determined variation in polyunsaturated fatty acid metabolism may result in different dietary requirements. Nestle Nutr Workshop Ser Pediatr Program.2008, 62:35-44.
    69. Tikhonenko M, Lydic TA, Wang Y, Chen W, Opreanu M, Sochacki A, McSorley KM, Renis RL, Kern T, Jump DB, Reid GE, Busik JV. Remodeling of retinal Fatty acids in an animal model of diabetes:a decrease in long-chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovel4. Diabetes.2010,59(1):219-227.
    70. Das UN, Puskas LG. Transgenci fat-1 mouse as a model to study the pathophysiology of cardiovascular, neurological and psychiatric disorders. Lipids Health Dis.2009,8:61.
    71. Lin YH, Salem N Jr. Whole body distribution of deuterated linoleic and alpha-linolenic acids and their metabolites in the rat. J Lipid Res.2007,48(12): 2709-2724.
    72. Fisher EA, PanM, Chen X,Wu X,Wang H, et al.2001. The triple threat to nascent apolipoprotein B. Evidence for multiple, distinct degradative pathways. J. Biol. Chem.2001,276:27855-27863.
    73. Lattka E, Illig T, Koletzko B, Heinrich J. Genetic variants of the FADS1 FADS2 gene cluster as related to essential fatty acid metabolism. Curr Opin Lipidol.2010, 21(1):64-69.
    74. Levine M, Tjian R. Transcription regulation and animal diversity. Nature.2003, 424:147-151.
    75. Bartl K, Gomez CA, Garcia M, Aufdermauer T, Kreuzer M, Hess HD, Wettstein HR. Milk fatty acid profile of Peruvian Criollo and Brown Swiss cows in response to different diet qualities fed at low and high altitude. Arch Anim Nutr.2008, 62(6):468-484.
    76. Waters SM, Kelly JP, O'Boyle P, Moloney AP, Kenny DA. Effect of level and duration of dietary n-3 polyunsaturated fatty aicd supplementation on the transcriptional regulation of Delta9-desaturase in muscle of beef cattle. J Anim Sci. 2009,87(1):244-252.
    77. Pavan E, Duckett SK. Corn oil supplementation to steers grazing endophyte-free tall fescue. II. Effects on longissimus muscle and subcutaneous adipose fatty acid compositon and stearoyl-CoA desaturase activity and expression. J Anim Sci. 2007,85(7):1731-1740.
    78. Kelavkar U, Lin Y, Landsittel D, Chandran U, Dhir R. The yin and yang of 15-lipoxygenase-1 and delta-desaturases:dietary omega-6 linoleic acid metabolic pathway in protate. J Carcinog.2006,5:9.
    79. Briggs MR, Yokoyama C, Wang X, Brown MS, Goldstein JL. Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. I. Identification of the protein and delineation of its target nucleotide sequence. J. Biol. Chem.1993,268:14490-14496.
    80. Hua X, Yokoyama C, Wu J, Briggs MR, Brown MS, et al. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc. Natl. Acad. Sci. USA.1993, 90:11603-11607
    81. Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, et al. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell.1993,75:187-197.
    82. Shimomura I, Shimano H, Horton JD, Goldstein JL, Brown MS. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J. Clin. Invest.1997,99: 838-845.
    83. Lattka E, Eggers S, Moeller G, Heim K, Weber M, Mehta D, Prokisch H, Illig T, Adamski J. A common FADS2 promoter polymorphism increases promoter acitivity and facilitates binding of transcription factor ELK1. J Lipid Res.2010, 51(1):182-191.
    84. Howell G 3rd, Deng X, Yellaturu C, Park EA, Wilcox HG, Raghow R, Elam MB. N-3 polyunsaturated fatty acids suppress insulin-induced SREBP-1c transcription via reduced trans-activating capacity of LXRalpha. Biochim Biophys Acta.2009, 1791(12):1190-1196.
    85. Paquette A, Wang D, Jankowski M, Gutkowska J, Lavoie JM. Effects of ovariectomy on PPAR alpha, SREBP-lc, and SCD-1 gene expression in the rat liver. Menopause.2008,15(6):1169-1175.
    86. Ohsaki H, Sawa T, Sasazaki S, Kano K, Taniguchi M, Mukai F, Mannen H. Stearoyl-CoA desaturase mRNA expression during bovine adipocyte differentiation in primary culture derived from Japanes Black and Holstein cattle. Comp Biochem Physiol A Mol Integr Physiol.2007,148(3):629-634.
    87. Hannah VC, Ou J, Luong A, Goldstein JL, Brown MS. Unsaturated fatty acids down-regulate SREBP isoforms 1a and 1c by two mechanisms in HEK-293 cells. J. Biol. Chem.2001,276:4365-4372.
    88. Xu J, Teran-Garcia M, Park JH, Nakamura MT, Clarke SD.Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay. J. Biol. Chem.2001,276:9800-9807.
    89. Yoshikawa T, Shimano H, Yahagi N, Ide T, Amemiya-Kudo M, et al. Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J. Biol. Chem.2002,277:1705-1711.
    90. Dobrosotskaya IY, Seegmiller AC, Brown MS, Goldstein JL, Rawson RB. Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science 2002,296:879-883.
    91. ShimadaY, Morita T, Sugiyama K. Dietary eritadenine and ethanolamine depress fatty acid desaturase activities by increasing liver microsomal phosphatidylethanolamine in rats. J. Nutr.2003,133:758-765.
    92. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology:opening the X-files.Science.2001,294:1866-1870.
    93. Gulick T, Cresci S, Caira T, Moore DD, Kelly DP. The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc. Natl. Acad.Sci. USA.1994,91:11012-11016.
    94. Rodriguez JC, Gil-Gomez G, Hegardt FG, Haro D. Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy- 3-methylglutaryl-CoA synthase gene by fatty acids. J. Biol. Chem.1994, 269:18767-18772.
    95. Kroetz DL, Yook P, Costet P, Bianchi P, Pineau T. Peroxisome proliferatoractivated receptor alpha controls the hepatic CYP4A induction adaptive response to starvation and diabetes. J. Biol. Chem.1998, 273:31581-31589.
    96. Marcus SL, Miyata KS, Zhang B, Subramani S, Rachubinski RA, Capone JP. Diverse peroxisome proliferatoractivated receptors bind to the peroxisome proliferator-responsive elements of the rat hydratase/dehydrogenase and fatty acyl-CoA oxidase genes but differentially induce expression. Proc. Natl. Acad. Sci. USA.1993,90:5723-5727.
    97. Tang C, Cho HP, Nakamura MT, Clarke SD. Regulation of human delta-6 desaturase gene transcription:identification of a functional direct repeat-1 element. J Lipid Res.2003,44(4):686-695.
    98. Kawashima Y, Hanioka N, Matsumura M, Kozuka H. Induction of microsomalstearoyl-CoA desaturation by the administration of various peroxisome proliferators. Biochim. Biophys. Acta.1983,752:259-264.
    99. Kawashima Y, Musoh K, Kozuka H. Peroxisome proliferators enhance linoleic acid metabolism in rat liver:increased biosynthesis of ω6 polyunsaturated fatty acids. J. Biol. Chem.1990,265:9170-9175.
    100. He WS, Nara TY, Nakamura MT. Delayed induction of delta-6 and delta-5 desaturases by a peroxisome proliferator. Biochem. Biophys. Res. Commun.2002,299:832-838.
    101.19Tang C, Cho HP, Nakamura MT, Clarke SD. Regulation of human delta-6 desaturase gene transcription:identification of a functional direct repeat-1 element. J. Lipid Res.2003,44:686-695.
    102. Miller CW, Ntambi JM. Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression. Proc. Natl. Acad. Sci. USA.1996, 93:9443-9448.
    103.Martin PG, Guillou H, Lasserre F, Dejean S, Lan A, Pascussi JM, Sancristobal M, Legrand P, Besse P, Pineau T. Novel aspects of PPARalpha-mediated regulation of lipid and xenobiotic metabolism revealed throuth a nutrigenomic study. Hepatology.2007, (3):767-777.
    104.Guillou H, Martin PG, Pineau T. Transcriptional of regulation of hepatic fatty acid metabolism. Subcell Biochem.2008,49:3-47.
    105.Horton JD, Bashmakov Y, Shimomura I, Shimano H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc. Natl. Acad. Sci. USA.1998,95:5987-5992.
    106.Xu J, Cho H, O'Malley S, Park JH, Clarke SD. Dietary polyunsaturated fats regulate rat liver sterol regulatory element binding proteins-1 and -2 in three distinct stages and by different mechanisms. J. Nutr.2002,132:3333-3339.
    107.Liang G, Yang J, Horton JD, Hammer RE, Goldstein JL, Brown MS. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-lc. J. Biol. Chem.2002,277:9520-9528.
    108.Shimomura I, Bashmakov Y, Ikemoto S, Horton JD, Brown MS, Goldstein JL. 1999. Insulin selectively increases SREBP-lc mRNA in the livers of rats with streptozotocin-induced diabetes. Proc. Natl. Acad. Sci. USA.1999,96: 13656-13661.
    109.Miyazaki M, Kim YC, Gray-Keller MP, Attie AD, Ntambi JM. The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1. J. Biol. Chem.2000,275: 30132-30138.
    110.Savransky V, Jun J, Li J, Nanayakkara A, Fonti S, Moser AB, Steele KE, Schweitzer MA, Patil SP, Bhanot S, Schwartz AR, Polotsky VY. Dyslipidemia and atherosclerosis induced by chronic intermittent hypoxia are attenuated by deficiency of stearoyl coenzyme A desaturase. Circ Res.2008,103(10): 1173-1180.
    111.Warensjo E, Riserus U, Vessby B. Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia.2005, 48(10):1999-2005.
    112.Repa JJ, Mangelsdorf DJ. The liver X receptor gene team:potential newplayers in atherosclerosis. Nat. Med.2002,8:1243-1248
    113.Edwards PA, Kast HR, Anisfeld AM. BAREing it all:the adoption of LXR and FXR and their roles in lipid homeostasis. J. Lipid Res.2002,43:2-12.
    114.Grefhorst A, Elzinga BM, Voshol PJ, Plosch T, Kok T, et al. Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J. Biol. Chem..2002,277:34182-34190.
    115.Joseph SB, Laffitte BA, Patel PH, Watson MA, Matsukuma KE, et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J. Biol. Chem.2002,277:11019-11025.
    116.Kim HJ, Miyazaki M, Ntambi JM. Dietary cholesterol opposes PUFA mediated repression of the stearoyl-CoA desaturase-1 gene by SREBP-1 independent mechanism. J. Lipid Res.2002,43:1750-1757.
    117.Das UN. A defect in the activity of Δ6 and Δ5 desaturases may be a factor in the initiation and progression of atherosclerosis. Prostaglandins, Leukotrienes and Essential Fatty Acids.2007,76:251-268.
    118.Nicola Martinelli, Domenico Girelli, Giovanni Malerba, et al. FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am J Clin Nutr 2008,88:941-949.
    119.Martinelli N, Consoli L, Olivieri O. A'desaturase hypothesis'for atherosclerosis: Janus-faced enzymes in omega-6 and omega-3 polyunsaturated fatty acid metabolism. J Nutrigenet Nutrigenomics.2009,2(3):129-139.
    120.U.N. Das. Essential fatty acids:biochemistry, physiology and pathology. Biotech. J.2006,1:420-439.
    121.U.N. Das. Nutritional factors in the pathobiology of human essential hypertension, Nutrition.2001,17:337-346.
    122.U.N. Das. Can perinatal supplementation of long chain polyunsaturated fatty acids prevent hypertension in adult life? Hypertension.2001,38:e6-e8.
    123.U.N. Das. Can perinatal supplementation of long-chain polyunsaturated fatty acids prevent diabetes mellitus? Eur. J. Clin. Nutrition.2003,57:218-226.
    124.U.N. Das. A defect in the activity of D6 and D5 desaturases may be a factor predisposing to the development of insulin resistance syndrome. Prostaglandins Leukot. Essent. Fatty Acids.2005,72:343-350.
    125.L. Wang, A.R. Folsom, J.H. Eckfeldt. Plasma fatty acid composition and incidence of coronary heart disease in middle aged adults:the Atherosclerosis Risk in Communities (ARIC) Study. Nutr. Metab. Cardiovasc. Dis.2003, 13:256-266.
    126. David FH. Fatty acid metabolism in health and disease:the role of Δ-6-desaturase. Am J Clin Nutr.1993,57(suppl):732s-737s.
    127. Brenner RR, Rimoldi OJ, Lombardo YB, Gonzalez MS, Bernasconi AM, Chicco A, Basabe JC. Desaturase Activities in a Rat Model of Insulin-Resistance Diabetes Mellitus Induced by a Sucrose-Rich Diet. Lipids.2003,38:733-742.
    128. Brenner RR, Bernasconi AM, Garda HA. Effect of Experimental Diabetes on the Fatty Acid Composition, Molecular Species of Phosphatidyl-choline and Physical Properties of Hepatic Microsomal Membranes. Prostaglandins Leukot. Essent. Fatty Acids.2000,63:167-176.
    129. Brenner RR. Hormonal Modulation of Δ6 and Δ5 Desaturases:Case of Diabetes. Prostaglandins Leukot. Essent. Fatty Acids.2003,68:151-162.
    130. Brown JE, Lindsay RM, Riemersma RA. Linoleic Acid Metabolism in the Spontaneously Diabetic Rat:Δ6-Desaturase Activicty vs. Product/Precursor Ratios. Lipid.2000,35:1319-1323.
    131. Montanaro MA, Rimoldi OJ, Igal RA, Montenegro S, Tarres MC, Martinez SM, Brenner RR. Hepatic Δ9, Δ6, and Δ5 Desaturations in Non-I nsulin-Dependent Diabetes Mellitus eSS Rats. Lipids.2003,38(8):827-832.
    132. Ntambi JM, Miyazaki M, Stoehr JP, et al. Loss of stearoyl-CoA desaturase-1
    function protects mice against adiposity. Proc Natl Acad Sci U S A.2002,99: 11482-11486.
    133. Miyazaki M, Flowers MT, Sampath H, et al. Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab.2007,6:484-496.
    134. Flowers JB, Rabaglia ME, Schueler KL, et al. Loss of stearoyl-CoA desaturase-1 improves insulin sensitivity in lean mice but worsens diabetes in leptindeficient obese mice. Diabetes.2007,56:1228-1239.
    135. Cohen P, Miyazaki M, Socci ND, et al. Role for stearoyl-CoA desaturase-1 in leptinmediated weight loss. Science.2002,297:240-243.
    136.136. Rahman SM, Dobrzyn A, Dobrzyn P, et al. Stearoyl-CoA desaturase 1 deficiency elevates insulin-signaling components and down-regulates protein-tyrosine phosphatase 1B in muscle. Proc Natl Acad Sci U S A.2003, 100:11110-11115.
    137. Rahman SM, Dobrzyn A, Lee SH, et al. Stearoyl-CoA desaturase 1 deficiency increases insulin signaling and glycogen accumulation in brown adipose tissue. Am J Physiol Endocrinol Metab.2005,288:E381-E387.
    138. Dobrzyn P, Sampath H, Dobrzyn A, et al. Loss of stearoyl-CoA desaturase 1 inhibits fatty acid oxidation and increases glucose utilization in the heart. Am J Physiol Endocrinol Metab 2008,294:E357-E364.
    139. Warensjo E, Ingelsson E, Lundmark P, et al. Polymorphisms in the SCD1 gene:associations with body fat distribution and insulin sensitivity. Obesity (Silver Spring).2007,15:1732-1740.
    140. Sjogren P, Sierra-Johnson J, Gertow K, et al. Fatty acid desaturases in human adipose tissue:relationships between gene expression, desaturation indexes and insulin resistance. Diabetologia.2008,51:328-335.
    141. Hu FB, Manson JE, WillettWC. Types of dietary fat and risk of coronary heart disease:a critical review. J Am Coll Nutr.2001,20:5-19.
    142. Vessby B, Gustafsson IB, Tengblad S, Boberg M, Andersson A. Desaturation and elongation of fatty acids and insulin action. AnnNYAcad Sci.2002, 967:183-195.
    143. Lee JS, Pinnamaneni SK, Eo SJ, et al. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance:role of intramuscular accumulation of lipid metabolites. J Appl Physiol.2006,100:1467-1474.
    144. Nakamura MT, Nara TY. Structure, Function, and dietary regulation of A6, Δ5, and A9 desaturases. Annu Rev Nutr.2004,24:345-376.
    145. Warensjo E, Sundstrom J, Vessby B, Cederholm T, Riserus U. Markers of dietary fat quality and fatty acid desaturation as predictors of total and cardiovascular mortality:a population-based prospective study. Am J Clin Nut. 2008,88:203-209.
    146. Warensjo E,O" hrvall M, Vessby B. Fatty acid composition and estimated desaturase activities are associated with obesity and lifestyle variables in men and women. Nutr Metab Cardiovasc Dis.2006,16:128-136.
    147. Pan DA, Lillioja S, Milner MR, et al. Skeletal muscle membrane lipid composition is related to adiposity and insulin action. J Clin Invest 1995, 96:2802-2808.
    148. Lelliott C, Vidal-Puig AJ. Lipotoxicity, an imbalance between lipogenesis de novo and fatty acid oxidation. Int J Obes Relat Metab Disord.2004,28(suppl 4):S22-S28.
    149. Riserus U,A'rnlov J, Berglund L. Long-term predictors of insulin resistance: role of lifestyle and metabolic factors in middle-aged men. Diabetes Care.2007, 30:2928-2933.
    150. Dobrzyn A, Ntambi JM. The role of stearoyl-CoA desaturase in body weight regulation. Trends Cardiovasc Med.2004,14:77-81.
    151. Ntambi JM, Miyazaki M, Stoehr JP, et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci U S A.2002, 99:11482-11486.
    152. Sampath H, Miyazaki M, Dobrzyn A, Ntambi JM. Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat. J Biol Chem 2007, 282:2483-2493.
    153. Nestel P, Clifton P, Noakes M. Effects of increasing dietary palmitoleic acid compared with palmitic and oleic acids on plasma lipids of hypercholesterolemic men. J Lipid Res.1994,35:656-662.
    154. Renaud S, Lanzmann-Petithory D. Coronary heart disease:dietary links and pathogenesis. Public Health Nutr.2001,4:459-474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700