用户名: 密码: 验证码:
一种六自由度微定位工作台位姿控制新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了一种在四层平板之间并列分布多个压电陶瓷驱动器,通过控制压电驱动器产生微驱动,最终实现六自由度微定位的新方法。
     本文的主要研究工作包括:
     ①在分析研究国内外现有微定位方法的基础上,研究了一种空间分布压电陶瓷驱动器的六自由度微定位新方法。完成了定位原理的推导,建立了位姿控制模型。在四层工作台间并列分布十二个压电陶瓷微驱动器,每层工作台上的四个压电陶瓷微驱动器均布在半径为l的圆周上。根据位姿控制模型,压电陶瓷微驱动器通以不同电压,使其分别产生伸长或缩短,各驱动器同时作用,形成微定位机构目标工作台在不同方向上的微动。
     ②采用MATLAB软件计算位姿控制模型,得到六自由度方向需要产生位移yi时,各压电陶瓷微驱动器的应提供的伸缩量Δhi;通过ANSYS软件建立微定位平台实体模型,改变各驱动器参数(参数变化值等于Δhi),监测目标工作台位移变化yk;验证微定位原理与控制模型的正确性和方案的可行性。
     ③针对压电陶瓷驱动器特殊的负载特性,研究了压电陶瓷驱动电源,可实现多路压电陶瓷微驱动器同时驱动。介绍了主要的电路,进行了放大电路的仿真和分析,完成了放大电路的基本调试。该压电陶瓷驱动电源具有一定的实用性和创新性。
     ④研究了单个压电陶瓷微驱动器的复合控制方法,使驱动器取得了较高的定位精度。针对压电陶瓷器件在精密定位控制中存在的迟滞、蠕变和位移非线性等不足,将Preisach前馈控制和PID反馈控制相结合,分别完成了Preisach和基于积分分离PID控制的实际编程,并完成了实验验证工作。
     本文的研究工作可为精密调整及微进给提供新的思路和方法。
A novel method of Six-DOF micro positioning with PZT actuators have been studied, multi PZT actuators have been distributed spatially and applied voltage, six-DOF micro positioning finally has been realized.
     The major research works completed in this dissertation include:
     ①Based on the research of micropositioning at home and abroad, a novel technique of six DOF(degree of freedom) micro positioning with PZT actuators have been put forward. The author studied the principle of micropositioning and created the position control matrix. Twelve PZT actuators are distributed spatially among four work platforms, and in each layer there are four PZT actuators placed on the circumference with radius of l . Based on position control matrix, PZT actuators expanse or contract by appling different voltage, finally, micro movement in different direction are formed.
     ②MATLAB was used to calculate position control matrix, expansion and contraction quantity of each PZT actuators was gained when the objective platform occurs displacement yi . Then, solid model of micropositioning platform was created in ANSYS, the displacement y k of platform was tracked by changing PZT actuators’parameter. It verified the principle and programme of micropositioning.
     ③Based on special load characteristic of capacitance, a novel PZT driving power was studied, the main circuit was introduced, emulation, analysis and testing of amplifying circuit was carried out . The driving power has practical application and innovation.
     ④Composite control of PZT actuators was introduced, and high position accuracy was obtained.The combination of Preisach and PID was put forward to overcome the shortcomings such as hysteresis, creep and nonlinear of displacement existing in precision positioning control. Programs of Preisach and the Integral Discrete PID were completed.
     The research provides new thought and new method in precision adjusting and micro feeding.
引文
[1]路小波,陆祖宏.扫描隧道显微镜中的扫描工作台.压电与声光,1999,6(21):431一432,506.
    [2] T.Fujii. Mieropatternm measurement with an atomic force microscope. J.Vac.Sci.teehnol, B,VOI.9,No.2:666一669,1991.
    [3] J.FU. Long-range scanning for scanning tunneling microscopy. Rev.Sei.Instrum, Vol.63,No.4:2200-2205,1978.
    [4]姚健,尤政.21世纪的科技前沿—纳米技术.中国机械工程1995, 6(3):14一16.
    [5]邹锋,聂恒敬.基于弹性变形的微动工作台研究.现代制造工程, 1999(3):55一56.
    [6]徐峰,文贵林.纳米定位技术的进展.机电工程,2001,18(3):1一3.
    [7]王建林,胡小唐.纳米定位技术研究现状.机械设计与研究,2000,1:43一46.
    [8]陈心中,徐润君.纳米技术的广阔应用前景.物理与工程,2001,11(6):39一45.
    [9]阎永志.纳米技术的研究现状与将来.压电与声光,1996,18(4):279一285.
    [10]荆涛.压电陶瓷微位移工作台在精密工件台上的应用研究.光学精密工程,1994,4(4):64一68.
    [11]谢卫东.精密微位移工作台系统综述.自动化与仪器仪表,1991,1:8一9.
    [12]薛实福,李庆祥.精密仪器设计.清华大学出版社,1991.
    [13]王建林,周秀珍.压电驱动三维纳米定位系统的研究[J].压电与声光,2001.23(6): 439-442.
    [14]崔玉国.压电陶瓷自感知执行器及其驱动微动工作台控制方法的研究[D].大连理工大学.2003.
    [15]黄挺朋.压电驱动微动定位平台系统设计与开发[D].浙江大学.2008.
    [16] Fu, J., R.D. Young, and T.V. Vorburger, Long-range scanning for scanning tunneling microscopy. Review of Scientific Instruments, 1992.63(4):2200-2205.
    [17]李庆祥,王东生,李玉和.现代精密仪器设计[M].北京:清华大学出版社.2004.
    [18]王建林.三维一体化超微定位技术及系统的研究[D].天津:天津大学.1997.
    [19]王建林,周秀珍.压电驱动三维纳米定位系统的研究[J].压电与声光,2001.23(6):439-442.
    [20]陶惠峰.超精密微位移系统研究[D].杭州:浙江大学硕士学位论文.2003.
    [21] Wu,Y. and Z.Zhou, Design calculations for flexure hinges. Review of Scientific Instruments,2002.73(8):3101.
    [22] Wu,Y. and Z.Zhou, An XYθmechanism actuated by one actuator. Mechanism and Machine Theory,2004.39(10):1101-1110.
    [23]吴鹰飞,刘钦彦,周兆英等.蠕动式XY-θ微动工作台的设计实现[J].中国机械工程,2001.12(3):263-265.
    [24] Chang,S.H. and B.C. Du. A precision piezodriven micropositioner mechanism with large travel range. Review of Scientific Instruments, 1998.69(4):1785-1791.
    [25]张曙[中],U.Heisel[德].并联运动机床.北京:机械工业出版社,2003.
    [26] Ficter E.FA.Stewart Platform Based Manipulator General Theory and Practical Construction. Int.J.of Robotics Research,1986,5(2):157~182.
    [27]北京飞行模拟器公司.六自由度运动系统验收报告.
    [28]王建林.柔性八杆对称联动定位机构及系统的研究[J].航空精密制造技术,2001.37(3):31-34.
    [29]田延岭.二自由度微定位平台的研制.光学精密工程.2006.14(1):94-99.
    [30]李亮玉,张文峰.焊缝跟踪系统步进电机驱动电源的设计.焊接,1996,23(7):128-131.
    [31]乌兰图雅,陈磊.非对称式压电陶瓷微位移器驱动电源设计.南京理工大学学报(自然科学版),2003.6:105-111.
    [32] W.S.Galinaitis,R.C.Rogers. Control of a hysteretic actuator using inverse hysteresis compensation,in Mathematics and Control in Smart Structures,V.Varadan ,ed.,Proc.SPIE3323,267-277,1998.
    [33]刘分良,田莳,张雳等.压电陶瓷驱动器非线性的电源补偿研究.压电与声光,2000,22(5):296一298.
    [34] LIN Wei,YinDong-zhi,Ye Hu-nian etal. Research on logical rule control of piezoelectric actuators precise positioning system , 6th International Symposium on Test and Measurment,v4,365-3659.
    [35]冯晓光,赵万生,栗岩等.减小压电陶瓷驱动电源纹波的一种有效方法.哈尔滨工业大学学报,1997,29(5):132-133.
    [36]冯海.基于ARM的压电陶瓷驱动电源设计与研究[D].大连理工大学.2007.
    [37]丁文明.压电陶瓷执行器的驱动技术研究[D].重庆大学.2007.
    [38]曾友章,秦岚,赵廷超等.机电一体化技术及系统[M ].重庆:重庆大学, 1996.
    [39]蔡秀梅.空间分布压电驱动的多自由度微定位工作台位姿控制模型与实验研究[D].重庆大学.2002.
    [40]张朝晖.ANSYS11.0结构分析工程应用实例解析(第2版).机械工业出版社,2008.1.
    [41]李庆祥,王东生,李玉和.现代精密仪器设计[M].北京:清华大学出版社.2004.
    [42] Lobontiu,N., Compliant Mechanism:design of flexure hinges.2003:CRC Press.
    [43]张福学,王丽坤.现代压电学(上,中,下)[M].北京:科学出版社.2003.
    [44] Gallego and A.Juarcz , Piezoelectric ceramics and ultrasonic transducers.J.Phys.E, 1989.22:804-816.
    [45]解光亮,屈晓田,张力江. PZT的制备及其微观结构分析[J].测试技术学报,2003.17(3):278-281.
    [46]孙宝元.现代执行器技术[M].长春:吉林大学出版社.2003.
    [47]曹荣.多自由度微定位工作台压电陶瓷控制方法研究[D].重庆大学.2004.
    [48]周森磊等.压电执行器非线性控制方法研究进展.压电与声光.2007,29(6):656-662.
    [49]王希花等.压电陶瓷迟滞特性的建模及复合控制.电机与控制学报.2009,13(5):766-7.
    [50] Numerical Implementation of the feedback Preisach model I.D.Mayergoyz,A.A.Adly. IEEE Transaction on magnetics,Vol 28,NO 5,SEPTEMBER 1992.
    [51]强锡富.传感器(第三版).北京.机械工业出版社,2001.5.
    [52]杨大地,涂光裕.数值分析重庆大学出版社.重庆1998.1.
    [53]李国荣,陈大任,殷庆瑞PZT系多层片式压电陶瓷微驱动器位移性能研究.无机材料学报,1999年第14卷第3期VOL.14 No.3 1999.
    [54]陶永华.新型PID控制及其应用.第二版.北京机械工业出版社2002.9.
    [55]林伟,叶虎年等.压电陶瓷致动器驱动电源的研究.MEMS器件与技术.2006:138-140.
    [56]李福良.基于PA85的新型压电陶瓷驱动电源[D].合肥工业大学.2004.
    [57]张正勇,孔德义,梅涛等.一种柔性三维力触觉传感器阵列的实现方法[J].传感技术学报,2007,20(11):2382-2385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700