用户名: 密码: 验证码:
复合材料夹芯结构的力学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料夹芯结构以其诸多的优良性能,被广泛地应用于航空、航天等高科技领域。对复合材料夹芯结构力学性能的研究是一个十分重要的问题,直接关系到这类结构在工程中是否安全可靠。经过国内外学者们的不懈努力,对夹芯结构力学性能的研究已取得了丰富的成果,但新型复合材料夹芯结构的不断涌现对夹芯结构力学性能的研究提出了更高的要求。本文针对纤维柱增强泡沫夹芯结构和碳纤维点阵夹芯结构,从准静态压陷、低速冲击、剩余强度及高速撞击等四个方面对其进行了理论、数值及实验研究。具体研究内容:
     第一章,详细介绍了复合材料夹芯结构的国内外研究进展,其中着重介绍了碳纤维点阵结构在制备和力学性能研究方面的现状和已取得的一些重要结果。最后阐述了本文的研究目的和意义。
     第二章,针对纤维柱增强泡沫夹芯结构的准静态压陷性能进行了理论和实验研究。采用叠加原理,推导了复合材料泡沫夹芯梁和纤维柱增强泡沫夹芯梁的准静态压陷表达式。根据最小势能原理,预报了纤维柱增强泡沫夹芯板的准静态压陷响应,并将理论预报值和实验结果进行了对比。通过与传统泡沫夹芯结构进行对比,揭示了纤维柱增强泡沫夹芯结构在抵抗局部压陷载荷方面具有的独特优势。
     第三章,从数值和实验角度对碳纤维点阵夹芯结构的低速冲击性能进行了研究。通过落锤实验研究了不同能量、不同冲击位置对复合材料点阵夹芯结构低速冲击响应的影响。采用ABAQUS有限元软件,研究了点阵夹芯结构的动态力学响应和破坏模式。最后,将数值模拟结果和实验结果进行了对比分析。
     在第三章的研究基础上,第四章首先研究了碳纤维层合板冲击后的剩余拉伸强度问题。将显式有限元方法和用户子程序用于对准静态问题的计算中,提高了破坏模拟的精度与效率。通过数值计算,层合板剩余拉伸强度的退化分为三个阶段,确定了碳纤维层合板在不同冲击能量后的拉伸破坏模式。将这一思想引入到碳纤维点阵夹芯结构的剩余强度分析中,模拟了结构的拉伸破坏,确定了冲击能量阀值,并改变了复合材料夹芯结构的冲击能量阀值只能通过实验手段来确定的现状。最后研究了不同铺层角度对碳纤维点阵夹芯结构剩余强度的影响,为复合材料点阵夹芯结构的设计与使用提供了有益的指导。
     第五章,对碳纤维层合板和碳纤维点阵夹芯结构的高速撞击性能进行了研究。在相同的冲击能量和冲击速度下,比较了不同厚度碳纤维层合板的撞击能量吸收率。为了客观地评价碳纤维层合板的能量吸收性质,我们对将金属单板与碳纤维层合板的撞击能量吸收率进行了对比,得到了一系列有益的结论。在金属点阵夹芯结构与碳纤维点阵夹芯结构撞击能量吸收率的比较中也存在着相同的结论。随后对碳纤维层合板和碳纤维点阵夹芯结构的高速撞击行为进行了数值模拟,并将模拟结果和实验结果进行了对比。在了解了碳纤维层合板和点阵夹芯结构的能量吸收性质后,本章提出了优化防护理论,即在达到相同的防护效果的前提下,使得防护结构的整体重量尽可能降低。
Since composite sandwich structures have excellent properties, they are widely used in the fields of high technology such as aeronautics and astronautics, etc. It is very important to investigate the mechanical properties of composite sandwich structures, which decide whether composite sandwich structures can be applied in engineering fields. After years of effort, a plenty of results have been obtained by scholars. However, new difficulties have been encountered with the emergence of a lot of novel sandwich structures in resent years. The quasi-static indentation response, low-velocity impact response, residual strength after impact and hypervelocity impact response of composite sandwich structures have been investigated by theoretical, numerical and experimental methods in this dissertation.
     The process of composite sandwich structures is introduced in chapter one and the advances on the mechanical properties of three-dimensional braided composites are reviewed from several aspects, including the quasi-static indentation response, low-velocity impact response, residual strength after impact and hypervelocity impact response of composite sandwich structures. In addition, the background and significance of the present project are demonstrated in this chapter.
     In chapter two, the quasi-static indentation response of foam sandwich beams and plates reinforced by fiber columns have been investigated theoretically and experimentally. Based on the superposition principle, a new model is established for predicting the indentation response of sandwich beams with and without reinforced fiber columns. The analytical predictions on indentation behaviors are in good agreement with experimental data. Furthermore, the analytical solution of indentation response of foam sandwich plate reinforced by fiber columns is derived by the principle of minimum energy and is compared well with experimental results. According to analytical and experimental results, advantages in the indentation resistance of foam sandwich structures reinforced by fiber columns are obvious compared with traditional composite foam sandwich structures.
     In chapter three, the low-velocity impact response of carbon fiber composite lattice structures is investigated by experimental and numerical methods. Impact tests on composite plates are performed using an instrumented drop-weight machine (Instron 9250HV) and two kinds of new damage modes are observed. Different impact energies and impact locations are considered. A three-dimensional finite element model is built by ABAQUS/Explicit and user subroutine (VUMAT) to predict the peak loading and simulate the complicated damage problem. It can be found that numerical predictions coincide well with experimental results.
     Low-velocity impact characteristics and residual tensile strengths of carbon fiber composite laminates are firstly investigated experimentally and numerically in chapter four. The quasi-static tension response of carbon fiber composite laminates are simulated by the explicit finite element method and its user subroutine (VUMAT) in order to improve precision and efficiency of damage simulation. Two different tensile damage modes after different impact energies are observed. Using this calculation method, low-velocity impact characteristics and residual tensile strengths of carbon fiber composite lattice core sandwich structures are investigated. The critical impact energy which can only obtain from the experiment is obtained. The degradation of residual tensile strengths can be divided to three stages for different impact energies, and amplitudes of degradation are affected by stacking sequences. These results are very important to the design and service of carbon fiber composite lattice core sandwich structures.
     In chapter five, hypervelocity impact experiments of carbon fiber composite laminates and carbon fiber composite lattice core sandwich structures are conducted. Energy absorption efficiency of metal monolithic and carbon fiber laminates is compared under the same ballistic velocity and energy. It can be seen from experimental results that the energy absorption efficiency of metal monolithic is higher than one of carbon fiber laminates; Instead, the energy absorption efficiency of metal monolithic is smaller than one of carbon fiber laminates. Analogous conclusions are gained for the energy absorption efficiency of metal and carbon fiber composite lattice core sandwich structures. Next, the numerical method is employed to simulate hypervelocity impact behavior of carbon fiber laminates and carbon fiber composite lattice core sandwich structures. Numerical results are compared well with experimental results. Optimized resistance concept is proposed by computing energy absorption efficiency of different thickness laminates. Total mass of resistance structures can be declined under this optimized resistance concept.
引文
1李勇.直九机用Nomex蜂窝研究.航空材料学报. 1996, 16(1):47~54
    2 [美] R.M.琼斯著,朱颐龄等译校.复合材料力学.上海科学技术出版社, 1981:14~17
    3范秋习.蜂窝夹层复合材料.北京轻工业学院学报. 1998, 16(2):77~81
    4关世伟.蜂窝结构材料.太阳能. 1999, 01:25~26
    5 D.Zenkert. An introduction to sandwich construction. London: EMAS. 1997
    6 H.G. Allen. Analysis and design of structural sandwich panels. Oxford: Pergamont Press. 1969
    7 V.S. Deshpande, M.F. Ashby, N.A. Fleck. Foam topology bending versus stretching dominated architectures. Acts Materialia. 2001, 49:1035~1040
    8 A.G. Evans, J.W. Hutchinson, N.A. Fleck, et al. The topological design of multifunctional cellular metals. Progress in Materials Science. 2001, 46:309~327
    9 V.S. Deshpande, N.A. Fleck, M.F. Ashby. Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids. 2001, 49: 1747~1769
    10 J.C. Wallach, L.J. Gibson. Mechanical behavior of a three-dimensional truss material. International Journal of Solids and Structures. 2001, 38:7181~7196
    11范华林,杨卫.轻质高强点阵材料及其力学性能研究进展.力学进展. 2007, 37(1):99~112
    12 T.Q. Douglas, N.G. Wadley. Cellular metal lattices with hollow trusses. Acta Materialia. 2005, 53:303~313
    13 T.J. Lu, A.G. Evans. Design of a high authority flexural actuator using an electro-strictive polymer. Sensors and Actuators A: Physical. 2002, 99(3):290~296
    14 A. Doneva, S. Torquato. Energy-efficient actuation in infinite lattice structures. Journal of the Mechanics and Physics of Solids. 2003, 51:1459~1475
    15 R.G. Hutchinson, N. Wicks, A.G. Evans, et al. Kagome plate structures for actuation. International Journal of Solids and Structures. 2003, 40:6969~6980
    16 S.L. Doa Santoa a Lucato, J. Wang, P. Maxwell, et al. Design and demonstration of a high authority shape morphing structure. International Journal of Solids and Structures. 2004, 41:3521~3543
    17 N. Wicks, S.D. Guest. Single member actuation in large repetitive truss structures. International Journal of Solids and Structures. 2004, 41:965~978
    18黄涛,矫桂琼,潘文革.缝纫泡沫夹层结构弯曲性能研究.材料科学与工程学报. 2006, 4(24):535~538
    19黄涛,矫桂琼,李野.缝纫泡沫夹层结构芯子剪切模量研究.机械强度. 2007, 29(1):113~117
    20郑锡涛,孙秦,李野,柴亚南,曹正华.全厚度缝合复合材料泡沫芯夹层结构力学性能研究与损伤容限评定.复合材料学报. 2006, 23(6):29~36
    21 L.E. Stanley, D.O. Adams. Development and evaluation of stitched sandwich panels. NASA/ CR 2001 211025 [ R ] .Washington : NASA , 2001.
    22 B. Lascoup, Z. Aboura, K. Khellil, M. Benzeggagh. On the mechanical effect of stitch addition in sandwich panel. Composites Science and technology. 2006, 66: 1385~1398
    23 P. Potluri, E. Kusak, T.Y. Reddy. Novel stitch-bonded sandwich composite structures. Composite Structures. 2003, 59:251~259
    24 Jae Hoon Kim, Young Shin Lee, Byoung Jun Park, Duck Hoi Kim. Evaluation of durability and strength of stitched foam-cored sandwich structures. Composite Structures. 1999, 47:543~550
    25 O. Kesler, L.J. Gibson. Size effects in metallic foam core sandwich beams. Materials Science and Engineering. 2002, A326:228~234
    26 K.S. Raju, J.S. Tomblin. Energy absorption characteristics of stitched composite sandwich panels. Journal of composite materials. 1999, 33(8):712~728
    27 S.L Huang, R. J. Richey, E. W. Deska Cross Reinforcement in a GREP Laminate. American Society of Mechanical Engineers. Annual Winter Meeting. 1978, 10~15
    28 D. R. Cartie, I. K. Partridge. Delamination Behavior of Z-pinned Laminates, Proc. 2th int. Conf. Comp. Mat. Paris. 1999, July:5~9
    29 .Graftieaux, A. Rezai, I. K. Partridge. Effects of Z-pin Reinforcement on the Delamination Toughness and Fatigue Performance of Unidirectional AS4/8552 Composite, Proc. ECC. 9 Brighton, UK. 2000, 4~7
    30 K. Partridge, D. D. R. Cartie. Increasing Delamination Resistance of Composites by z-pinning, Proc. ACUN-3, Sydney 2001, 6-9:169~172
    31 .Cartensen, E. Kunkel, C. Magee. X-cor Advanced Sandwich Core Material. In:33rd International SAMPE technical conference, Seattle, WA. 2001
    32 G. Freitas Z-fiber Technology and Products for Enhancing Composite Design, In:83rd Meeting of the AGARD SMP on“Bolted / Bonded Joints in Polymeric Composites”. Florence. 1996, 9:172~178
    33 K.Vaidya, S. Nelson. Processing and High Strain Rate Impact Response ofMulti-functional Sandwich Composites. Composite Structures. 2001, 52:429~440
    34 D. D. R. Cartie, N. Fleck. The Effect of Pin Reinforcement Upon the Through-thickness Compressive Strength of Foam-cored Sandwich panels. Composites Science and Technology. 2003, 63(16):2401~2409
    35 M. C. Rice, C. A. Flescher, M. Zupan. Study on the Collapse of Pin-reinforced Foam Sandwich Panel Cores. Experimental Mechanics. 2006, 46:197~204
    36 L. Du, G. Q. Jiao, T. Huang. Investigation of the Effect of Z-pin Reinforcement of the Collapse of Foam-cored Sandwich Panels. Journal of Reinforced Plastics and Composites. 2008, 27(11):1211~1224
    37 L. Du, G. Q. Jiao, T. Huang. Z-pin Reinforcement on the Core Shear Properties of Polymer Foam Sandwich Composites. Journal of Composite Materials. 2009, 43(3):289~300
    38 L. Du, G. Q. Jiao, T. Huang. The Elastic Properties of Sandwich Structure with Z-pinned Foam Core. Journal of Reinforced Plastics and Composites. 2009, 28:813~831
    39 L. Du, G. Q. Jiao. Indentation Study of Z-pin Reinforced Polymer Foam Core Sandwich Structures. Composites Part A. 2009, 40(6):822~829
    40杜龙,娇桂琼,黄涛等. X状Z-pin增强泡沫夹层结构的剪切性能.复合材料学报. 2007, 24(6):140~146
    41杜龙,娇桂琼,黄涛等. X状Z向碳pin增强泡沫夹层结构剪切刚度预报.固体力学学报. 2007,28(4):369~374
    42 42杜龙,娇桂琼,黄涛等. Z-pin增强对泡沫夹层结构弯曲和振动性能的影响.航空材料学报. 2008, 28(4):101~106
    43杜龙. Z-pin增强泡沫夹层结构的力学性能研究.西北工业大学博士学位论文. 2009年.
    44 N.G. Wadley, N.A. Fleck, A.G. Evans. Fabrication and structural performance of periodic cellular metal sandwich structures. Composites Science and Technology. 2003, 63:2331~2343
    45 Y. Sugimura. Mechanical responses of single-layer tetrahedral trusses under shear loading. Mechanics of Materials. 2004, 36:715~721
    46 Bing Wang, Linzhi Wu, Li Ma, Qiang Wang, Shanyi Du. Fabrication and Testing of Carbon Fiber Reinforced Truss Core Sandwich Panels. Journal of Materials science and technology. 2009, 25:547~550
    47范华林.碳纤维点阵复合材料制备及其性能研究: [博士论文].北京:清华大学,2006
    48 An Houl, Kurt Gramoll. Design and fabrication of CFRP interstage attach fitting for launch vehicles. Journal of Aerospace Engineering. 1999, 12(3):83~91
    49 V.V. Vasiliev, V.A. Barynin, A.F. Basin. Anisogrid lattice structures-survey of development and application. Composite Structures. 2001, 54:361~370
    50 T.D. Kim. Fabrication and testing of thin composite isogrid stiffened panel. Composite Structures. 2000, 49:21~25
    51 M.H. Steven, E.M. Troy, M.W. Peter, et al. Manufacturing theory for advanced grid stiffened structures. Composite: Part A. 2002, 33:155~161
    52 D.Y. Han, S.W. Tsai. Interlocked composite grids design and manufacturing. Journal of Composite Materials. 2003, 37:287~316
    53 K. Finnegan, G.Kooistra, H.N.G. Wadley, V.S. Deshpande, The compressive response of carbon fiber composite pyramidal truss sandwich cores. International Journal of Materials Research. 2007, 98:1264~1272
    54 L.J. Gibson, M.F. Ashby. Cellular Solids: Structure and Properties. Cambridge: Cambridge University Press, 1997
    55 M.F. Ashby, A.G. Evans, N.A. Fleck, et al. Metal Forms: A Design Guide. Boston: Butterworth-Heinemann, 2000
    56 R.M. Christensen. Mechanics of low density materials. Journal of the Mechanics and Physics of Solids. 1986, 34:563~578
    57 Warren W E, Kraynik A M. The linear elastic properties of open-cell foams. Journal of Applied Mechanics, 1988, 55:341~346
    58 Warren W E, Kraynik A M. Linear elastic behavior of a low density Kelvin foam with open cells. Journal of Applied Mechanics, 1997, 64: 787~794
    59 S. Sihn, B.P. Rice. Sandwich construction with carbon foam core materials. Journal of Composite Materials. 2003, 37:1319~1336
    60 A.K. Noor. Continumm modeling of repetitive lattice structures. Applied Mechanics Reviews. 1988, 41:285~296
    61 S. Abrate. Continuum modeling of latticed structures. Shock and Vibration Digest. 1985, 17(1):15~21
    62 S. Abrate. Continuum modeling of latticed structures. Shock and Vibration Digest. 1988, 20(10):3~8
    63 S. Abrate. Continuum modeling of latticed structures: Part III. Shock and Vibration Digest. 1991, 23(3):16~21
    64 Jing-Sheng Liu, Tian Jian Lu. Multi-objective and multi-loading optimization of ultralightweight truss materials. International Journal of Solids and Structures. 2004, 41:619~635
    65 T. Liu, Z.C. Deng, T.J. Lu. Minimum weights of pressurized hollow sandwich cylinders with ultralight cellular cores. International Journal of Solids and Structures. 2007, 44:3231~3266
    66 T. Liu, Z.C Deng, T.J. Lu. Design optimization of truss-cored sandwiches with homogenization. International Journal of Solids and Structure. 2006, 43:7891~7918
    67 J.C. Wallach, L.J. Gibson. Mechanical behavior of a three-dimensional truss material. International Journal of Solids and Structures. 2001, 38:7181~7196
    68 V.S. Deshpande, N.A. Fleck. Collapse of truss core sandwich beams in 3-point bending. International Journal of Solids and Structures. 2001, 38(36~37): 6275~6305
    69 S. Chiras, D.R. Mumm, A.G. Evans, N. Wicks, J.W. Hutchinson, K. Dharmasena, H.N.G. Wadley, S. Fichter. The structural performance of near-optimized truss core panels. International Journal of Solids and Structure. 2002, 39:4093~4115
    70 G.W. Kooistra, D.T. Queheillalt, H.N.G. Wadley, Shear behavior of aluminum lattice truss sandwich panel structures. Materials Science and Engineering A. 2008, 472:242~250
    71 P.G. Bakir, H.M. Boduroglu. Mechanical behaviour and non-linear analysis of short beams using softened truss and direct strut & tie models. Engineering Structures. 2005, 27:639~651
    72 N. Wicks, J.W. Hutchinson. Optimal truss plates. International Journal of Solids Structures. 2001, 38:5183~6165
    73 Z. Y. Xue, J. W. Hutchinson. A Comparative Study of Impulse-resistant Metal Sandwich Plates. International of Impact Engineering.2004, 30(10):1283~1305
    74 Z. Y. Xue, J. W. Hutchinson. Preliminary Assessment of Sandwich Plates Subject to Blast Loads. International Journal of Mechanical Scinences. 2003, 45(4):687~705
    75 A. Vaziri, Z. Y. Xue, J. W. Hutchinson. Performance and Failure of Metal Sandwich Plates Subjected to Shock Loading, Journal of Mechanics of Materials and Structures. 2007, 2(10):1947~1963
    76 P. K. Dharmasena, H. N.G. Wadley, Z. Y. Xue, J. W. Hutchinson. Mechanical Response of Metallic Honeycomb Sandwich Panel Structures to High-intensity Dynamic Loading. International Journal of Impact Engineering. 2008, 35(9):1063~1074
    77 L. F. Mori, S. Lee, Z. Y. Xue, et al. Deformation and Fracture Modes of Sandwich Structures Subjected to Underwater Impulsive Loads. Journal ofMechanics of Materials and Structures. 2007, 2(10):1981~2006
    78 Z. Y. Xue, J. W. Hutchinson. Neck Development in Metal/Elastomer Bilayers under Dynamic Stretchings. International Journal of Solids and Structures. 2008, 45(13):3769~3778
    79 Z. Y. Xue, J. W. Hutchinson. Neck Retardation and Enhanced Energy Absorption in Metal-Elastomer Bilayers. Mechanics of Materials. 2007, 39(5):473~487
    80 Z. Y. Xue, J. W. Hutchinson. Crush Dynamics of Square Honeycomb Sandwich Cores. International Journal of Mechanical Scinences. 2006, 65(13):2221~2245
    81 Z. Y. Xue, A. Vaziri, J. W. Hutchinson. Non-uniform Hardening Constitutive Model for Compressible Orthotropic Materials with Application to Sandwich Plate Cores. Cmes-computer Modeling in Engineering & Sciences. 2005, 10(1):79~95
    82 Z. Y. Xue, J. W. Hutchinson. Constitutive Model for Quasi-static Deformation of Metallic Sandwich Cores. International Journal of Mechanical Scinences. 2004, 61(13):2205~2238
    83 J.Wang, A.G. Evans, K. Dharmasena, H.N.G. Wadley. On the performance of truss panels with Kagome cores. International Journal of Solids Structures. 2003, 40:6981~6988
    84 S.Hyun, A.M. Karlsson, S. Torquato, A.G. Evans. Simulated properties of Kagome and tetragonal truss core panels. International Journal of Solids Structures. 2003, 40:6989~6998
    85 Cote Francois, Biagi Russel, Bart-Smith Hilary, V.S. Deshpande. Structural response of pyramidal core sandwich columns. International Journal of Solids and Structure. 2007, 44:3533~3556
    86 F. Cote, N.A. Fleck, V.S. Deshpande. Fatigue performance of sandwich beams with a pyramidal core. International Journal of Fatigue. 2007, 29:1402~1412
    87 D.T. Queheillalt, H.N.G. Wadley. Titanium alloy lattice truss structures. Materials and Design. 2009, 30:1966~1975
    88 F.W. Zok, S.A. Waltner, Z. Wei, H.J. Rathbun, R.M. McMeeking, A.G. Evans. A protocol for characterizing the structural performance of metallic sandwich panels: application to pyramidal truss cores. International Journal of Solids Structures. 2004, 41: 6249~6271
    89 J.C. Yungwirtha, H.N.G. Wadley, H.O.C. John, J.A. Zakraysekb, V.S. Deshpande. Impact response of sandwich plates with a pyramidal lattice core. International Journal of Impact Engineering. 2008, 35:920~936
    90 H.L. Fan, F.H. Meng, W. Yang. Mechanical behaviors and bending effects ofcarbon fiber reinforced lattice materials. Arch Appl Mech. 2006, 75(10–12):35~47
    91 H.L. Fan, W. Yang, B. Wang, et al. Design and manufacturing of a composite lattice structure reinforced by continuous carbon fibers. Tsinghua Sci Tech. 2006, 11(5):15~22
    92 H.L. Fan, W. Yang. An equivalent continuum method of lattice structures. Acta Mech Solid Sin. 2006, 19(2):3~13
    93 H.L. Fan, F.H. Meng, W. Yang. Sandwich panels with Kagome lattice cores reinforced by carbon fibers. Composite Structures. 2007, 81:533~539
    94 H.L. Fan, F.N. Jing, D.N. Fang. Mechanical properties of hierarchical cellular materials Part I: Analysis. Composites Science and Technology. 2008, 68: 3380~3387
    95 H.L. Fan, D.N. Fang a, F.N. Jing. Yield surfaces and micro-failure mechanism of block lattice truss materials. Materials and Design. 2008, 29:2038~2042
    96 H.L. Fan, F.N. Jin c, D.N. Fang. Nonlinear mechanical properties of lattice truss materials. Materials and Design. 2009, 30:511~517
    97 H.L. Fan , D.N. Fang. Modeling and limits of strength of nanoporous foams. Materials and Design. 2009, 30:1441~1444
    98 H.L. Fan, D.N. Fang. Enhancement of mechanical properties of hollow-strut foams: Analysis. Materials and Design. 2009, 30:1659~1666
    99 Pimsiree Moongkhanklang, Dana M. Elzey, H.N.G. Wadley. Titanium matrix composite lattice structures. Composites Part: A. 2008, 39:176~187
    100 N. Wicks, J.W. Hutchinson. Performance of sandwich plates with truss cores. Mechanics of Materials. 2004, 36:739~751
    101 A.M. Hayes, A.J. Wang, B.M. Dempsey, et al. Mechanics of linear cellular alloys. Mechanics of Materials. 2004, 36:691~713
    102 A.J. Wang, D.L. McDowell. In-plane stiffness and yield strength of periodic metal honeycombs. ASME Journal of Engineering Materials and Technology. 2004, 126: 137~156
    103 H.J. Chen, S.W. Tsai. Analysis and optimum design of composite grid structures. Journal of Composite Materials. 1996, 30:503~554
    104 S. Huybrechts, S.W. Tsai. Analysis and behavior of grid structures. Composites Science and Technology. 1996, 56:1001~1015
    105 J. Hohe, C. Beschorner, W. Becker. Effective elastic properties of hexagonal and quadrilateral grid structures. Composite Structures. 1999, 46:73~89
    106 J. Hohe, W. Becker. Effective elastic properties of triangular grid structures. Composite Structures. 1999, 45:131~145
    107 L.Valdevit, J.W. Hutchinson, A.G. Evans. Structurally optimized sandwich panels with prismatic cores. International Journal of Solids Structures. 2004, 41:5105~5124
    108 A.M. Hayes, A.J. Wang, B.M. Dempsey, et al. Mechanics of linear cellular alloys. Mechanics of Materials. 2004, 36:691~713
    109 A.J. Wang, D.L. McDowell. In-plane stiffness and yield strength of periodic metal honeycombs. ASME Journal of Engineering Materials and Technology. 2004, 126: 137~156
    110 H.J. Chen, S.W. Tsai. Analysis and optimum design of composite grid structures. Journal of Composite Materials. 1996, 30:503~554
    111 S. Huybrechts, S.W. Tsai. Analysis and behavior of grid structures. Composites Science and Technology. 1996, 56:1001~1015
    112 J. Hohe, C. Beschorner, W. Becker. Effective elastic properties of hexagonal and quadrilateral grid structures. Composite Structures. 1999, 46:73~89
    113 J. Hohe, W. Becker. Effective elastic properties of triangular grid structures. Composite Structures. 1999, 45:131~145
    114 A. Hrennikoff. Solution of problems of elasticity by the frame-work method. ASME Journal of Applied Mechanics. 1941, 8:169~175
    115 H.J. Herrmann, A. Hansen, S. Roux. Fracture of disordered, elastic lattices in two dimensions. Physical Review B. 1989, 39(1):637~648
    116 O.S. Martin. Lattice models in micro-mechanics. Applied Mechanics Reviews. 2002, 55(1):35~60
    117 G. Lilliu, J.G.M. van Mier. 3D lattice type fracture model for concrete. Engineering Fracture Mechanics. 2003, 70:927~941
    118 A. Arslan, R. Ince, B.L. Karihaloo. Improved lattice model for concrete fracture. Journal of Engineeraeing Mechanics. 2002, 128(1):57~65
    119 J.G.M. Van Mier, A. Vervuurt. Numerical analysis of interface fracture in concrete using a lattice-type fracture model source. International Journal of Damage Mechanics. 1997, 6(4):408~432
    120 R. Ince, A. Arslan, B.L. Karihaloo. Lattice modelling of size effect in concrete strength. Engineering Fracture Mechanics. 2003, 70(16):2307~2320
    121 B.K. Raghuprasad, D.N. Bhat, G.S. Bhattacharya. Simulation of fracture in a quasi-brittle material in direct tension a lattice model source. Engineering Fracture Mechanics. 1998, 61(3-4):445~460
    122 E. Schlangen, E.J. Garboczi. Fracture simulations of concrete using lattice models: Computational aspects. Engineering Fracture Mechanics. 1997, 57(2-3): 319~332
    123 L.I. Slepyan, M.V. Ayzenberg Stepanenko, J.P. Dempsey. Lattice model for viscoelastic fracture. Mechanics Time Dependent Materials. 1999, 3(2):159~203
    124 S.I. Heizler, D.A. Kessler, H. Levine. Mode-I fracture in a nonlinear lattice with viscoelastic forces. Physical Review E-Statistical Physics. Plasmas, Fluids, and Related Interdisciplinary Topics. 2002, 66(1):1~10
    125 D.A. Kessler, H. Levine. Nonlinear Lattice model of viscoelaetic mode III fracture. Physical Review E. 2001, 63(1):1~9
    126 G.A. Buxton, A.C. Balazs. Lattice spring model of filled polymere and nano-composites. Journal of Chemical Physics. 2003, 117(16):7649~7658
    127 M.S. Hoo Fatt, S. P. Kyong, Dynamic models for low-velocity impact damage of composite sandwich panels - Part A: Deformation. Composite Structures. 2001, 52:335~351
    128 D.W. Zhou, W.J. Stronge. Low velocity impact denting of HSSA lightweight sandwich panel. International Journal of Mechanical. 2006, 48: 1031~1045
    129 V. Rizov, A. Shipsha, D. Zenkert. Indentation study of foam core sandwich composite panels. Composite Structures. 2005, 69:95~102
    130 P.D.Soden. Indentation of composite sandwich beams. Journal of Strain Analysis for Engineering Design. 1996, 31(5):53~60
    131 F.M. Shuaeib, P.D. Soden. Indentation failure of composite sandwich beams. Composites Science and Technology. 1997, 57:1249~1259
    132 Vitaly Koissin, Vitaly Skvortsov, Andrey, Shipsha. Stability of the face layer of sandwich beams with sub-interface damage in the foam core. Composite Structures. 2007, 78: 507-518
    133 C. Hiel, D. Dittman, O. Ishai. Composite sandwich construction with syntactic foam core: Apractical assessment of post-impact damage and residual strength. Composites. 1993, 24(5):447~450
    134 G. Caprino, R. Teti. Impact and post-impact behavior of foam core sandwich structures. Composite Structures. 1994, 29(1): 47~55
    135 M.A. Hazizan, W.J. Cantwell. The low velocity impact response of foam-based sandwich structures. Composites Part: B. 2002, 33:193~204
    136 T. Anderson, E. Madenci. Experimental investigation of low-velocity impact characteristics of sandwich composites. Composite Structures. 2000, 50:239~47
    137 R. Mines, C.M. Worrall, A.G. Gibson. The static and impact behaviour of polymer composite sandwich beams. Composites. 1994, 25(2):95~110
    138 C. Scarponi, G. Briotti, R. Barboni, A. Marcone, M. Iannone. Impact testing on composite laminates and sandwich panels. J Compos Mater. 1996,30(17):1873~911
    139 P. Tsang, J. Dugundji. Damage resistance of graphite/epoxy sandwich panels under low speed impacts. J Am Helicopter Soc. 1992, 37:75~81
    140 D.R. Ambur, J. Cruz. Low-speed impact response characteristics of composite sandwich panels. AIAA/ASME/ASCE/AHS Struct Dyn Mater Conf Collect Tech Pap 4. 1995, p:2681~2689
    141 J.E. Williamson, P.A. Lagace. Response mechanisms in the impact of graphite/epoxy honeycomb sandwich panels. American Society for Composites: Technical Conference. 1993, p:287~97
    142 M. Lambert, F.K. Schafer, T. Geyer. Impact damage on sandwich panels and multi-layer insulation. Int J Impact Eng. 2001, 26:369~80
    143 R.A.W. Mines, C.M. Worral, A.G. Gibson. The static and impact behavior of polymer composite sandwich beams. Composites. 1994, 25(2):95~110
    144 S. Abrate. Localized impact on sandwich structures with laminated facings. Appl Mech Rev. 1997, 50(2):69~82
    145 S. Abrate. Impact on Composite Structures. Cambridge: Cambridge University Press. 1998, p:242~57
    146 W.K. Shih, B.Z. Jang. Instrumented impact testing of composite sandwich panels. J Reinf Plastics Compos. 1989, 8(1–3):270~98
    147 U.K. Vaidya, M.V. Hosur, D. Earl, S. Jeelani. Impact response of integrated hollow core sandwich composite panels. Composites: Part A. 2000, 31:761~72
    148 A.N. Palazotto, E.J. Herup, L.N.B. Gummadi. Finite element analysis of low-velocity impact on composite sandwich plates. Comosite Structures. 2000, 49:20~27
    149 C.G. Kim, E.J. Jun. Impact characteristics of composite laminated sandwich structures. In: Proc of 8th Int Conf on Composite Mat(ICCM/8), Honolulu, July 15~19, vol. 32. 1991. p. G1~8
    150 E.W.J. Herup, A.N. Palazotto. Low velocity impact damage initiation in graphite/epoxy/nomex honeycomb-sandwich plates. Composite Science Technology. 1997, 57: 81~98
    151 C.L. Wu, C.T. Sun. Low velocity impact damage in composite sandwich beams. Comosite Structures. 1996, 34:2~7
    152 U.K. Vaidya, M.V. Kamath, H. Mahfuz, S. Jeelani. Low velocity impact response of resin infusion molded foam filled honeycomb sandwich composites. J Reinf Plast Compos. 1998, 17(9):19~49
    153 H.T. Wu, G.S. Springer. Measurements of matrix cracking and delamination caused by impacted on composite plates. Journal of Composite Materials. 1988,22: 18~32
    154 H.Y. Choi, H.T. Wu, F.K. Chang. A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact: part II-analysis. Journal of Composite Materials. 1991, 25:1012~38
    155 W.J. Cantwell, J. Morton. The impact resistance of composite materials-a review. Composites. 1991, 22:47~62
    156 D.P.W. Horrigan, R.R. Aitken, G. Moltschaniwskyj. Modelling of crushing due to impact in honeycombsandwiches. Journal of Sandwich Structural Materials. 2000, 2:31~51
    157 Rhodes MD. Impact fracture of composite sandwich structures. Proceedings of ASME/AIAA/SAE, 16th Structure, and Structural Dynamic Material Conference 1975
    158 A.T. Nettles, A.J. Hodge. Impact testing of glass/phenolic honeycombpanels with graphite/epoxy facesheets. In: Proceedings of the 35th International SAMPE Symposium and Exhibition, Anaheim, CA, April 2– 5, 1990.p. 1430~40
    159 M.D. Akil Hazizan, W.J. Cantwell. The low velocity impact response of foam-based sandwich structures. Composites, Part: B. 2002, 33:193~204
    160 150 E.J. Herup, A.N. Palazotto. Low-velocity impact damage initiation in graphite/epoxy/nomex honeycomb-sandwich plates. Composite Science Technology. 1997, 57:1581~98
    161 Davies GAO, Zhang X. Impact damage prediction in carbon composite structure. International Journal of Impact Engineering. 1994, 16(1):149~70
    162 P. Davies, D. Choqueuse, P. Verniolle, M. Prevosto, D. Genin, P. Hamelin. Impact behaviour of composite sandwich panels. In: Proceedings of the European Symposium on Dynamic Fracture Polymer Composite. Sardinia 1993, paper D
    163 Todd A. Anderson. An investigation of SDOF models for large mass impact on sandwich composites. Composites: Part B. 36(2005):135~142
    164 R. Olsson. Mass criterion for wave controlled impact response of composite plates. Composites Part:A. 2000, 31:79~87
    165 S. Abrate. Modeling of impacts on composite structures. Comosite Structures. 2001, 51(2):29~38
    166 T.A. Anderson, E. Madenci, W.S. Burton, J.C. Fish. Analytical solution of finite-geometry panels under transient surface loading. International Journal of Solids Structures. 1998, 35(12):19~39
    167 K.N. Shivakumar, W. Elber, W. Illg. Prediction of impact force and duration due to low-velocity impact on circular composite laminates. J Appl Mech. 1985, 52:74~80
    168 D.R. Ambur, C.B. Prasad, W.A. Waters. A dropped-weight apparatus for low-speed impact testing of composite structures. Exp Mech. 1995, 35:77~82
    169 T.A. Anderson, E. Madenci. Experimental investigation of low-velocity impact characteristics of sandwich composites. Comosite Structures. 2000, 50(3):39~47
    170 F.A. Johnson, Martin Holzapfel. Modelling soft body impact on composite structures. Composite Structures. 2003, 61:103~113
    171 L.J. Lee, K.Y. Huang, Y.J. Fann. Dynamic response of composite sandwich plate impacted by a rigid ball. J Compos Mater. 1993, 27: 38~56
    172 R. Olsson. Engineering method for prediction of impact response and damage in sandwich panels. J Sandwich Struct Mater. 2002, 4:3~29
    173 M.G. Koller. Elastic impact on sandwich plates. Journal of Applied Mathematics and Physics. 1986, 37(2):25~69
    174 Z. Hahin. Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics. 1980, 47:29~34
    175 H.Y. Yeh, C.H. Kim. The Yeh-Stratton criterion for composite materials. Journal of Composite Materials. 1994, 28:26~39
    176 P.J. Hazell , G. Kister, C. Stennett, P. Bourque, G. Cooper. Normal and oblique penetration of woven CFRP laminates by a high velocity steel sphere. Composites Part: A. 2008, 39:866~874
    177 W.J. Cantwell, J. Morton. Impact perforation of carbon fiber reinforced plastic. Composite Science Technology. 1990, 38:19~41
    178 Y. Tanabe, M. Aoki, K. Fujii, H. Kasano, E. Yasuda. Fracture behavior of cfrps impacted by relatively high-velocity steel sphere. International Journal of Impact Engineering. 2003, 28:27~42
    179 Y. Tanabe, M. Aoki. Stress and strain measurements in carbon-related materials impacted by a high-velocity steel sphere. International Journal of Impact Engineering. 2003, 28: 45~59
    180 R.I. Hammond, W.G. Proud, H.T. Goldrein, J.E. Field. High-resolution optical study of the impact of carbon-fibre reinforced polymers with different lay-ups. International Journal of Impact Engineering. 2004, 30:69~86
    181 M.A. Will, T. Franz, G.N. Nurick. The effect of laminate stacking sequence of CFRP filament wound tubes subjected to projectile impact. Comosite Structures. 2002,58:59~70
    182 J. Lopez-Puente, R. Zaera, C. Navarro. The effect of low temperatures on the intermediate and high velocity impact response of CFRP. Compos Part: B. 2002, 33:59~66
    183 P.J. Hazell, G. Kister, P. Bourque, G. Cooper. Normal and oblique penetration of woven CFRP laminates by a high velocity steel sphere. Compos Part: A. 2008, 39:66~74
    184 P.J. Hazell, A. Cowie, G. Kister, C. Stennett, G.A. Cooper. Penetration of a woven CFRP laminate by a high velocity steel sphere impacting at velocities of up to 1875 m/s. International Journal of Impact Engineering. 2009, doi:10.1016/j.ijimpeng.2008.12.001
    185 K. Fujii, M. Aoki, N. Kiuchi, E. Yasuda, Y. Tanabe. Impact perforation of CFRPs using high-velocity steel sphere. International Journal of Impact Engineering. 2002, 27:497~508
    186 M.V. Hosur, U.K. Vaidya, C. Ulven, S. Jeelani. Performance of stitched/unstitched woven carbon/epoxy composites under high velocity impact loading. Comosites Structures. 2004, 64:455~66
    187 F. Larsson. Damage tolerance of a stitched carbon/epoxy laminate. Compos Part: A. 1997, 28(11):23~34
    188 H. Kim, D.A. Welch, K.T. Kedward. Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels. Compos Part: A.2003, 34:25~41
    189 W.J. Cantwell, J. Morton. Comparison of low and high velocity impact response of CFRP. Composites. 1989, 20(6):545~51
    190 W.J. Cantwell, J. Morton. Impact perforation of carbon fibre reinforced plastic. Composite Science Technology. 1990, 38:19~41
    191 J. Lopez-Puente, R. Zaera, C. Navarro. An analytical model for high velocity impacts on thin cfrps woven laminates. International Journal of Solids and Structure. 2007, 44:37~51
    192 J. Lopez-Puente, R. Zaera, C. Navarro. Numerical modelling of high velocity impact on CFRPs at low temperature. In: 14th Dymat Technical Meeting, Sevilla Spain. 2002, p. 121~9
    193 S.R. Reid, H.M. Wen. Impact behaviour of fibre-reinforced composite materials and structures. Cambridge: Woodhead Publication; 2000, Ch Perforation of FRP laminates and sandwich panels subjected to missile impact
    194 J.K. Chen, F.A. Allahdadi, T.C. Carney. High-velocity impact of graphite/epoxy composite laminates. Composite Science Technology. 1997, 57: 69~79
    195 C.Y. Thama, V.B.C. Tanb, H.P. Leea. Ballistic impact of a KEVLAR helmet: Experiment and simulations. International Journal of Impact Engineering. 2008, 35:304~318
    196 M.A.G. Silva, C. Cisma-siu, C.G. Chiorean. Numerical simulation of ballistic impact on composite laminates. International Journal of Impact Engineering. 2005, 31:289~306
    197 J. Lopez-Puente, R. Zaera, C. Navarro. Normal and oblique penetration of woven CFRP laminates by a high velocity steel sphere. Composites Part: A. 2008, 39:866~874
    198都亨,张文祥,庞宝君,刘静.空间碎片.中国宇航出版社, 2007: 89
    199 Christian J. Yungwirth, Haydn N.G. Wadley, John H. O’Connor, Alan J. Zakraysek, Vikram S. Deshpande. Impact response of sandwich plates with a pyramidal lattice core. International Journal of Impact Engineering. 2008, 35:920~936

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700