用户名: 密码: 验证码:
基于FBG传感器对复合材料固化过程和抗冲击性能监测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强复合材料由于其高比强度和比刚度,被广泛应用于各项领域中。但复合材料在使用过程中很容易受到低能量冲击,而且对冲击载荷比较敏感。当冲击速度很高时,复合材料层合板将被穿透;而在冲击速度降低时,会使材料产生不同的破坏形式,例如基体开裂、纤维断裂和分层。大部分复合材料的损伤不是单次冲击造成的,往往是经过多次低能量冲击之后材料失效。复合材料在受到低能冲击时,大部分情况并没有明显的目视可见损伤,但导致在层合板表面会产生不可视的浅表面分层,从而形成潜在的危险,内部损伤的存在可造成复合材料在强度和刚度上的很大损失。因此要高度重视复合材料层合板的低速冲击损伤问题。
     本课题对纤维增强复合材料层合板进行了抗冲击性能研究。详细阐述了复合材料的冲击机理、受冲击后的损伤外貌、断裂损伤特性及断裂过程中的能量吸收。首先采用VARI(Vacuum Assisted Resin Infusion,真空辅助树脂注塑)成型工艺制备纤维增强复合材料层合板,并在制备过程中埋入FBG传感器,对成型过程进行固化监测,分析了固化过程中的温度和应力应变的变化,为成型工艺的改进提供了很好的依据。然后对埋有FBG传感器的复合材料层合板进行冲击性能测试和分析,通过FBG传感器检测到的波长信号变化,对层合板的冲击损伤状况进行判断及作出评估,为复合材料的智能化控制提供更加准确的依据,具有重大的意义。论文对FBG传感器在飞机复合材料健康监测上的应用进行了介绍,飞机复合材料抗冲击性能的好坏将直接关系到飞行人员的安全,因此设计出更加安全的复合材料和对复合材料实时状况的监测显得尤为重要。
Fiber reinforced composites is widely used in various fields because of their high specific strength and specific stiffness. However, the process of composite materials in use are easy to suffer low-energy impact, and also more sensitive to the impact load. When the impact velocity is high, the composite laminate will be broken down; with impact velocity decreases, the damage will generate different forms of material, such as matrix cracking, fiber breakage and delamination. Most of the damage of composite materials is not a single impact, often after repeated low energy impacts before the material failure. The majority of composite materials have no obvious visual damage when suffered low-energy impact, but the laminated surface will generate superficial delaminate. It may create potential dangerous. The presence of internal damage can cause huge losses in strength and stiffness of composite material. So we should attach great importance to low-speed impact damage problems of composite laminates.
     In this paper, the impact resistance of fiber reinforced composite laminates was studied. the impact mechanism of composites, the damage appearance after impact, the breakage damage characteristics and energy absorption during breakage process were expounded in detail. First, by using VARI (Vacuum Assisted Resin Infusion) molding technology, composite laminates were produced. In the process of preparation, FBG sensors were embedded in the composite laminates to curing the temperature and strain changes in the molding process, this provides a good basis for improvement. Then buried FBG sensors laminated composite plates for impact performance testing and analysis, through the wavelength signal changes of the FBG sensor, we can judge and assess the laminate impact damage condition, this provides more accurate basis for composite materials intelligent control, It is of great significance. The paper introduces application of the FBG sensors on aircraft composite health monitoring, impact resistance of aircraft composite materials will directly related to the flight crew's safety, so the safer design of composite materials and real-time monitoring of the situation seems Particularly important.
引文
[1]杨小林,江涛,冯立春.飞机复合材料结构冲击损伤的红外检测[J].NDT无损检测,2009,31(2):120-122.
    [2]沈真,杨胜春.飞机结构用复合材料的力学性能要求[J].材料工程,2007年.增刊1:248-252.
    [3]张铱,穆建春.复合材料层合结构冲击损伤研究进展(Ⅰ)[J].太原理工大学学报,1999,30(6):563-566.
    [4]沈真等.含缺陷复合材料层压板的压缩破坏机理[J].航空学报,1991,12(3):106-113.
    [5]Caprino G. Residual Strength Prediction of Impacted CFRP Laminates[J]. J Compos Mater.1984.18:508-518.
    [6]Peter O, Hartness J T, Cordell T.M. On low-velocity impact testing of composite materials[J].J computers and structures,1988.22:30-52.
    [7]Reed P E, Turner S. Flexed plate impact, Part 7. Low energy and excess energy impacts on carbon fiber-reinforced polymer composites [J]. Composites, 1988;19:193-203.
    [8]Cantwell W J, Morton J. Geometrical effects in the low velocity impact response of CFRP[J].Composite Structure,1989;12:39-59.
    [9]Scarponi C. Impact testing on composites laminates and sandwich panels[J]. J ComposMater,1996;30:1873-1911.
    [10]万里冰,武湛君,张博明等.光纤布拉格光栅监测复合材料固化[J].复合材料学报,2004,3(6):1-5.
    [11]陈宏伟,李炜.Bragg光栅传感器在复合材料加工与检测中的应用[J].纤维复合材料,2009,26(3):26-28.
    [12]于秀娟,余有龙,张敏,廖延彪.光纤光栅传感器在航空航天复合材料/结构健康监测中的应用[J]..激光杂志,2006,27(1):1-3.
    [13]姜德生,何伟.光纤光栅传感器的应用概况[J].光电子,激光2002,13(4):420-430.
    [14]UDD E, CLARK T E, ANA S, et al. Fiber optic grating sensor systems for sensing environmental effects [P]. USP5380995,1995-01-10.
    [15]Tzou H S, Lee H J, Amold S M. Smart materials, precision sensors/actuators, smart structures, and structronic systems[J]..Mechanics of Advanced Materials and Structures,2004,11(4-5):367-393.
    [16]Hyun K K, Dong H K, Chang S H, et al. Monitoring offabrication strain and temperature during composite cure using fiber optic sensor [C].// Newport Beach ed, SPIE 6th annual international symposium on NDE for health moni-toring and diagnostics,2001, California, USA:Proc. SPIE 4336, 2001:304-312.
    [17]Guo Zhansheng. Strain and temperature monitoring of symmetric composite laminate using FBG hybrid sensors [J]. Structural Health Monitoring, 2007(6):191-197. DOI:10.1177/14759217070060030201.
    [18]赵海涛,张博明等.光纤光栅智能复合材料基础问题研究.2007,26(12):27-30.
    [19]闻新,周露,王丹力MATLAB神经网络应用设计[M].北京:科学出版社,2000.
    [20]曾文华.基于双隐层动态递归神经网络的航煤比重软测量[J].仪器仪表学报,2002,23(3):261-26.
    [21]Ramazan G, Tung L. Nonlinear modelling and prediction with feedforward and recurrent networks[J].PHYSIC AD,108(1997):119-134.
    [22]赵山泉.光纤光栅传感技术在大结构监测中的应用进展[J].传感器技术.2004,23(6):5-7.
    [23]Kalaycioglu S, Sliva D. Minimization of vibration of spacecraft appendages during shape Control using smart structures [J]. Journal of Guidance Control and Dynamics,2000.23(3):558-561.
    [24]H.S.Tzou, HJ.Lee, S.M.Arnold. Smart materials, precision sensors/actuators, smart structures, and structronic systems. Mechanics of Advanced Materials and Structures,2004.11(4-5):367-393.
    [25]Tajima N, Sakurai T, Sasajima M, et al. Overview of the Japanese smart materials Demonstrator program and structures system project[J]. Advanced composite Materials,2004,13(1):3-15.
    [26]王艳妮.复合材料FBG传感器的设计理论与工艺研究[D].武汉理工大学硕士学位论文,2008.
    [27]张春丽.分布式光纤Bragg光栅传感信号干涉解调技术的研究[D].燕山大学硕士学位论文,2008.
    [28]刘建霞,冯进玫.光纤光栅传感信号解调方法的研究[J].光纤与电缆及其应用技术,2009,2(2):4-7.
    [29]崔海坡,温卫东,徐颖.复合材料板冲击损伤及剩余拉伸强度试验[J].航空动力学报,2007,22(10):1742-1747.
    [30]孙赛,刘木金,王海等.RTM成型工艺及其派生工艺[J].宇航材料工艺,2010,6:21-23.
    [31]秦伟,吴晓宏,曹茂盛.RTM工艺成型复合材料树脂固化过程残余应变监测研究.航空材料学报.2005,4(8):50-52.
    [32]闫刚,樊晓斌,张笑梅等.RTM成型工艺对复合材料制品性能的影响[J].材料开发与应用.2008,4:27-31.
    [33]张明龙,尹昌平,梁济丰等.复合材料柔性RTM工艺的研究进展[J].材料导报,2007,21(5A):244-246.
    [34]孟季茹,赵磊,梁国正.先进复合材料低成本制造技术的研究进展[J].航空工程与维修,2001(5):15-17.
    [35]段跃新,张宗科,等.BMI树脂化学流变模型及RTM工艺窗口预报研究[J].合材料学报,2001,18(3):31.
    [36]赵晨辉,张广成,张悦周.真空辅助树脂注射成型(VARI)研究进展[J].玻钢/复合材料,2009(1):80-84.
    [37]赵渠森.降低树脂基碳纤维复合材料成本的工程途径[J].高科技纤维与应用,2001,3(9):21-28.
    [38]赵渠森,赵攀峰.真空辅助成型技术(一)[J].高科技纤维与应用,2002,27(3):22-27.
    [39]赵渠森,赵攀峰.真空辅助成型技术(二)[J].高科技纤维与应用,2002,27(4):21-26.39.
    [40]YoungW B.Three-dimensionalnon-isothemralmold filling simulations in resin transfermolding[J].PolymerComposites,1994,15:118-127.
    [41]Francois T.Advanced numerical simulation of liquid composite molding for process analysis and optimization[J].Composites:PartA,2006,37:890-902.
    [42]杨金水.真空导入模塑工艺树脂流动行为研究[D].长沙:国防科技大学硕士学位论文,2007.
    [43]汤佩钊.复合材料及其应用技术[M].重庆:重庆科学出版社1998,3.
    [44]刘芳,杨柳.纤维增强复合材料的冲击拉伸力学性能[J].纤维复合材料.2004,4:41-42.
    [45]董卫卫.玻璃纤维/不饱和聚酯树脂层合板的抗冲击性能研究[D],天津工业大学硕士学位论文,2007.
    [46]Corum J M, Battiste R L, Wrenn M B R. Low-energy impact effecs on candidate Auromotive structural composites [J].Compos Sci.Technol,2003,63:755-769.
    [47]Xiong Y, Poon C. A prediction method for the compressive strength of impact damaged composite laminates [J]. Composite Structures,1995,30(4):357-367.
    [48]Qi B, Herszberg I. An engineering approach for predicting residual strength of carbon/epoxy laminates after impact and hygrothermal cycling [J]. Composite Structures,1999,47(1/4):483-490.
    [49]Gottesman T, Girshovich S, Drukker E, et al. Residual strength of impacted composite:Analysis and test [J]. Journal of Composites Technology&Research, 1994,16(3):244-255.
    [50]Nyman T, Bredberg A. Equivalent damage and residual strength for impact damaged composite structures [J] Journal of Reinforced Plastics and Composites, 2000,19(6):428-448.
    [51]Robin O. Analytical prediction of large mass impact damage in composite laminates[J].Composites,2001,32:1207-1215.
    [52]J. P. Hou, N. Petrinic, C. Ruiz and S. R. Hallett. Prediction of impact damage in composite plates [J]. Compos Science Technol,2000,60:273-281.
    [53]Hosur M V, Murthy C R L, Ramurthy T S. Compression after impact testing of carbon fibre reinforced plastic laminates [J]. J.Comp.Tech.&Res,1999,21:51-64.
    [54]吴晓青,李嘉禄,康庄等.TDE-85环氧树脂固化动力学的DSC和DMA研究[J].固体火箭技术,2007(3):10-14.
    [55]常新龙,何相勇,周家丹等.FBG传感器在复合材料固化监测中的应用[J].传感技术学报.2010,5(5):748-752.
    [56]Roger V. Cure Monitoring Techniques Using Embedded Sensors[R].Defence Science and Technology Organisation(DSTO) Aeronautical and Maritime Research Laboratory, USA. DSTOTN-0110.1997:2-5.
    [57]饶云江,王义平,朱涛.光纤光栅原理及应用[M].北京:科学出版社,2006:251-257.
    [58]何伟,陈宏波,梅家纯.光纤光栅中光弹效应的研究[J].光电子激光,2002,13(9):885-888.
    [59]BODAN P, CARL B. X-33/RLV reusable cryogenic tank VHM using fiber optic distributed sensing technology[D]. Long Beach, California:Proceedings of the IAA/ASME/ASCE/ASC Thirty-ninth Structures,Structural Dynamic, and Materials Conference and Exhibit, AIAA-98-1929,1998.
    [60]HILL O K, MELTZ G. Fiber bragg grating technology fundamentals and overviews [J].Journal of Lightwave Technology,1997,15(8):1263-1276.
    [61]罗靓,沈真,杨胜春等.炭纤维增强树脂基复合材料层合板低速冲击性能实验研究[J].复合材料学报,2008,25(3):20-24.
    [62]Dost E F, Finn S R, Stevens J J, et al. Experimental investigations into composite fuselage impact damage resistance and post-impact compression behavior [C]// 37th International SAMPE Symposium and Exhibition. Co vina,C A, USA:SAMPE,1992:1199-1212.
    [63]Greenhalgh E S,Hiley M J.The assessment of novel materials and processes for the impact tolerant design of stiffened composite aerospace structures [J]. Composites Part A,2003,34(2):151-161.
    [63]魏俊,赵建华.复合材料板受低速冲击时能量吸收的实验研究[J].实验力学,1998,2(13):207-210.
    [64]崔海坡,温卫东.复合材料层合板冲击损伤影响因素分析[J].中国机械工程,2008.
    [65]程起有,童小燕,姚磊江等.复合材料层合板低速冲击响应的有限元分析[J].飞机设计,2008.
    [66]徐颖,温卫东,崔海坡.复合材料层合板低速冲击逐渐累积损伤预测方法[J].材料科学与工程学报,2006.
    [67]沈真,杨胜春,陈普会.复合材料层压板抗冲击行为及表征方法的实验研究
    [J].复合材料学报,2008.
    [68]林智育,许希武.复合材料层板低速冲击后剩余压缩强度[J].复合材料学报,2008.
    [69]杨小林,江涛,冯立春.飞机复合材料结构冲击损伤的红外检测[J].无损检测,2009,31(2):120-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700