用户名: 密码: 验证码:
南二区西储层研究及过渡带未开发区布井方案优选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大庆长垣经过多年开发,油田渐渐进入高含水后期开采阶段,由于储层非均质等因素造成剩余油高度零散分布,预测难度越来越大,剩余可采储量有效开发越来越难,严重影响了油田的可持续开发。本次研究是为进一步开采过渡带未开发区块可动剩余油,深入认识研究区域的构造和储层特征,通过定性与定量地描述构造、储层、流体,为油藏数值模拟以及开发部署提供可靠的地质依据,直观的认识油藏动态规律,为解决高含水后期储层剩余油开发工作提供技术保障。
     本论文以萨南油田南二区西过渡带未开发区块为研究区域背景,以井震联合思想为基础,开展以下研究:①井震联合精细地震解释:在全区进行钻井—测井—地震联合统层,实现点-线-面-空间五次实践、认识,以使得地震解释层位更加可靠。断层解释主要以井上断点为依据,同时联合相干体、方位角属性和倾角属性等多种技术手段逐级识别,保证所识别的断层具有较大的可靠性。②储层重构反演预测:针对研究区域的沉积背景以及砂岩的分布特点,采用基于频率补偿的重构反演,以预测井间砂体的展布规律、接触关系和连通性。③井震联合沉积微相研究:主要以沉积学原理为基础,通过分析岩性及其电响应特征,并对比曲线韵律和旋回性,定量地描述井点沉积微相的特征,同时结合地震反演与地震相成果,完成沉积相研究。④三维地质建模:主要根据地质建模的基本原理,综合地质、地震、测井和动态数据,建立反映地质特征三维变化与分布的数字化模型。⑤水驱数值模拟研究:根据数值模拟的基本原理,通过对地质储量、含水率、产液量、剩余油分布的历史拟合,设计布井方案,并根据各自预测的开发指标及经济原则,选取最优布井方案。
     研究表明:在储层研究上,层位标定精细到单期河道沉积单元,实现了井震结合沉积微相的研究;针对过渡带地区测井资料少,应用三维地震数据对构造、厚度进行约束,并与测井资料、沉积相带图相结合,建立了南二区西部过渡带地质模型;并通过历史拟合得到各项开发参数,通过上述研究确定最优布井方案,从而为解决高含水后期储层剩余油开发工作提供技术手段和理论依据。
Exploited for many years, Daqing oil field has gradually came into the stage of containing more water. Because reservoir anisotropism makes remaining oil distribute highly decentralized, reservoir prediction become more and more difficultly. The study is to exploit available remaining oil, and make a deeper understanding of the character of structures and reservoirs in study area. Through qualitative and quantitative description of structure, reservoir fluids, to provide reliable geological basises to numerical reservoir simulation as well as the development and deployment, also aware reservoir dynamic law intuitively which providing technical support to resolve remaining oil development work in the late high water period.
     The research is carried out in the background of high density seimic data of South Middle East Block of Lamadian filed. Basing on the idea of well and seismic combination, the following studies have been developed:①Precise seismic interpretation of well-seismic combination:in the whole region, with the idea of combination of drilling-logging-seismic, with five practice and recognition of point-line-surface-room, the reliability of the seismic interpretation layers are ensured. The fault interpretation mainly bases on breakpoint in wells, combining with the coherent cube, inclination attributes, azimuth attributes and other technical means, the reliability of fault identification is settled.②Inversion prediction of reservoir reconstruction:basing on the depositional characteristic of study area and sand distribution, the inversion based on the frequency compensation is used. The distribution, contact relationships and connectivity of the sand body between wells are predicted.③Well-seismic combination sedimentary microfacies study:Mainly based on seismic sedimentology principle, by analyzing drilling lithology and electrical response characteristics, contrasting curve rhythm and cyclicity, describing well point microfacies characters quantitatively, combining with seismic inversion and seismic facies achievements at the same time, and finish the sedimentary facies research finally.④Three-dimensional geological modeling:Mainly based on the basic principles of geological modeling, integrated geological, seismic, logging and dynamic data, to establish a digital model of the dimensional changes reflect the geological characteristics and distribution.⑤Drive numerical simulation study: According to the basic principle of numerical simulation, by history matching geological reserves, the moisture content, the amount of fluid production, the remaining oil distribution, design well spacing program, and according to their forecast development indicators and economic principles to select the optimal well spacing program.
     Studies have shown that:In study of reservoir, horizon calibration are fine to single river deposition unit, which realize the study of sedimentary microfacies in well-seismic combination. For the less transition region logging data, the application of three-dimensional seismic data constraints on the structure, thickness, and logging data, sedimentary facies diagram combined to establish the South West of District transition zone geological model; And various development parameters obtained by history matching, appeal study to determine the optimal well spacing program to provide technical means to solve the late high water cut reservoir remaining oil development and theoretical basis.
引文
[1]Aplin, A.C., Larter,S.R., Bigge, M.A.,Macleod, G., et al. Confocal microscopy of fluid inclusions reveals fluid-pressure histories of sediments and an unexpect-ed origin of gas condensate.Geology,2000,28,1047-1050.
    [2]贾爱林.中国储层地质模型20年[J].石油学报,2011,32(01):181.
    [3]裘怿楠,贾爱林.储层地质模型10年[J].石油学报.2000,21(4):101-104.
    [4]Kawamoto Tomohisa, Sato Kozo. Geological modelling of a heterogeneous volcanic reservoir by the petrological method[R]. SPE:59407,2000:1-8
    [5]谢丛姣,刘明生,杨俊红.微构造与油气聚集关系初探[J].断块油气田,2001,8(04):4-7.
    [6]朱红涛,胡小强,张新科等.油层微构造研究及其应用[J].海洋石油,2002,01:30-37.
    [7]Gibbs AD Linked fault families in basin Tableation[J].Jour StructGeol,1990,12(4):105-115.
    [8]李兴国.油层微型构造研究[J].石油知识,1989,4:3-5.
    [9]吕晓光,马福士.对大庆油田储层微型构造的初步认识[J].大庆石油地质与开发,1994,13:2.
    [10]刘全新.储层预测与地震反演[A].俄罗斯地球物理勘探前沿技术文集.北京:石油工业出版社,2000:203-208.
    [11]L kai Mitsuo, Katahira Tadami, Kume Yoichi, et al. Volcanic reservoirs, their characteristics of the development and production[R]. SPE4926,1972:1-16.
    [12]李芳明.地质统计反演之随机地震反演方法[J].石油勘探与开发,2007(08):451-452.
    [13]罗权生,吴永富,陈旋.模型反演技术在浅层储集层研究中的作用[J].新疆石油地质,2000,21(4):331-350.
    [14]王延光.储层地震反演方法以及应用中的关键问题与对策[J].石油物探,2002,41(03):299.
    [15]Chiang, Chao-Sheng. Synthetic seismogram studies of laterally inhomogeneous earth structure.University Microfilms International,1984
    [16]Chopra S,Marfurt KJ. Curvature attribute applications to3Dsurface seismic data[J].The Leading Edge,2007,37:404-414.
    [17]Hoetz H L J G, et al. Seismic horizon attribute mapping for the Annerveen Gasfield, the Netherlands.First Break,1992,10(2):41-51.
    [18]董宁,周小鹰等.叠后地震属性分析在油气田开发中的应用[J].石油物探,2004,43(增刊):73-76.
    [19]陈遵德.储层地震属性优化方法[M].北京:石油工业出版社,1998:200.
    [20]陈遵德,陈富贵.地震数据油气预测中的属性优化方法[J].石油物探,199837(4):32-40.
    [21]Sato Kozo, Wright C A, Ichikawa Makoto. Post-frac analyses indicating multiple fractures created in a volcanic formation[J]. SPE Production&Facilities,1999,14(4):284-91.
    [22]Wats J W. Reservoir Simulation:Past,Present and Future [C]. SPE38441, presented at1997SPE Reservoir Simulation Symposium, Dalas, Texas,8-11, Jun,1997:333-342.
    [23]Costa F, Rodriguez C, Sarzenski D, et al. Using seismic attributes in petrophysical reservoir characterization[J]. America:2007, SPE107935:1-5.
    [24]周贤文,汤达帧,张春书.精细油藏数值模拟研究现状及发展趋势[J].特种油气藏,2008,15(4):1-6.
    [25]韩大匡.关于高含水油田二次开发理念、对策和技术路线的探讨[J],石油勘探与开发,2010,37(5):583-591.
    [26]刘文岭,韩大匡,胡水清,等.高含水油田发展油藏地球物理技术的思考与实践[J].石油学报,2009,30(4):550-559.
    [27]李占东,赵伟,李阳,等.开发地震反演可行性研究及应用——以大庆长垣北部油田为例[J].石油与天然气地质,2011,54(32):797-806.
    [28]王琦,李红梅.开发地震在大庆长垣喇嘛甸油田储层预测中的应用[J].石油与天然气地质,2012,33(3):490-496
    [29]Lang W H. Porosity log calibrations, SPWLA Adhoc calibration committee report[J]. The Log Annalyst,1980,21(2):14-19.
    [30]Hongliu Zeng, Tucker F H, High-frequency sequence stratigraphy from seimic sedimentology:Applied to Miocene, Vermilion Block50, Tiger Shoalarea, offshore Louisiana[J]. AAPG Bulletin,2004,88(2):153-174.
    [31]张绍臣.萨南油田南二区曲流河分流河道砂体建筑结构及剩余油挖潜评价[J].大庆石油学院学报,2009,33(4):27.
    [32]Hart B S,Engler T,Pearson R,et al.3D seismic horizon-based approaches to fracture-swarm sweet spot[J].The Leading Edge,2002,32:53-55.
    [33]Todorov I T. Integration of3C-3D seismic data and well logs for rock property estimation[D]. Albert:University of Calgary,2000:53-80.
    [34]Gan Zer L J. Reservoir simulation using mixed models [C]. SpE37981, presented at1997SPE Reservoir Simulation Symposium, Dalas, Texas, USA.8-11June,1997:435-438.
    [35]李占东.模拟退火随机反演技术在苏德尔特油田贝14工区兴安岭群储层预测中的应用[J].资源与产业,2010,05:129.
    [36]徐浩.喇嘛甸油田气层厚度解释标准研究[D].东北石油大学,2010:7.
    [37]齐林.喇嘛甸油田萨尔图油层构造及储层特征研究[D].东北石油大学,2010:7.
    [38]舒方春.聚驱后泡沫符合驱油技术研究[D].大庆石油学院,2007:2.
    [39]胡永章.大庆长垣南部黑帝庙浅层天然气藏地质特征及有利区带研究[D].成都理工大学,2005:7.
    [40]张辉.喇嘛甸油田北西块断层边部剩余油藏潜力研究[D].浙江大学,2010:11.
    [41]韩文功.用合成地震记录提高地质层位的解释精度[J].石油物探,1993,32(03):21-30.
    [42]王志章,熊琦华,宋杰英.测井资料标准化及应用效果[J].测井技 术,1993,17(06):453-456.
    [43]靳玲,苏桂芝,刘桂兰等.合成地震记录制作的影响因素及对策[J].石油物探,2004,43(03):267-271.
    [44]WALDEN AT, WHITE RE. Esti matingthe statistical bandwidth of a time series[J], Biometrika,1990,77:699-707.
    [45]Henry S. Pitfalls in synthetics [J]. The Leading Edge,2000,19(6):604-606.
    [46]宋建国,李辉,刘垒等.合成地震记录制作中的质量控制方法研究[J].地球物理学进展,2009,24(01):176-182.
    [47]李瑞,侯哲国,李能根.测井-井旁地震道约束反演合成记录[J].测井技术,1997,21(1):46-49
    [48]卢圣祥,李铭华.地震合成记录的制作与层位标定中应注意的几个问题[J].江汉石油科技,2006,16(01):4-9.
    [49]秦晶晶,李德春,程慧慧等.三维地震的精细构造解释方法及应用[J].能源技术与管理,2010,(05):12-14.
    [50]安精文,杨子川,赵疆.精细构造解释在塔河油田开发中的应用[J].新疆石油地质,2004,25(01):84-86.
    [51]李勤英,阎育英,赵爱武.地震资料全三维精细构造解释技术研究[J].断块油气田,2001,8(01):16-19.
    [52]张延章,韩品龙,池永红等.地震相干技术的应用及效果分析[J].中国海上油气地质,2003,17(03):215-217.
    [53]付江娜,田小敏,宋建平.相干数据体技术在浅层复杂断块群精细构造解释中的应用[J].科技资讯,2007,10:253-254.
    [54]夏冰.地震新技术在低级序断层识别中的应用[J].断块油气田,2007,14(02):24-26.
    [55]雷海飞,魏三妹,徐小涛等.精细构造解释在双龙地区的应用[J].断块油气田,2008,15(04):51-53.
    [56]Tebo J M. Use of volume-based3-D seismic attribute analysis to characterize physical property distribution:a case study to delineate reservoir heterogeneity at the Appltion Field, SW Alabama[D]. Moutral:McGill University,2003:22-30.
    [57]Brown A R, Edwards G S, Howard R E. Fault slicing:A new approach to the interpretation of fault detail[J]. Geophysics,1987,52(10):1319-1327.
    [58]刘宪斌,万晓樵,林金逞等.松辽盆地新肇地区G634-63井区三维地震精细构造解释[J].矿物岩石,2003,23(03):109-113.
    [59]李兴国.油层微型构造对油井生产的控制作用[J].石油勘探与开发,1987,2:2-5.
    [60]李兴国.再论油层微型构造对油井生产的控制作用[J].石油技术,1989,3:3-5.
    [61]李娟.基于三维纹理映射的地震数据可视化及立体显示方法的研究[D].南京理工大学,2009:8-11.
    [62]席春艳.三维地震数据断层检测方法研究[D].南京理工大学,2009:6-10.
    [63]KNIPE R J.Fault prediction:methodologies,applications and successes[C]. Advances in Reservoir Technology,1997:189-194.
    [64]Bednar J Bee. Least square dip and coherency attributes[C].68th Annual Internat. Mtg Soc Expl, Geo phys Expanded Abstract,1998.653-655.
    [65]马涛.塔里木盆地速度场的建立及应用[J].石油地球物理勘探,1996,31(3):382-393.
    [66]马海珍,雍学善,杨午阳,等.地震速度场建立与变速成图的种方法[J].石油地球物理勘探,2002,37(1):53-59.
    [67]Keshel M.The use of3D prestack depth imaging to estimate layer velocities and reflector positions[J].Geophysics,1997.62(1):206-210.
    [68]Whitmore N D, Caring J D. Interval velovity estimation using iterative prestack depth migration in the constant angle domain[J].The Leading Edge,1993,12(7):757-762.
    [69]赵政璋等.储层地震预测理论与实践[M].科学出版社,2005,190-192.
    [70]Steve R G. Support vector machines for classification and regression technical report[R]. University of Southampton,1998.
    [71]李占东等.肇源-太平川地区葡萄花油层储层精细预测及成藏条件研究[D].东北石油大学.2009:64.
    [72]Long Y. Grey relational method for discrimination sys-tem factors[J]. Journal of Grey System,1991,(3).
    [73]Chen Q, Sidney S. Seismic att ribute technology for reservoir forecasting and monitoring [J]. The leading Edge,1997,16(5):2202231.
    [74]TissotB.P, Welte D.H. Petroleum Tableation and Occurrence [J], Springer-Verlag,Berlin Heidelberg,New York.1978.
    [75]AlistairRBrown地震属性及其分类[J].严又生译.国外油气勘探,1997,9(4):529-530.
    [76]Hart B S. Validating seismic attribute studies:beyond statistics [J]. The Leading Edge,2002,21(10):1016-1021.
    [77]KenncthA.OrtmnnanadLeseliJ.Wbdo,三维地震相干性模型在特立尼达东部近海地层预测中的成功应用[J].宋焰译.北京:石油工业出版社,1996,1-66.
    [78]高林,杨勤勇.地震属性技术的新进展[J],石油物探,2004,43(增刊):10-16.
    [79]Vapnik V. The nature of statistical learning theory[M]. New York:Springer-Verlag,1995.225-259.
    [80]曹辉.关于地震属性应用的几点认识[J].勘探地球物理进展,2002,25(5):18-22.
    [81]李彬.鄂尔多斯盆地超低渗透储层地质建模研究[D].中国地质大学(北京),2007:99.
    [82]于兴河,李剑峰.碎屑岩系储层地质建模及计算机模拟[M].北京:地质出版社,1999:100.
    [83]陈建阳.储层地质模型在油藏描述中的应用[J].大庆石油地质与开发,2005,24(3):17.
    [84]裘怿楠.储层地质模型[J].石油学报,1991,12(4):55-61.
    [85]王代流.渤海湾盆地孤岛油田储层构型研究[D].中国科学院海洋研究所,2009:45.
    [86]石万忠,陈开远,李梦溪JASON在东濮凹陷H99块储层预测中的应用[J].地质科技情报,2001,20(2):46-50.
    [87]Patchett J G, Coalson E B. The determination of porosity in sandstones and shaly sandstones part onequality control [J]. The Log Analyst,1979,20(6):3-12.
    [88]J.M.Hunt.石油地球化学和地质学[M].胡伯良译.北京:石油工业出版社,1986.165-184.
    [89]张烈辉.油气藏数值模拟基本原理[M].北京,石油工业出版社,2005,202.
    [90]关振良.油藏数值模拟技术现状分析[J].地质科技情报,2000,19(1):74-76.
    [91]于开春.相控条件下剩余油的数值模拟[J].大庆石油学院学报,2004,25(4):27-30.
    [92]许广明.高分辨率层序地层学在油藏数值模拟中的应用[J].石油与天然气地质,1999,20(2):115-119.
    [93]张团峰.利用储层随机模拟提高油藏数值模拟的效果[J].西安石油学院学报,1996,16(3):52-54.
    [94]He meman Z E, Brand C W. Gridding tecniques in reservoir simulation [C].presented at First and Second International Forumon Reservoir Simulation,1989:339-426.
    [95]Forsyth PA.A control volume finite element method for local mesh refinement[C].SPE18415,1989:6-8.
    [96]Abou-Kassem,Jamal H;.Farouq Ali,S.M.;Islam,[M]. Rafig Petroleum Reservoir Simulation-A Basic Approach Gulf Publishing Company2006.
    [97]姜汉桥,谷建伟,陈民锋,等.时变油藏地质模型下剩余油分布的数值模拟研究[J].石油勘探与开发,2005,32(2):9-13.
    [98]Ai-marhoun M I. Application of multi-seismic attributes in estimating reservoir properties[D]. Saudi Arabia:King Fahd University of Petroleum and Mineral,1997:11-20.
    [99]Margaret Armstrong et al.[J].Plurigaussian simulations in geosciences. Springer,2003
    [100]Doveton J H, Bornemann E. Log normalization by trend surface analysis[J]. The log Analyst,1981,22(4):3-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700