用户名: 密码: 验证码:
辽河油田沈67断块薄互层砂岩油藏描述及剩余油分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油田开采时间的增长,世界上各国的油田总体上都已进入高含水、高采出阶段,但对于老油田而言,地下仍含有大量的剩余油,如何准确地描述剩余油的分布和提高油气采收率是当今油田勘探和开发的主要目标。要实现这些目标,就需要科学地进行精细油藏描述、油藏数值模拟、开发方案调整、精细地质模型的建立和剩余油的分布,不仅是油藏描述的主要内容,也是有效地开发油气藏的基础,在整个油气藏的勘探和开发过程中都具有十分重要的意义。
     本文通过对地质背景、钻井、测井、分析化验及地震资料的收集、整理及处理,从单砂体研究入手,综合采用地层学、沉积学、油藏工程、测井地质学等多学科理论和方法,重点研究薄互层储层的精细地层格架、微构造,沉积相、非均质和流动单元,建立密井网条件下储层地质模型,从地质成因和开发成因两个方面分析了薄互层砂岩储层剩余油形成的控制因素和机理。进行油藏数值模拟研究和薄互层砂岩储层剩余油预测的方法研究。定性和定量地描述了剩余油的分布状况,总结了以沈67区块为代表的薄互层砂岩油藏剩余油分布规律。研究结果表明:
     ①对于薄互层砂岩油藏地层对比首要是认识单砂体的组合模式,按不同的组合模式确定对比原则,才能有效进行地层对比和划分,使其更合理、更符合地质规律。
     ②剩余油研究的基础是在密井网条件下建立精细油藏地质模型。对薄互层储层而言,需要建立精细地层格架模型、微构造模型、沉积相微相模型、测井解释模型、非均质模型、储层流动单元模型。
     ③剩余油分布受控于储层微构造、沉积相分布、储层非均质特点、平面上的渗流差异和单元间渗流屏障、注采系统的完善程度。
     ④剩余油开发的前提条件是搞清剩余油的分布规律和有利区域,重点是综合评价剩余油潜力。
     通过论文研究,总结了以沈67断块薄互层储层剩余油预测为目标的油藏地质建模研究方法和技术,为适应薄互层实际开发的需要,在剩余油分布研究中将表征储层特征的静态特征和表征油藏开发变化的动态特征有机结合起来,探索出一套研究油藏剩余油分布的综合预测方法。指出了剩余油富集的有利目标区,为该油田开发措施调整及剩余油挖潜方案提出了具体方向和目标。
With the proceeding of oil production,oilfields of the world have come into high water-cut stage. But for old oilfields, there are still large amounts of remaining oil stored in place. How to characterize the distribution of remaining oil and enhance oil recovery is the main purpose of the current exploration and exploitation activities. Reservoir geologic modeling and distribution of remaining oil, not only the main contents of reservoir description,but also the basis of developing reservoir, plays an important role in the overall exploration and exploitation.
     After collecting and re-processing of the data related with geological background, drilling, logging, lab analysis as well as seismic interpretation, starting from single sandbodies, this paper uses a multi-discipline theories and research methods such as stratigraphy, sedimentology, reservoir engineering, and well logging geology to study the structural framework, mico-structures, sedimentary facies, reservoir heterogeneity and flow units of the thin-interbedded reservoirs. In this way, this paper establishes one reservoir geological model under dense well pattern and analyzes the elements and mechanism that control the remaining oil accumulation in thin-interbedded reservoirs from views of both geological genesis and development influences. Taking Fault block Shen 67 as a case study, this paper studies the way for reservoir numerical simulation and remaining oil prediction methods for thin-interbedded reservoirs in both qualitative and quantitative ways. The main conclusions can be summarized as follows:
     1) The key for thin-interbedded sandstone reservoir correlation is the determination of the single sand body assemblage pattern. The correlation principle is determined after the determination of the assemblage pattern, ensuring a more effective beds correlation, which is more reasonable and close to the in-site geological conditions.
     2) The foundation for remaining oil study is fine geological modeling of the reservoirs under dense well pattern. For thin-interbedded sandstone reservoirs, the process includes the establishment of fine stratigraphical framework model, mico-structures model, sedimentary facies and micro-facies models, logging data interpretation model, reservoir heterogeneous model, as well as reservoir flow unit model.
     3) The elements controlling the distribution of remaining oil include reservoir micro-structures, distribution of semdimentary facies, characteristics of reservoir heterogeneity, horizontal percolation difference, percolation baffle between different units, as well as the effective degree of water injection-production system. 4) The premise for the production of remaining oil is the determination of its distribution law and favorable regions, while the key point is the comprehensive evaluation of remaining oil potential.
     To sum up, this paper takes Fault block Shen 67 as an example and summarizes the methods and techniques to establish geological model for thin-interbedded sandstone reservoirs. During the research, static characters and dynamic features are both taken into account to combine both the static reservoir characteristics and the dynamic reservoir changes in the development stages. Finally, this paper develops a set of comprehensive prediction methods for remaining oil distribution, determines the favorable accumulation areas for remaining oil, thus provides practical direction and targets for further-step development procedures modification and potential-tap of remaining oil reserves in thin-interbedded sandstone reservoirs.
引文
[1]王志章 石占中. 《现代油藏描述》北京:石油工业出版社,2000.
    [2]韩大匡、万仁溥,等.多层砂岩油藏开发模式.北京:石油工业出版社.1999.
    [3]刘丁曾、王启民、李伯虎.大庆多层砂岩油田开发.北京:石油工业出版社.1996.
    [4]谢俊、张金亮等.剩余油描述与预测.北京:石油工业出版社.2003.
    [5]谢鸿才.王场油田潜三段多层砂岩油藏.石油工业出版社,1996.12
    [6]王延杰、张红梅、江晓晖,等,多层系油田开发层系划分和井网井距研究.新疆石油地质,2002.1,V23(1)
    [7]阚利岩、张建英、梁光迅、孙庆春、张景海.薄互层砂岩油藏产量劈分方法探讨.特种油气藏,2002.10,V9
    [8]荣启宏、蒲玉国、李道轩,等.复杂断裂低渗透薄互层纯化油田开发模式.石油勘探与开发,2001.10,V28(15)
    [9]车学林、李翠玲、赵国忠,等.百万节点油藏数值模拟技术应用.大庆石油地质与开发,2002.6,V21(3)
    [10]王启民、郑兴范、林影.非均质多层砂岩油田高含水后期剩余油分布.大庆石油地质与开发,1996.6,V15(2)
    [11]邓新颖、殷旭东.特高含水期剩余油分析方法.断块油气田,2004.9,V11(5)
    [12]芮松霞.地层倾角对深层薄互层油藏脱气生产阶段产量的影响.特种油气藏,2002.6,V9(3)
    [13]于兰兄、韩树柏.确定剩余油分布技术,西安地质学院学报,1997.12,V19(4)
    [14]姜汉桥、谷建伟、陈月明等.剩余油分布规律的精细数值模拟.石油大学学报,1999.5,V23(5)
    [15]师永民.高分辨率砂泥岩薄互层储层综合预测技术.石油地球物理勘探,2000.10,V35(5)
    [16]宋保全、李音、席国兴、韩宏学、彭勃.储层精细描述技术在杏北油田开发调整中的应用.石油学报,2001.1,V22(1)
    [17]王德发、陈建文、李长山.中国陆相储层表征与成藏型式.地学前缘,2000.10,V7(4)
    [18]俞启泰.关于剩余油研究的探讨.石油勘探与开发,1997.4,V24(2)
    [19]芮松霞.地层倾角对深层薄互层油藏脱气生产阶段产量的影响,特种油气藏,2002.6,V9(3)
    [20]巢华庆等,大庆油田持续稳产的开发技术,石油勘探与开发,1997,24(1):
    [21]赵永胜.剩余油分布研究中的几个问题,大庆石油地质与开发,1996.12,V15(4)
    [22]徐文锋、杨丽英、杜振惠.非均质砂岩油藏高含水期剩余油分布规律研究,国外油田工程,2004.1,V20(1)
    [23]李舟波,常明澈.薄互层油储地球物理测井方法的研究和应用,中国科学基金,第2 期,1997.9
    [24]孙波,管永国.薄层测井系列在胜利油区的应用,测井技术,2002,26(3)
    [25]运华云,何长春.薄层评价技术在胜利油田的应用,测井技术,1999,23(6)
    [26]唐洪,罗明高,颜其彬.薄差油层水淹解释研究,西南石油学院学报,2003,25(4)
    [27]李跃,徐果明,施行觉,李光品.薄互层等效各向异性的实验研究,石油地球物理勘探,1995,30(4)
    [28]徐果明,李跃,倪四道,王汉标.薄互层等效横向各向同性的研究,石油地球物理勘探,1996,31(6)
    [29]寇永强.大型压裂技术在特低渗透薄互层油藏的应用,油气地质与采收率,2004.6,11(3)
    [30]杨振周,张应安等.大情字井区裂缝性油藏的压裂优化设计,钻井液与完井液,2003,20(1)
    [31]刘江,李汉川,郎丰吉.含钙薄互层气层解释方法,大庆石油地质与开发,1998,17(4)
    [32]唐湘明,洪晓梅,徐文斌.CA 油田砂泥薄互层稠油油藏开发方式优选,江汉石油学院学报,2003,25
    [33]邵治龙,尹成,黄德济,董林平,张宗命.用多参量法计算薄层和薄互层厚度,石油物探,1997,36(4)
    [34]凌建军,李菊花,范铁军,席锐.水平压裂辅助蒸汽驱开采有夹层稠油薄互层油藏数值模拟研究,江汉石油学院学报,2001,23(2)
    [35]谭延栋.水驱油田剩余油的测井技术.世界石油工业,1995.12(6)
    [36]潘兴国,姜文达.1996.中国水驱油田开发测井.水驱油田开发测井 96 年国际学术讨论会论文集[C].北京:石油工业出版社
    [37]魏斌,郑浚茂. 《高含水油田剩余油分布研究》北京:地质出版社 2002.
    [38]沈平平,宋新民,曹宏. 《现代油藏描述新方法》北京:石油工业出版社 2002.
    [39]陈永生. 《油田非均质对策论》北京:石油工业出版社 2000.
    [40]李伯虎,李洁. 《大庆油田精细地质研究与应用技术》北京:石油工业出版社 2004
    [41]隋军,吕晓光,赵翰卿,等.《大庆油田河流—三角洲相储层研究》北京:石油工业出版社 2000.
    [42]马玉龙,牛仲仁. 《辽河油区勘探与开发》北京:石油工业出版社 1997.
    [43] 张学汝,牛仲仁. 《辽河断陷湖盆碎屑岩开发储层研究》北京:石油工业出版社 1994
    [44] H. H. Haldorson, at al. , Challenges in Reservoir Characterization. AAPG Bull, 1993, 77(4), 541—551
    [45] R.M.Slatt, “Scales of Geological Reservoir Description for Engineering Applications: North Sea Oilfield Example”, SPE(October 1998).
    [46] Chang, M.M., et al.: Evaluation and comparison of residual oil saturation determination techniques, SPEFE, March, 1988, 251~262.
    [47] E. Cousin,at al. ,Field Measurements of Remaining Oil Saturation. SPE20260, 1990
    [48] F. Van Poelgeest, Comparison of Laboratory and Insitu Measurements Waterflood Residual Oil Saturations for the Cormorant Field. SPE19300, 1989
    [49] B.T.Ngwenya,S.C.Elphick,and G.Bshimmield.Reservoir Sensitivity to Water Flooding:An Experimental Study of Seawater Injection in a North Sea Reservoir Analog.AAPG.February 1995,Vol .79 127
    [50] M. J. Blunt,at al. , What Determines Residual Oil Saturation in Three-phase Flow. SPE27816,1994.
    [51] Miall,A. D. The geology of fluvial deposits. Springer-Verlag Berlin Heidelberg ,1996
    [52] Miall, A. D. Architectural elements and bounding surfaces in fluvial deposits: anatomy of the Kayente formation (lower Jurassic), southwest Colorado. Sedimentary Geology. 1988, 55: 233-262
    [53] W J Jr Ebanks. Flow unit concept- in tegrated approcach to reservoir description for engineering projects [J]. AAPG Annual Meeting, AAPG Bulletin, 1987, 71(5)
    [54] Alden J. Jeff Martin.: “Characterization of Petrophysical Flow Unit in Carbonate Reservoir l”, AAPG (November 1996)
    [55] D.X.Davies, “improved prediction of reservoir behavior through intergration of quantitive geological and petrophysical data”, SPE (October 1997)
    [56] F.X.Jian: A Ggenetic approach to the prediction of petrophysical properties, Journal of Petroleum Geology, vol.17,(January 1994)71-88
    [57] Hearn. C.J et.al. Geological factors influencing reservoir performance of the Hartzog Draw Field, Wyoming [J], JPT. 1984, Vol. 36, No. 1
    [58] Q.A.Canas, Ecopetrol.: “Characterization of Flow Unit in Reservoirs: La Cira Field, Columbia, South America”, SPE(March 1994)
    [59] B. P. Grigorievieh ,at al. ,Two Tracer Test Method for Quantification of Residual Oil in Fractured Porous Media,SPE25Z01, 1993
    [60] Silseth J K, et al. Impact of Flow-unit Reservoir Description on simulated water flood performance. SPE Reservoir Engineering, 1993
    [61] Hewett T A. Fractral distribution of reservoir heterogeneity and their influence on fluid transport. SPE 15386. 1986
    [62] Ouenes S and Bhagaran, et.al. Application of Simulated Annealing and Other Global Optimization Methods to Reservoir Description: Myths and Realities. SPE 28415
    [63] Sen M K, et al. Stochastic Reservoir Modeling Using Simulated Annealing and Genetic Algorithms. SPE. Formation Evaluation. March, 1995
    [64] Bourgault G. Using Non—Gaussion Distributions in Geostatistical simulation. Mathematical Geology. 1997, 29:3
    [65] Yarus J M & R L. Chambers (eds.): Stochastic Modeling and Geostatistics---Principles, methods and case study. AAPG Computer Application in Geology. 1994, 3
    [66] Deutsh C V & Journe A G. Geostatistical Software Library and User’s Guide. second edition. Oxford university press, 1996
    [67] Alabert F and Modot V. Sochastic models of reservoir heterogeneities: Impact on connectivity and average permeabilities. SPE 24893.SPE Annual Technical conference and Exhibition, Washing DC, 1992
    [68] Srivastava R M. An Overview of stochastic Methods for Reservoir characterization. in: Yarus &.Chambers(eds.): Stochastic Modeling and Geostatistics---Principles, methods and case study. AAPG Computer Application in Geology. 1994, 3
    [69] Berknout R J, Chessa A G, Martinius A W, et al. A statistical adjustment of Haldrorsen’s conditioned Boolean Simulation Algorithm. Math Geology. 1996, 28(6)
    [70] Olea R A and Paulowsly V. Compensating for Estimation Smothing in Kring. Math Geology. 1996, 28(4)
    [71] Deutsch C and Journe A. The Application of Simulated Annealing To Stochastic Reservoir Modeling. Submitted to J Pet Tech. January 1991
    [72] Kelkar M and Shiblic S. Description of Reservoir properties Using Fractals. in: Yarus &.Chambers(eds.): Stochastic Modeling and Geostatistics---Principles, methods and case study. AAPG Computer Application in Geology. 1994, No3
    [73] Alabert F. The Practice of Fast Conditional Simulations Through The LU Decomposition of The Covariance Matrix. Mathematical Conference, 1987, 19(5)
    [74] Damsleth E, More H and Haldorsen H. A Two-stochastic Model Applied To A North Sea Reservoir. Journal of Petroleum Technology. 1992
    [75] Deutsch C and Cockerham P. Practical Considerations In The Application of Simulated Annealing To Stochastic Simulation. Math Geology, 1994, 26(1) .[76]徐安娜,穆龙新,裘亦楠.我国不同沉积类型储集层中的储量和可动剩余油分布规律[J].石油勘探与开发 1998,25(5)
    [77]韩大匡.深度开发高含水油田提高采收率问题的探讨[J].石油勘探与开发,1995,22(5)
    [78]董冬,陈洁等.河流相储集层中剩余油类型和分布规律[J].油气采收率技术,1999,6(3)
    [80]岳登台.综述老油田改善开发效果及提高采收率技术[J].石油学报,1998,19(3)
    [81]张兴国. 孤东油田沙河街组油藏描述与数值模拟:[博士学位论文]. 北京:中国地质大学(北京),2002
    [82]窦松江. 北大港河流相砂岩油藏精细描述及剩余油分布研究:[博士学位论文]. 北京:中国地质大学(北京),2005
    [83]蔡明俊. 高含水油藏复合驱剩余油分布研究:[博士学位论文]. 北京:中国科学院,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700