用户名: 密码: 验证码:
东风港油田储层地质精细研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油气田勘探和开发程度的不断提高,勘探对象由易于识别的构造油气藏逐渐转变为隐蔽油气藏,特别是勘探程度较高的盆地,隐蔽油气藏已成为重要的勘探开发目标。岩性油气藏是重要的隐蔽油气藏类型,其储量在隐蔽油气藏储量中占有重要地位。本文以典型的岩性隐蔽油气藏—车西洼陷东风港油田主力区块沙三上亚段油藏为例,通过储层地质的精细研究,发现了一批小型沉积扇体滚动勘探目标,为油田增储上产奠定了基础。
     本文是在完成储层精细地质研究所要求的“精雕细刻”的同时,另一个重要内容是,储层精细地质研究所建立的地质模型一定要具有“预测性”。储层精细地质研究的预测性要求主要表现在以下两个方面:一是对于沉积储层展布的预测性,二是对于油气分布的预测性。对于沉积储层的预测,关键的问题是建立适合研究区沉积规律的沉积相模式,分析其控制要素对沉积相形成与演化的控制和影响作用,在此基础上对沉积储层的展布进行预测;对于油气藏中油气分布的预测,是在对沉积相及储层分布预测的基础上,通过储层非均质性研究、储层综合评价以及油气成藏等系统研究,分析油气的分布规律,并用以指导勘探和开发。
     开展精细地层划分对比,建立高分辨率等时地层格架是沉积相和储层研究的主要基础。采用高分辨率层序地层学结合沉积旋回分析,对车西洼陷沙三上亚段和沙二段地层进行了精细划分和对比。沙三上亚段和沙二下亚段总体上是一个三级基准面旋回。沙三段与沙二段的界限,等同于三级基准面旋回内部两个四级基准面旋回界面。沙三上划分为两个四级基准面旋回,沙二下划分为一个四级基准面旋回,这三个四级基准面旋回都是基准面上升旋回,沙二上亚段也划分为一个四级基准面旋回,为基准面下降旋回。沙三上的两个四级基准面旋回包括四个五级基准面旋回,沙二下包括四个五级基准面旋回,沙二上也划分为四个五级基准面旋回,总共识别出了十二个五级基准面旋回。其中,沙三上和沙二下四级基准面旋回内部的五级基准面旋回是以基准面上升旋回和基准面上升与基准面下降复合旋回为主,沙二上内部的五级基准面旋回为典型的基准面下降旋回。
     在高分辨率地层对比的基础上,对砂体以及沉积相在垂向上和平面上的分布特征与演化规律进行了详细研究,研究区在断陷湖盆缓坡带上发育小型浊积扇体,规模小,内部结构简单,分布分散,扇体呈薄层状,垂向上多期扇体与泥岩层交互出现。
     通过大量实际工作,提出了研究区浊积扇沉积的“叠置扇”模式。叠置扇是指同一沉积环境的地层单元内,多期扇体在垂向上相互叠置,依次向前推进或向后退缩,同时多期扇体在平面上时常发生侧向迁移的展布形式。叠置扇相模式主要特征是“垂向叠置,扇上有扇;侧向迁移,扇外有扇”。叠置扇具有三个重要特点:一是多期扇体垂向上相互叠置,不同扇体在侧向上经常迁移;二是单个扇体规模小,内部结构简单;三是在多个方面与Walker的“叠覆扇”模式存在明显的差异。叠置扇模式不是单一相模式,而是一种复合模式。
     “叠置扇”与Walker的“叠覆扇”模式具有明显不同。“垂向叠置”表明在垂向上发育多期扇体叠置,预测在已发现扇体的上方或下方可能存在新的扇体;“侧向迁移”表明在已发现的扇体的两侧,可能会发育新的扇体。
     在分析了构造运动、湖平面变化、沉积物供给等控制沉积相形成与演化要素的基础上,认为“源—坡—洼配置”与“湖平面变化”综合控制了浊积扇的形成与演化。研究浊积扇,需要从“源”入手,在“坡”上追踪搬运路径,“洼”内寻找扇体,“源—坡—洼”之间不同的配置关系导致形成的扇体特征不同,特别是浊积扇沉积时沉积区“洼”的三维形态,直接控制和影响了浊积扇的规模与展布。湖平面变化控制了扇体的发育期次和演化特征。
     受“叠置扇”发育模式和储层非均质性的控制,研究区垂向上油层层多、但单层较薄,平均单层厚度为0.65-2.84m,具有油层分布不均一的特点,油气主要集中在沙三上1、2、3砂层组的中部;平面上发育多个油砂体,单个油砂体面积较小、分布零散,研究区沙三上共发育169个油砂体,7口井以上控制的油砂体只有8个,而2口井以下控制的油砂体有119个;多期油砂体叠合连片发育。
     在开展扇体展布规律、储层非均质性、储层综合评价等研究基础上,根据“叠置扇”垂向叠置特征,分析湖平面变化对扇体叠置的控制作用,寻找“扇上扇”;根据“叠置扇”侧向迁移特征和“源—坡—洼”配置关系,在古地貌低洼之处寻找“扇外扇”;在预测有利扇体的基础上,根据储层综合评价结果,明确有利勘探目标。依据储层地质精细研究成果,在车44区块东部车444井附近的古沟槽内寻找勘探目标,成功完钻车44-51、车44-49等9口井,均钻遇油层;同时进一步侧向迁移向古沟槽的西翼进行钻探,成功完钻井车44-521、车44-520等5口井,均有油层发育。在车40、44块分别向西部、中部和东部进行滚动扩边,其中在西部继承性古地貌低洼处车44-410井区成功完钻4排18口开发井,均发现油气,新增含油面积1.0Km2,新增探明地质储量70万吨。在“古沟槽、今高点”的车17井区成功完钻井车44-60、车44-59、车17-5、车17-7等9口井,均见油层,含油面积向东扩大。在车40区块的中部继承性古地貌低洼处完钻井车40-27-21、车40-29-X21、车40-31-19和车40-31-X21开发井4口,同样均钻遇油层。
     实践证明,叠置扇模式及其控制要素“源—坡—洼配置”与湖平面变化综合分析方法在研究区滚动勘探中发挥出重要作用,在实际应用中取得明显成效。
With the continuous development of oil exploration and exploitation, subtle reservoirs, especially in basins with high degrees of exploration, have gradually become the significant prospecting targets instead of structural reservoirs that are easy to be identified. Turbidite subtle reservoir, whose reserves play an important role in subtle reservoir reserves, is one of the significant subtle reservoir types. Take a typical turbidite reservoir in the major blocks of Dongfenggang Oilfield as an example, this paper focuses on the detailed research on reservoir geology and finds a number of fans as the next prospecting targets.
     In accordance with its requirements, reservoir fine geologic research, must be carried out with“great care”, in addition, the geological model established by fine geologic research must be“predictable.”The requirements for predictability mainly include the following two aspects: one is the prediction of sedimentation and reservoir, and the other is the forecast of hosting gas.
     The prediction of sedimentation and reservoir lies in building a suitable sedimentary facies model of the studied area and analyzing its controlling factors’influences on the formation and evolution of sedimentary facies, while on the basis of the above work, the forecast of oil and gas bearing in the reservoir is to analyze the distribution regularity of oil and gas through reservoir heterogeneity research, providing guidance for oil exploration and exploitation.
     The detailed stratigraphic division and comparison as well as the establishment of high-resolution isochronous stratigraphic framework are one of the foundations and key factors in oilfield exploration and exploitation. High-resolution sequence stratigraphy combined with sedimentary cycle analysis is used to perform fine correlation and division of Sha-3 upper sub-member and Sha-2 member.
     On the whole, Sha-3 upper sub-member and Sha-2 member constitute a three basal level cycle. The boundary of Sha-3 member and Sha-2 member are equal to two four basal level cycle boundaries inside the three basal level cycle. There are two four basal level cycles in Sha-3 upper sub-member and one in Sha-2 lower member, all of the three cycles are ascending ones, meanwhile in Sha-2 upper member, the only cycle is a descending one. In total, 12 five basal level cycles are identified, among which 4 are in Sha-3 upper sub-member, 4 are in Sha-2 lower member and 4 are in Sha-2 upper member. The five basal level cycles in both Sha-3 upper sub-member and Sha-2 lower member are mainly characterized by ascending cycles as well as compounding cycles formed by ascending and descending ones, whereas in Sha-2 upper member, they are typical descending cycles.
     Following the correlation, a detailed research on the characteristics of distribution and evolution of sand bodies and sedimentary facies both in vertical and planar direction has shown that, a turbidite fan with a small scale and simple inner structure is developed on the gentle slope of fault trough lake basin in this area. It scatters randomly with a shape of thin layer and in vertical direction, multi-stage fan bodies and mud layers appear mutually.
     A“superimposed fan”model of turbidite fan deposition in the studied area is put forward in this paper through lots of practice. Superimposed fan refers to a distribution pattern of fan bodies, through which different-phase fan bodies superimpose on each other in vertical direction, and fan bodies take turns to move forward or backward, while fan bodies move far away from the center on the horizontal level. Superimposed fan model is featured by“fan bodies superimpose vertically, overlaying on each other; fan bodies move laterally, standing side by side”with the following three important characteristics: firstly, multi-stage fan bodies superimpose on each other in vertical direction, and different fan bodies may move away in the lateral direction; secondly, individual fan body in superimposed fan bodies is very small with simple internal structure; thirdly, superimposed fan model differs distinctively from Walker’s“suprafan”model. Superimposed fan model is not a single-phase model but a complex one.
     The reservoir prediction direction of superimposed fan model is obviously different from that of Walker’s“suprafan”.“Vertical superimposition”is in the forecast of multi-stage fan bodies overlaying in the vertical direction, and“lateral movement”indicates that new fan bodies may appear on the two sides of individual fan bodies on the plane. Adhering to“superimposed fan”model, multi-phase fan bodies superimposition may be found on the upper or lower parts of the fan bodies which have been discovered, and new fan bodies may also be found on the two sides of the fan bodies which have been discovered.
     On the basis of analyzing the factors intriguing the formation and evolution of sedimentary facies, such as tectonic movement, lake level changes, sediment supply, it is concluded that“source -slope– depression”collocation and“lake level changes”both dominate the formation and evolution of turbidite fan. Concerning the study of turbidite fan,we first need to center on the“source”, then trace the transportation path along the“slope”and look for the fan bodies in the“depression”. Various“source - slope– depression”arrangements may lead to fan bodies with different characteristics. In particular, the paleogeomorphology of deposition zone caused by the deposition of turbidite fan directly controls and influences the scale and distribution of turbidite fan. The lake level change in the vertical direction controls the developmental phases and evolution features of fan bodies.
     Dominating by the“superimposed fan”model and reservoir heterogeneity, the oil and water distribution in studied area in the vertical direction is characterized by thin oil layer with an average thickness of 0.65-2.84m, multi oil layers and uneven distribution mainly focusing on the middle part of 1, 2 and 3 sand bed sets in the upper Sha 3, meanwhile, on the plane, single oil sand body has a small area, and scatters randomly, there are 169 sand bodies in total, among which, only 8 are controlled by more than seven wells and 119 by less than two wells. While, multi-stage oil sand bodies grow congruently in a large scale.
     Through researching on fan distribution regularity, reservoir heterogeneity and reservoir comprehensive evaluation, on one hand, fans overlaying on each other become the prospecting targets by analyzing the control of lake level changes on fan superimposition referring to its vertical characteristics; meanwhile,on the other hand,“lateral movement”and“source-slope-depression arrangements”provide guidance for finding fans developed in the paleogeomorphic low part on the two sides of individual fan bodies. Finally, favorable targets are confirmed by predicting favorable fans according to the results of reservoir comprehensive evaluation.
     Referring to the results of detailed research on reservoir geology, continue eastwardly drilling in the ancient groove occurred around Che 444 hole in the east of 44 block. Nine wells including Che 44-51, Che 44-49 and so on are all successfully completed with oil. Meanwhile, continue drilling in the west of the ancient groove, five holes including Che 44-521, Che 44-520 hole and so on are also successfully completed with oil. Expanding reserves exploitation in Che 40 and 44 blocks, successfully completed 18 holes in Che 44-410 well field of the west inherited ancient groove and all find hydrocarbon, new oil area is 1.0Km2, new reserves are 700000 t. In Che 17 well field of the east ancient groove which is high now, nine holes are successfully completed with oil, including Che 44-60 hole and so on, oil area expand eastwardly. In the middle of Che 40 block, four holes is complete in inherited ancient groove, including Che 40-27-21 hole and so on, and also all penetrate oil layers.
     The results show that, superimposed fan model with its controlling factor-the“source-slope-depression arrangements”as well as the synthetic analysis of lake level changes have played an important role in this area and also received good results in practice.
引文
[1]刘宝珺,谢俊,张金亮.我国剩余油技术研究现状与进展[J].西北地质,2004,37(4):1-6.
    [2]吴诗勇,李自安.精细地质研究现状及发展趋势[J].地球科学与环境学报,2006,28(2):58-64.
    [3]吕晓光,李长山,蔡希源,等.松辽大型浅水湖盆三角洲沉积特征及前缘相储层结构模型[J].沉积学报,1999,17(4):572-577.
    [4]赵翰卿,付志国,吕晓光,等.大型河流-三角洲沉积储层精细描述方法[J].石油学报,2000,21(4):109-113.
    [5]王瑞平,柳强.复杂断块油田精细油藏描述[J].石油学报,2000,21(6):111-116.
    [6]张善文,杨凤丽,李文涛,等.几种类型油气藏的描述方法及应用—以济阳坳陷为例[J].石油地球物理勘探,2000,35(40):419-427.
    [7]金平信.隐蔽油藏描述技术在渤南油田滚动开发中的应用[J].新疆石油天然气,2006,2(2):49-55.
    [8]甘利灯,陈军,殷积峰,等.薄层浊积岩储层地震描述方法[J].西北大学学报,2000,30(2):163-167.
    [9]Dorrik, A.V., Stow, M.M. Deep-water Sedimentary Systems: New Models for the 21st Century[J]. Marine and Petroleum Geology. 2000, 17:125-135.
    [10]孙枢,李继亮.我国浊流与其它重力流沉积研究进展概况和发展方向问题刍议[J].沉积学报,1984,2(4):1-7.
    [11]李继亮,陈昌明,高文学等.我国几个地区浊积岩系的特征[J].地质科学,1978,8(1):26-44.
    [12]孙永传,郑浚茂,王德发,李蕙生.湖盆水下冲积扇—一个找油的新领域[J].科学通报,1980,(17):799-801.
    [13]高振中,段太忠.重力流与等深流沉积[M].见:冯增昭,王英华,刘焕杰,沙庆安,王德发等著,中国沉积学.北京:石油工业出版社,1994,593-622.
    [14]赖婉琦,顾家裕.渤海湾含油气盆地中的浊积岩[J].沉积学报,1980,(17):799-801.
    [15]赵澄林,刘孟慧.湖底扇相模式及其在油气预测中的应用[J].华东石油学院学报,1984,8(4):323-334.
    [16]何起祥,刘招君,王东坡等.湖泊相浊积岩的主要特征及其地质意义[J].沉积学报,1984,2(4):33-46.
    [17]Mutti, E. Turbidite Systems and Their Relations to Deposition Sequences[M]. In: Zuffa, G.G., (Eds.), Provenance of Arenites: Dordrecht, D. Riedel Publishing Company. 1985:65-93.
    [18]Shanmugam,G., & Moiola, R.J. Submarine Fan Models: Problems and Solutions[M]. In: A. H. Bouma, W. R. Normark, & N. E. Barnes, (Eds.), Submarine Fans and Related Turbidite Systems. New York: Springer-Verlag 1985:29-34.
    [19]Shanmugam, G., &Moiola, R. J. Submarine Fans: Characteristics, Models, Classification, and Reservoir Potential. Earth-Science Reviews[J], 1988,24:383-428.
    [20] Normark, W.R. Turbidite Elements and the Obsolescence of the Suprafan Concept[J]. Giornale di Geologia, ser 3a, 1991, 53(2):1-10.
    [21] Walker, R. G. Turbidites and Submarine Fans[M]. In: R. G. Walker, & N. P. James, (Eds.), Facies Models: Response to Sea Level Change. Geological Association of Canada, 1992:239-263.
    [22] Reading, H. G., & Richards, M. Turbidite Systems in Deep-water Basin Margins Classified by Grain Size and FeederSystem[J]. AAPG Bulletin, 1994, 78: 792-822.
    [23]Bouma,A. H. Coarse-grained and Fine-grained Turbidite Systems as end Member Models: Applicability and Dangers[J]. Marine and Petroleum Geology, 2000,17:137–143.
    [24]Stow, D. A. V. Deep-sea Clastics: Where are We and Where are We Going? [M]. In: P. J. Brenchly, & P. J. Williams, (Eds.), Sedimentology: Recent Developments and Applied Aspects. Oxford: Geological Society by Blackwell Scientific Publications. 1985:67-94.
    [25]Reading, H. G. The Classification of Deep-Sea Depositional Systems by Sediment Calibre and Feeder System[J]. Journal of the Geological Society,1991,148:427-430.
    [26]Richards, M., Bowman, M., & Reading, H. G. Submarine-fan Systems I: Characterization and Stratigraphic Prediction[J]. Marine and Petroleum Geology, 1998, 15:689-717.
    [27]Hurst, J.M., McKerrow, W.S., Soper, N.J., et al. The Relationship Between Caledonian Nappe Tectonics and Silurian Turbidite Deposition in North Greenland[J]. Journal of the Geological Society, 1983, 140:123-131.
    [28]Bruhn, C. H.L., & Walker, R.G. High-resolution Stratigraphy and Sedimentary Evolution of Coarse-grained Canyon-filiing Turbidites from the Upper CretaceousTransgressive Megasequence, Campos Basin, Offshore Brazil[J]. Journal of Sedimentary Research, 1995, 65(4):426-442.
    [29]Piper, D.J.W., & Normark, W.R. Sandy Fans: From Amazon to Hueneme and Beyond[J]. American Association of Petroleum Geologists Bulletin, 2001,85:1407–1438.
    [30]Covault, J.A., & Normark,W.R. Highstand Fans in the California Borderland: The Overlooked Deep-water Depositional Systems[J]. Geological Society of America , 2007, 35(9):783-786.
    [31]Pickering, K.T., & Corregidor, J. Mass-transport Complexes and Tectonic Control on Basin-floor Submarine Fans, Middle Eocene, South Spanish Pyrenees[J]. Journal of Sedimentary Research, 2005,75:761-783.
    [32]Ross, W.C., Halliwell, B.A., May, J.A., et al. Slope Readjustment: A New Model for the Development of Submarine Fans and Aprons[J]. Geology, 1994,22: 511-514.
    [33]Link, M.H., & Nilsen, T. H. The Rocks Sandstones, an Eocene sand-rich deep-sea fan deposit, north Santa Lucia Range, California[J]. Journal of Sedimentary Research, 1980,50(2):583-602.
    [34]Plink-Bjorklund, P., Mellere, D., & Stell, R. J. Turbidite Variability and Architecture of Sand-prone, Deep-water Slopes: Eocene Clinoforms in the Central Basin, Spitsbergen[J]. Journal of Sedimentary Research,2001,71(6):895-912.
    [35] Plink-Bjorklund, P., & Stell, R. J. Sea-level Fall Below the Shelf Edge, Without Basin-floor Fans[J]. Geological Society of America, 2002, 30(2):115-118.
    [36]Kneller, B., & McCaffrey, W. Depositional Effects of Flow Non-uniformity and Stratification Within Turbidity Currents Approaching A Bounding Slope: Deflection, Reflection, and Facies Variation[J]. Journal of Sedimentary Research, 1999, 69:980-991.
    [37]Takano, O., Tateishi, M., & Endo, M. Tectonic Controls of A Backarc Trough-fill Turbidite System: The Pliocene Tamugigawa Formation in the Niigata-Shin’etsu Inverted Rift Basin, Northern Fossa Magna, Central Japan[J]. Sedimentary Geology, 2005, 176:247-279.
    [38]Sinclair, H.D., & Tomasso, M. Depositional Evolution on Confined Turbidite Basins[J]. Journal of Sedimentary Research,2002,72(4):451-456.
    [39]Grecula,M., Flint, S., Potts, G., et al. Partial Ponding of Turbidites Systems in A Basin With Subtle Growth-fold Topography: Laingsburg-Karoo, South Africa[J]. Journal ofSedimentary Research, 2003,73(4):603-620.
    [40] Mallarino, G., Beaubouef, R.T., Droxler, A.W., et al. Sea Level Influence on the Nature and Timing of A Minibasin Sedimentary Fill (Northwestern Slope of the Gulf of Mexico) [J]. AAPG Bulletin, 2006, 90(7):1089-1119.
    [41]Yose, L. A., & Heller, P. L. Sea-level Control of Mixed-carbonate-siliciclastic, Gravity-flow Deposition: Lower Part of the Keeler Canyon Formation (Pennsylvanian), Southeastern California[J]. Geological Society of America Bulletin, 1989, 101:427-439.
    [42]Mitchum, R.M. Jr. Seismic Stratigraphic Expression of Submarine Fans[M]. In: Berg, O.R., and Wolverton, D.G. (Eds.), Seismic Stratigraphy II: American Association of Petroleum Geologists Memoir 39, 1985:117-138.
    [438]Posamentier, H.W., Jervey, M.T., & Vail, P.R. Eustatic Controls on Clastic Deposition I—Conceptual Framework[M]. In: Wilgus, C.K., Hastings, B.S., Kendall, C.G.S.C., Posamentier, H.W., Ross, C.A., Van Wagoner, J.C. (Eds.), Sea-level Changes: An Integrated Approach. Spec. Publ. Soc. Econ. Paleontol. Mineral. 42, 1988:109-124.
    [44]Posamentier, H.W., Erskine, R.D., & Mitchum, Jr., R.M. Models for Submarine-fan Deposition Within A Sequence-stratigraphic Framework[M]. In: Weimer, P., Link, M.H. (Eds.), Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems. New York, Springer, 1991:127-136.
    [45]Vail, P. R. Seismic Stratigraphy Interpretation Procedure[M]. In: Bally, A.W. (Eds.), Atlas of Seismic Stratigraphy. AAPG Studies in Geology, 1987, 27(1):1-10.
    [46]Vail, P. R., Mitchum Jr., R.M., Thompson III, S. Seismic Stratigraphy and Global Changes of Sea Level: Part 2. The Depositional Sequences as A Basic Unit for Stratigraphic Analysis[M]. In: Payton, C.E. (Eds.), Seismic Stratigraphy—Applications to Hydrocarbon Exploration. Mem. Am. Assoc. Pet. Geol. 26, 1977:63– 81.
    [47]Stow, D. A .V., Howell, D. G., & Nelson, D. H. Sedimentary, Tectonic, and Sea Level Controls on Submarine Fan and Slope-apron Turbidite Systems[J]. Geo-Marine Letters, 1984, 3:57–64.
    [48]Weimer, P. Sequence Stratigraphy Facies Geometrics, and Depositional History of the Mississippi Fan, Gulf of Mexico[J]: American Association of Petroleum Geologists Bulletin, 1990, 74:425–453.
    [49]Vail, P. R., Audemard, F., Bowman, S. A., et al. The Stratigraphic Signatures of Tectonics, Eustasy and Sedimentation—An Overview[M]. In: Einsele, G., Ricken, W.,and Seilacher, A. (Eds.), Cyclic Stratigraphy II: New York, Springer-Verlag, 1991: 617–659.
    [50]Picking, K.T., Souter, C., Oba, T., et al. Glacio-eustatic Control on Deep-marine Clastic Forearc Sedimentation Pliocene—Mid-Pleistocene(c.1180-600ka)Kazusa Group, SE Japan[J]. Journal of the Geological Society, 1999, 156:125-136.
    [51]Prins, M.A., Postma, G. Effects of Climate, Sea Level, and Tectonics Unraveled for Last Deglaciation Turbidite Records of the Arabian Sea[J]. Geology, 2000,28(4):375-378.
    [52]Gorsline, D.S., & Emery, K.O. Turbidity-current Deposits in San Pedro and Santa Monica Basins off Southern California[J]. Geological Society of America Buttetin, 1959,70:279-290.
    [53]Chan, M.A., & Dott, R.H. Jr. Shelf and Deep-sea Sedimentation in Eocene Foreare Basin, Western Oregon—Fan or Non-fan? [J]. Buttetin of the American Association of Petroleum Geologists, 1983, 67:2100-2116.
    [54]Heller, P.L., & Dickinson, W.R. Submarine Ramp Facies Model for Delta-fed, Sand-rich Turbidites Systems[J]. Bulletin of the American Association of Petroleum Geologists, 1985, 69:960-976.
    [55]Weber, M.E., Wiedicke, M.H., Kudrass, H.R., et al. Active Growth of the Bengal Fan During Sea-level Rise and Highstand[J]. Geology, 1997, 25(4):315-318.
    [56]Droz, L., Marsset, T., Ondreas, H., et al., Architecture of An Active Mud-rich Turbidite System: The Zaire Fan(Congo-Angola Margin Southeast Atlantic): Results from ZaiAngo 1 and 2 Cruises[J]. AAPG Bulletin, 2003, 87(7):1145-1168.
    [57]Kolla, V., and Perlmutter, M. A. Timing of Turbidite Sedimentation on the Mississippi Fan[J]. American Association of Petroleum Geologists Bulletin, 1993, 77:1129–1141.
    [58]Piper, D. J.W., and Normark,W. R. Turbidite Depositional Patterns and Flow Characteristics, Navy Submarine Fan, California Borderland[J]. Sedimentology, 1983, 30:681–691.
    [59]Flood, R. C., Manley, P. L., Kowsmann, R. O., et al. Seismic Facies and Late Quaternary Growth of the Amazon Submarine Fan[M]. In: Weimer, P., and Links, M. H., (Eds.), Seismic Facies and Sedimentary Processes of Modern and Ancient Submarine Fans and Turbidite Systems. New York, Springer-Verlag, 1991:247–272.
    [60]Mattern, F. Lithostratigraphie und Fazies des Reiselsberger Sandsteins: Sandreiche, Submarine Facher (Cenomanium–Turonium, Westlicher Rhenodanubischer Flysch Ostalpen) [J]. Berl. Geowiss. Abh., 1998, Reihe A 198:1-137.
    [61]Satur, N., Hurst, A., Cronin, B.T., et al. Sand Body Geometry in A Sand-rich, Deep-water Clastic System, Miocene Cingfz Formation of Southern Turkey[J]. Mar. Pet. Geol. 2000, 17:239–252.
    [62]Bruhn, C.H.L., & Walker, R.G. High-resolution Stratigraphy and Sedimentary Evolution of Coarse-grained Canyon-filiing Turbidites from the Upper Cretaceous Transgressive Megasequence, Campos Basin, Offshore Brazil[J]. Journal of Sedimentary Research, 1995, 65(4):426-442.
    [63]Burgess, P.M., & Hovius, N. Rates of Delta Progradation During Highstands: Consequences for Timing of Deposition in Deep-marine Systems[J]. Journal of the Geological Society, 1998, 155:217-222.
    [64]Carvajal, C. R., & Stell, R. J. Thick Turbidite Successions from Supply-dominated Shelves during Sea-level Highstand[J]. Geology, 2006, 34(8):665-668.
    [65] Scholz, C.A., & Rosendahl, B.R. Coarse-clastic Facies and Stratigraphic Sequence Models From Lakes Malawi and Tanganyika, East Africa[M]. In: Katz, B.J., (Ed.), Lacustrine Basin Exploration: Case Studies and Modern Analogs: American Association of Petroleum Geologists, Memoir 50, 1990:151–168.
    [66]Nelson, C. H., Karabanov, E. B., & Colman, S.M, et al. Tectonic and Sediment Supply Control of Deep Rift Lake Turbidite Systems: Lake Baikal, Russia. Geology, 1999, 27(2):163-166.
    [67]郑和荣,孔凡仙,潘元林,等.“构造坡折带”-断陷盆地层序分析和油气预测的重要概念[J].地球科学—中国地质大学学报, 2000, 25(3):260-264.
    [68]张善文.济阳坳陷第三系隐蔽油气藏勘探理论与实践[J].石油与天然气地质, 2006, 27(6):731-740.
    [69]袁向春,钟建华,高喜龙,等.埕岛东斜坡水下扇沉积特征[J].石油与天然气地质, 2003, 24(2):146-151.
    [70]李淳.单家寺油田湖相斜坡扇沉积特征[J].石油大学学报(自然科学版), 1999, 23(2):11-14.
    [71]延新,吴崇筠.辽河盆地大湾河油层湖底扇沉积特征[J].沉积学报, 1985, 3(4):83-94.
    [72]赵汉清.黄骅坳陷三段重力流沉积[J].西南石油学院学报, 1988, 10(1):97-106.
    [73]蔺毓秀.松辽盆地北部姚家组水进三角洲沉积和嫩一段浊流沉积[J].沉积学报, 1986, 4(2):101-110.
    [74]张善文,隋风贵,王永诗.济阳坳陷下第三系陡岸沉积模式[J].沉积学报, 2001,19(2):219-223.
    [75]饶孟余,钟建华,郭泽清等.济阳坳陷牛庄洼陷沙三段三角洲前缘浊积岩特征[J].高校地质学报, 2004, 10(4):624-633.
    [76]鲜本忠,王永诗,周延全,等.断陷湖盆陡坡带砂砾岩体分布规律及控制因素—以渤海湾盆地济阳坳陷车镇凹陷为例[J].石油勘探与开发, 2007, 34(4): 429-436..
    [77]庞雄,陈长民,朱明,等.深水沉积研究前缘问题[J].地质论评, 2007, 53(1): 36-43.
    [78]杨少春.储层非均质性定量研究的新方法[J].石油大学学报(自然科学版), 2000,24(1):53-56.
    [78]林承焰.剩余油形成与分布[M].东营:石油大学出版社, 2000:57-76.
    [80]林承焰,谭丽娟,于翠玲.论油气分布的不均一性(Ⅰ)—非均质控油理论的由来[J].岩性油气藏,2007,19(2):16-21.
    [81]林承焰,谭丽娟,于翠玲.论油气分布的不均一性(Ⅱ)—非均质控油理论探讨[J].岩性油气藏,2007,19(3):14-22.
    [82]曾溅辉,张善文,邱楠生,等.东营凹陷岩性圈闭油气充满度及其主控因素[J].石油与天然气地质,2003, 24(3):219-222.
    [83]裘怿楠,陈子琪.油藏描述[M].北京:石油工业出版社,1996:152-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700