用户名: 密码: 验证码:
钎焊界面结构形态及对其接头剪切行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子产品向便携式、高可靠性及无铅环保方向发展,电子封装及其钎焊接头的可靠性也面临着前所未有的挑战。剪应力作用下的钎焊凸点力学性能问题已经成为电子器件电路失效的重要原因。其中,钎焊界面金属间化合物(IMC,通常是Cu6Sn5)的结构形态是钎焊接头质量的关键因素。焊点尺寸的减小和Sn基钎料的应用,在增加界面IMC层比例的同时,也凸显了钎料/IMC界面本征行为的不连续性。在实际服役过程中,界面IMC层的演变是复杂的,晶粒会发生粗化,钎料/IMC界面由钎焊状态下的波浪起伏变得更加平直,IMC层内及层间的缺陷数量也会相应增加。尤其是Cu6Sn5在服役过程中会发生晶体结构转变,转变前后的体积膨胀有可能在界面处形成应力从而恶化接头的力学可靠性。然而到目前为止,界面Cu6Sn5结构转变的基本规律还不清楚,界面形态和缺陷的研究还不够全面,界面IMC层在接头剪切变形和断裂过程中的作用机理尚不十分明确。因此,研究界面结构形态演变及对其接头剪切行为的影响,对高密度封装无铅互联技术的发展是非常有意义的。
     本文以Sn-0.7Cu/Cu接头为研究对象,通过添加少量的Ni来改变界面结构,分别研究Cn-Sn界面IMC晶体结构及形态(包括界面厚度、晶粒大小、界面粗糙度、界面缺陷)随时效时间和温度的演变规律;同时采用“三明治”结构钎焊接头,辅以剪切应变速率和温度的变化,探讨界面演变与剪切行为的相关性。主要结论如下:
     (1)利用XRD研究了Sn-0.7Cu/Cu界面Cu6Sn5的固态结构转变。结果表明:钎焊后空冷的接头经等温时效后,界面η'-Cu6Sn5的时间-温度-形成曲线呈“C”状,时效温度在135-150℃左右时η'相形成所需时间最少,约为3h。当钎焊时的冷却速率降低时,η'相的形成速度减慢。研究同时表明Ni的加入显著抑制了η'相的形成。
     (2)观察界面IMC的形貌发现,时效后的钎焊接头中界面Cu6Sn5三叉晶界处有圆形孔洞存在。孔洞数量在钎焊后空冷的Sn-0.7Cu/Cu中最多,在钎焊后炉冷及含Ni的接头中较少。主要原因是:钎焊时助焊剂等造成的气泡易吸附在界面IMC晶界处,从而在时效过程中抑制了Cu6Sn5生长;降低钎焊接头凝固的冷却速率时,气泡有充分的时间逸出:添加少量的Ni后,提高了界面Cu6Sn5晶粒的长径比并加快了其在钎焊过程中的生长,不利于气泡的吸附。
     (3)研究Cu-Sn界面化合物厚度、形貌、钎料/IMC界面粗糙度等形态演变发现,IMC厚度、晶粒直径随时效时间延长、时效温度升高、冷却速率降低而不断增加。添加少量的Ni以后,Cu3Sn生长受到显著抑制,钎焊及高温时效条件下的Cu6Sn5晶粒得以细化。
     (4)钎焊接头剪切强度及断裂机制的研究结果表明:在钎焊、低应变速率、高剪切实验温度条件下,因钎料/IMC界面力学性能失配,裂纹易在界面IMC附近的钎料基体中形成并扩展,发生韧性断裂,接头剪切强度由钎料基体控制;试样经时效后,界面IMC厚度和晶粒直径的增加降低了IMC自身的断裂韧性,接头倾向于沿界面IMC发生脆性断裂,剪切强度较相同条件下钎料基体强度降低。界面的影响机制为:界面IMC厚度和晶粒大小仅影响断裂类型;界面Cu6Sn5中的缺陷及高弹性模量的界面IMC都会促进脆断的发生;界面Cu6Sn5的固态结构转变和钎料/IMC界面粗糙度影响很小。
     (5)剪切测试参数对接头剪切行为的影响体现在:随着剪切实验温度由室温降低到-40℃,钎料与IMC之间的弹性模量差值减小,钎料/IMC界面力学失配得到改善,接头更倾向于表现为钎料基体的行为;随着应变速率的提高,钎料与IMC之间的弹性模量差值增加,界面失配严重,倾向于表现为界面IMC的脆断。
With the development of portable, reliable and lead-free electronic products, there are great challenges for the reliabilities of electronic packaging and solder interconnects. The mechanical failure under shear stress of solder bump has become one main reason for the open circuit of electronic devices. The evolution of interfacial intermetallic compound (IMC), mainly Cu6Sn5 in soldering with Cu substrate, is regarded as a critical factor. With the miniaturization of bump in size and the wild acceptation of Sn-based solders, the increasing proportion of interfacial IMC layer also aggravates the discontinuity of the intrinsic behaviors at the solder/IMC interface. However, the evolution of the interfacial IMC in service is complex, such as coarsening of grains, flattening of solder/IMC interface, increasing of defects. Moreover, the crystal structure of Cu6Sn5 would transform from one to another. During this procedure, the volume expansion might result in stress at the solder/IMC interface which is harmful to the integrity of interconnects. So far, it is not very clear that how interfacial IMC layer influences the shear deformation and fracture of solder joints. The effects of the transformation of the crystal structure of Cu6Sn5 have not been verified. Therefore, studies on the interfacial evolutions and their effects on the shear behavior of solder joints are very helpful for the development of high-density lead-free packaging technology.
     In this study, Sn-0.7Cu/Cu joint was selected. Minor addition of Ni was conducted to modify the interfacial structures. The evolutions of structure and morphology (including the thickness, grain size, interfacial roughness and defects) of interfacial Cn-Sn IMC with aging time and temperature were studied, respectively. Solder joint with a sandwich structure was used in shear test. The correlations between the interfacial evolutions and the shear behavior were investigated at different shear strain rates and experimental temperatures. The conclusions are as follows:
     (1) The solid-state transformation of interfacial Cu6Sn5 in Sn-0.7Cu/Cu was studied by XRD. Results show that after isothermal aging, the time-temperature-formation curve of the interfacialη'-Cu6Sn5 under air cooling condition presented as a "C" shape. A minimum formation time was observed at aging temperature 135-150℃. When the cooling rate of soldering decreased, the time needed for the formation ofη'phase was increased. The results also show that the addition of Ni inhibited the formation ofη'phase significantly.
     (2) Voids were observed at the triple grain boundary of aged interfacial Cu6Sn5 from the top morphology. The amount of the voids were the most in Sn-0.7Cu/Cu joint under air cooling condition, but fewer in those cooling with furnace and containing minor Ni. The main reason is that the growth of interfacial Cu6Sn5 during aging procedure was inhibited by the pores adsorbed on the boundaries of Cu6Sn5 grains. With the decreasing of cooling rate in soldering, there was enough time for pores to escape from the triple grain boundary. With minor addition of Ni, the ratio of length to radius and the growth rate of interfacial IMC were enhanced, and thus the pores became metastable.
     (3) The morphology evolutions of interfacial Cn-Sn IMC, including the thickness, grain size and interfacial roughness, were studied, respectively. With the elongation of aging time, elevation of temperature and decrease of cooling rate, the thickness and grain size were continuously increased. After minor addition of Ni, the growth of Cu3Sn was significantly inhibited. Moreover, the Cu6Sn5 grains in soldering and those aged at high temperatures were refined.
     (4) The shear strength and fracture mechanism of solder joints were analyzed. Results indicate that under as-soldered state, low strain rate or high testing temperature condition, ductile fracture was observed of which the crack propagated in the solder matrix near the interface due to the mismatch of the mechanical properties between solder and interfacial IMC. The shear strength of the solder joint was controlled by the solder matrix. After aging, the fracture toughness was decreased due to the coarsening of interfacial IMC. Brittle fracture along IMC was discovered, of which the shear strength was reduced compared with that of solder matrix under the same aging condition. The influencing mechanisms of the interface are listed as follows. The thickness and grain size of interfacial IMC only affected the type of fracture. The defects in interfacial Cu6Sn5 and the higher elastic modulus of interfacial IMC would promote the brittle fracture. The influence of the crystal structure transformation of interfacial Cu6Sn5 and the roughness of solder/IMC interface was small.
     (5) When the deformation temperature in shear test decreased from room temperature to-40℃, the difference of elastic modulus between the solder matrix and IMC was reduced and the mechanical mismatch was alleviated. The joint inclined to be controlled by the behavior of solder matrix. When the strain rate increased, the difference of the elastic modulus was increased and the mismatch became serious. Under this condition, the brittle behavior of interfacial IMC was more dominant.
引文
[1]田民波.电子封装工程[M].北京:清华大学出版社,2003.
    [2]CHAWLA N. Thermomechanical behaviour of environmentally benign Pb-free solders [J]. International Materials Reviews,2009,54(6):368-84.
    [3]WOOD E, NIMMO K. In search of new lead-free electronic solders [J]. Journal of Electronic Materials,1994,23(8):709-13.
    [4]KEY P L, SCHLABACH T D. Metals demand in telecommunications [J]. Mater Soc,1986,10(3): 433-51.
    [5]IPC. A guide for assembly of lead-free electronics [M]. Northbrook; IPC Roadmap.2000.
    [6]ABTEW M, SELVADURAY G. Lead-free solders in microelectronics [J]. Materials Science and Engineering R:Reports,2000,27(5-6):95-141.
    [7]郭福.无铅钎焊技术与应用[M].北京:科学出版社,2006.
    [8]Official Journal of the European Union [M].2003.
    [9]菅沼克昭.无铅焊接技术[M].北京:科学出版社,2004.
    [10]SHANGGUAN D.无铅焊料互联及可靠性[M].北京:电子工业出版社,2008.
    [11]TU K N, ZENG K. Tin-lead (SnPb) solder reaction in flip chip technology [J]. Materials Science and Engineering R:Reports,2001,34(1):1-58.
    [12]GLAZER J. Metallurgy of low-temperature Pb-free solders for electronic assembly [J]. International Materials Reviews,1995,40(2):65-93.
    [13]WADE N, AKUZAWA T, YAMADA S, et al. Effect of microalloying on the creep strength and microstructure of an eutectic Sn-Pb solder alloy [J]. Journal of Electronic Materials,1999, 28(11):1286-9.
    [14]LEE S B, Y00 Y R, JUNG J Y, et al. Electrochemical migration characteristics of eutectic SnPb solder alloy in printed circuit board [J]. Thin Solid Films,2006,504(1-2):294-7.
    [15]KIM H K, TU K N. Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening [J]. Physical Review B,1996,53(23):16027-34.
    [16]KIM H K, TU K N, TOTTA P A. Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joints on Si wafers [J]. Applied Physics Letters,1996,68(16):2204-6.
    [17]SHANG J K, YAO D P. Effect of interface roughness on fatigue crack growth in Sn-Pb solder joints [J]. Journal of Electronic Packaging,1996,118(3):170-3.
    [18]TU P L, CHAN Y C, LAI J K L. Effect of intermetallic compounds on the thermal fatigue of surface mount solder joints [J]. IEEE Transactions on Components Packaging and Manufacturing Technology Part B-Advanced Packaging,1997,20(1):87-93.
    [19]CHAN Y C, SO A C K, LAI J K L. Growth kinetic studies of Cu-Sn intermetallic compound and its effect on shear strength of LCCC SMT solder joints [J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology,1998,55(1-2):5-13.
    [20]JONES W K, LIU Y, SHAH M, et al. Mechanical properties of Pb/Sn Pb/In and Sn-In solders [J]. Soldering & Surface Mount Technology,1998,10(1):37-41.
    [21]SHI X Q, ZHOU W, PANG H L J, et al. Effect of temperature and strain rate on mechanical properties of 63Sn/37Pb solder alloy [J]. Journal of Electronic Packaging,1999,121(3):179-85.
    [22]WANG Y W, CHANG C C, CHEN W M, et al. Effects of Ni additions on the growth of Cu3Sn in high-lead solders [J]. Journal of Electronic Materials,2010,39(12):2636-42.
    [23]MATIN M A, VELLINGA W P, GEERS M G D. Aspects of coarsening in eutectic Sn-Pb [J]. Acta Materialia,2004,52(12):3475-82.
    [24]NEMI. Lead-free assembly projects [M].1999.
    [25]JEITA. Roadmap 2002 for commercialization of lead-free solder [M].2002.
    [26]HEN S W, WANG C H, LIN S K, et al. Phase diagrams of Pb-free solders and their related materials systems [M]. Lead-Free Electronic Solders. Springer US.2007:19-37.
    [27]BORGESEN P, BIELER T, LEHMAN L P, et al. Pb-free solder:new materials considerations for microelectronics processing [J]. MRS Bulletin,2007,32(4):360-5.
    [28]GEBHARDT E, PETZOW G. The constitution of the system Ag-Cu-Sn (in German) [J]. Z Metallkd, 1959,50:597-605.
    [29]MILLER C, ANDERSON I, SMITH J. A viable tin-lead solder substitute:Sn-Ag-Cu [J]. Journal of Electronic Materials,1994,23(7):595-601.
    [30]LOOMANS M E, FINE M E. Tin-silver-copper eutectic temperature and composition [J]. Metall Mater Trans A-Phys Metall Mater Sci,2000,31(4):1155-62.
    [31]MOON K W, BOETTINGER W J, KATTNER U R, et al. Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys [J]. Journal of Electronic Materials,2000,29(10):1122-36.
    [32]OHNUMA I, MIYASHITA M, ANZAI K, et al. Phase equilibria and the related properties of Sn-Ag-Cu based Pb-free solder alloys [J]. Journal of Electronic Materials,2000,29(10): 1137-44.
    [33]FREAR D R, VIANCO P T. Intermetallic growth and mechanical-behavior of low and high-melting temperature solder alloys [J]. Metall Mater Trans A-Phys Metall Mater Sci,1994, 25(7):1509-23.
    [34]ZENG K, TU K N. Six cases of reliability study of Pb-free solder joints in electronic packaging technology [J]. Materials Science and Engineering R:Reports,2002,38(2):55-105.
    [35]LIU C Y, CHEN Y R, LI W L, et al. Effect of thermal treatment on the intermetallic compounds formed at Sn-9Zn-1.5Ag-xBi (x=0 and 1) lead-free solder/Cu interface [J]. Materials Transactions,2007,48(8):2133-8.
    [36]TSAI M Y, YANG S C, WANG Y W, et al. Grain growth sequence of Cu3Sn in the Cu/Sn and Cu/Sn-Zn systems [J]. Journal of Alloys and Compounds,2010,494(1-2):123-7.
    [37]WANG J Y, LIN C F, CHEN C M. Retarding the Cu5Zn8 phase fracture at the Sn-9wt.% Zn/Cu interface [J]. Scripta Materialia,2011,64(7):633-6.
    [38]ANDERSON I E. Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-free electronic solder applications [J]. Journal of Materials Science:Materials in Electronics,2007,18(1-3): 55-76.
    [39]LAURILA T, VUORINEN V, PAULASTO KR CKEL M. Impurity and alloying effects on interfacial reaction layers in Pb-free soldering [J]. Materials Science and Engineering R:Reports,2010, 68(1-2):1-38.
    [40]ZENG G, XUE S, ZHANG L, et al. Recent advances on Sn-Cu solders with alloying elements: review [J]. Journal of Materials Science:Materials in Electronics,2011:1-14.
    [41]WU C M L, YU D Q, LAW C M T, et al. Properties of lead-free solder alloys with rare earth element additions [J]. Materials Science and Engineering R:Reports,2004,44(1):1-44.
    [42]GUO F. Composite lead-free electronic solders [J]. Journal of Materials Science: Materials in Electronics,2007,18(1-3):129-45.
    [43]于大全.电子封装互联无铅钎料及其界面问题研究[D].大连;大连理工大学,2004.
    [44]GAO Y J, LUO Z B, ZHAO J, et al. Study on the microstructure and the shear strength of Sn-0.7Cu-xZn [J].2009 International Conference on Electronic Packaging Technology & High Density Packaging,2009,890-3.
    [45]高艳俊.Sn-Cu基无铅焊料及其钎焊接头的剪切性能[D].大连;大连理工大学,2010.
    [46]ZENG G, XUE S B, ZHANG L, et al. A review on the interfacial intermetallic compounds between Sn-Ag-Cu based solders and substrates [J]. Journal of Materials Science:Materials in Electronics,2010,21(5):421-40.
    [47]KANG S K, CHOI W K, SHIH D Y, et al. Ag3Sn plate formation in the solidification of near-ternary eutectic Sn-Ag-Cu [J]. JOM,2003,55(6):61-5.
    [48]HENDERSON D W, GOSSELIN T, SARKHEL A, et al. Ag3Sn plate formation in the solidification of near ternary eutectic Sn-Ag-Cu alloys [J]. Journal of Materials Research,2002,17(11): 2775-8.
    [49]KIM K S, HUH S H, SUGANUMA K. Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys [J]. Materials Science and Engineering A,2002,333(1-2):106-14.
    [50]KANG S K, SHIH D Y, LEONARD D, et al. Controlling Ag3Sn plate formation, in near-ternary-eutectic Sn-Ag-Cu solder by minor Zn alloying [J]. JOM,2004,56(6):34-8.
    [51]GARCIA L R, OS RIO W R, GARCIA A. The effect of cooling rate on the dendritic spacing and morphology of Ag3Sn intermetallic particles of a SnAg solder alloy [J]. Materials & Design, 2011,32(5):3008-12.
    [52]GONG J C, LIU C Q, CONWAY P P, et al. Formation of Ag3Sn plates in SnAgCu solder bumps [J]. Materials Science and Engineering A,2010,527(10-11):2588-91.
    [53]CHO M G, KIM H Y, SEO S K, et al. Enhancement of heterogeneous nucleation of β-Sn phases in Sn-rich solders by adding minor alloying elements with hexagonal closed packed structures [J]. Applied Physics Letters,2009,95(2):021905.
    [54]ANDERSON I E, WALLESER J, HARRINGA J L. Observations of nucleation catalysis effects during solidification of SnAgCuX solder joints [J]. JOM,2007,59(7):38-43.
    [55]刘晓英.Sn基复合无铅钎料的研究[D].大连;大连理工大学,2010.
    [56]MARSHALL J, CALDERON J. Hard-particle reinforced composite solders part 1: microcharacterisation [J]. Soldering & Surface Mount Technology,1997,9(2):22-8.
    [57]BETRABET H S, MCGEE S M, MCKINLAY J K. Processing dispersion-strengthened Sn-Pb solders to achieve microstructural refinement and stability [J]. Scripta Metallurgica et Materialia, 1991,25(10):2323-8.
    [58]MCCORMACK M, JIN S, KAMMLOTT G. Enhanced solder alloy performance by magnetic dispersions [J]. IEEE Transactions on Components Packaging and Manufacturing Technology Part A,1994,17(3):452-7.
    [59]刘晓英,马海涛,罗忠兵等.Fe粉增强Sn-3Ag-0.5Cu复合钎料的组织及性能[J].中国有色金属学报,2011,已接收.
    [60]MAVOORI H, JIN S. New, creep-resistant, low melting point solders with ultrafine oxide dispersions [J]. Journal of Electronic Materials,1998,27(11):1216-22.
    [61]NAI S, WEI J, GUPTA M. Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes [J]. Materials Science and Engineering A,2006,423(1-2):166-9.
    [62]GUO F, XU G, HE H. Electromigration behaviors in Sb particle-reinforced composite eutectic SnAgCu solder joints [J]. Journal of Materials Science,2009,44(20):5595-601.
    [63]TU K N, GUSAK A M, LI M. Physics and materials challenges for lead-free solders [J]. Journal of Applied Physics,2003,93(3):1335-53.
    [64]LAURILA T, VUORINEN V, KIVILAHTI J K. Interfacial reactions between lead-free solders and common base materials [J]. Materials Science and Engineering R:Reports,2005,49(1-2): 1-60.
    [65]LEE W W, NGUYEN L T, SELVADURAY G S. Solder joint fatigue models:review and applicability to chip scale packages [J]. Microelectronics Reliability,2000,40(2):231-44.
    [66]MA H, SUHLING J C. A review of mechanical properties of lead-free solders for electronic packaging [J]. Journal of Materials Science,2009,44(5):1141-58.
    [67]SHANG J K, ZENG Q L, ZHANG L, et al. Mechanical fatigue of Sn-rich Pb-free solder alloys [J]. Journal of Materials Science:Materials in Electronics,2007,18(1-3):211-27.
    [68]YANG F Q, LI J C M. Deformation behavior of tin and some tin alloys [J]. Journal of Materials Science:Materials in Electronics,2007,18(1-3):191-210.
    [69]SIDHU R S, CHAWLA N. Thermal fatigue behavior of Sn-rich (Pb-Free) solders [J]. Metall Mater Trans A-Phys Metall Mater Sci,2008,39A(4):799-810.
    [70]SUBRAMANIAN K N. Assessment of factors influencing thermomechanical fatigue behavior of Sn-based solder joints under severe service environments [J]. Journal of Materials Science: Materials in Electronics,2007,18(1-3):237-46.
    [71]TU K N. Recent advances on electromigration in very-large-scale-integration of interconnects [J]. Journal of Applied Physics,2003,94(9):5451-73.
    [72]BRANDENBURG S, YEH S. Electromigration studies of flip chip bump solder joints; proceedings of the Proceedings of the surface mount international conference and exhibition, San Jose, F,1998 [C]. SMI.
    [73]OSENBACH J, DELUCCA J, POTTEIGER B, et al. Sn-whiskers:truths and myths [J]. Journal of Materials Science:Materials in Electronics,2007,18(1):283-305.
    [74]TU K, CHEN C, WU A. Stress analysis of spontaneous Sn whisker growth [J]. Journal of Materials Science:Materials in Electronics,2007,18(1-3):269-81.
    [75]FISHER R, DARKEN L, CARROLL K. Accelerated growth of tin whiskers [J]. Acta Metallurgica, 1954,2(3):368-9,71-73.
    [76]TU K. Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions [J]. Physical Review B,1994,49(3):2030.
    [77]XU C, ZHANG Y, FAN C, et al. Understanding whisker phenomenon:the driving force for whisker formation [J]. CircuiTree,2002,15(5):10.
    [78]DUDEK M A, CHAWLA N. Mechanisms for Sn whisker growth in rare earth-containing Pb-free solders [J]. Acta Materialia,2009,57(15):4588-99.
    [79]BUCHOVECKY E J, DU N N, BOWER A F. A model of Sn whisker growth by coupled plastic flow and grain boundary diffusion [J]. Applied Physics Letters,2009,94(19):191904.
    [80]OSENBACH J W. Creep and its effect on Sn whisker growth [J]. Journal of Applied Physics, 2009,106(9):094903.
    [81]VIANCO P T, REJENT J A. Dynamic recrystallization (DRX) as the mechanism for Sn whisker development. part Ⅰ:a model [J]. Journal of Electronic Materials,2009,38(9):1815-25.
    [82]VIANCO P T, REJENT J A. Dynamic Recrystallization (DRX) as the Mechanism for Sn Whisker Development. Part II:Experimental Study [J]. Journal of Electronic Materials,2009,38(9): 1826-37.
    [83]DIMITROVSKA A, KOVACEVIC R. Environmental Influence on Sn Whisker Growth [J]. IEEE Transactions on Electronics Packaging Manufacturing,2010,33(3):193-7.
    [84]JADHAV N, BUCHOVECKY E J, REINBOLD L, et al. Understanding the correlation between intermetallic growth, stress evolution, and Sn whisker nucleation [J]. IEEE Transactions on Electronics Packaging Manufacturing,2010,33(3):183-92.
    [85]GOSELE U, TU K N. Growth kinetics of planar binary diffusion couples:"thin film case" versus "bulk cases" [J]. Journal of Applied Physics,1982,53(4):3252-60.
    [86]NATAN M, DUNCAN S, BYER N. A cross-sectional transmission electron microscopy study of silicide growth kinetics in the Cr/(100) Si system at 425℃ [J]. Journal of Applied Physics, 1984,55(6):1450-2.
    [87]CHEN S, ZHENG L, CARTER C, et al. Transmission electron microscopy studies on the lateral growth of nickel silicides [J]. Journal of Applied Physics,1985,57(2):258-63.
    [88]GUSAK A M, TU K N. Kinetic theory of flux-driven ripening [J]. Physical Review B,2002, 66(11):115403.
    [89]SCHAEFER M, FOURNELLE R A, LIANG J. Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control [J]. Journal of Electronic Materials,1998,27(11):1167-76.
    [90]MA D, WANG W D, LAHIRI S K. Scallop formation and dissolution of Cu-Sn intermetallic compound during solder reflow [J]. Journal of Applied Physics,2002,91(5):3312-7.
    [91]LEE J H, PARK J H, LEE Y H, et al. Stability of channels at a scalloplike Cu6Sn5 layer in solder interconnections [J]. Journal of Materials Research,2001,16(5):1227-30.
    [92]TU K N, KU F, LEE T Y. Morphological stability of solder reaction products in flip chip technology [J]. Journal of Electronic Materials,2001,30(9):1129-32.
    [93]TU K N, LEE T Y, JANG J W, et al. Wetting reaction versus solid state aging of eutectic SnPb on Cu [J]. Journal of Applied Physics,2001,89(9):4843-9.
    [94]TAKAKU Y, LIU X J,OHNUMA I, et al. Interfacial reaction and morphology between molten Sn base solders and Cu substrate [J]. Materials Transactions,2004,45(3):646-51.
    [95]GORLICH J, SCHMITZ G, TU K N. On the mechanism of the binary Cu/Sn solder reaction [J]. Applied Physics Letters,2005,86(5):053106.
    [96]SUH J O, TU K N, LUTSENKO G V, et al. Size distribution and morphology of Cu6Sn5 scallops in wetting reaction between molten solder and copper [J]. Acta Materialia,2008,56(5):1075-83.
    [97]CHUNG C K, DUH J G, KAO C R. Direct evidence for a Cu-enriched region at the boundary between Cu6Sns and Cu3Sn during Cu/Sn reaction [J]. Scripta Materialia,2010,63(2):258-60.
    [98]HUANG M L, LOEHER T, OSTMANN A, et al. Role of Cu in dissolution kinetics of Cu metallization in molten Sn-based solders [J]. Applied Physics Letters,2005,86(18):181908.
    [99]赵宁.无铅钎料的液态结构与钎焊界面反应及其相关性研究[D].大连;大连理工大学,2009.
    [100]程从前.强磁场对Sn-Cu界面金属间化合物层生长行为的影响[D].大连;大连理工大学,2010.
    [101]ZOU H F, YANG H J, ZHANG Z F. Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals [J]. Acta Materialia,2008, 56(11):2649-62.
    [102]SUH J O, TU K N, TAMURA N. Dramatic morphological change of scallop-type Cu6Sn5 formed on (001) single crystal copper in reaction between molten SnPb solder and Cu [J]. Applied Physics Letters,2007,91(5):051907.
    [103]ZOU H F, YANG H J, ZHANG Z F. A study on the orientation relationship between the scallop-type Cu6Sn5 grains and (011) Cu substrate using electron backscattered diffraction [J]. Journal of Applied Physics,2009,106(11):113512.
    [104]ZOU H F, ZHANG Z F. Application of electron backscatter diffraction to the study on orientation distribution of intermetallic compounds at heterogeneous interfaces (Sn/Ag and Sn/Cu) [J]. Journal of Applied Physics,2010,108(10):103518.
    [105]SUH J O, TU K N, TAMURA N. A synchrotron radiation X-ray microdiffraction study on orientation relationships between a Cu6Sns and Cu substrate in solder joints [J]. JOM,2006, 58(6):63-6.
    [106]SUH J O, TU K N, TAMURA N. Preferred orientation relationship between Cu6Sn5 scallop-type grains and Cu substrate in reactions between molten Sn-based solders and Cu [J]. Journal of Applied Physics,2007,102(6):063511.
    [107]WANG K J, LIN Y C, DUH J G, et al. In situ investigation of the interfacial reaction in Sn/Cu system by synchrotron radiation [J]. Journal of Materials Research,2010,25(5):972-5.
    [108]GONG J C, LIU C Q, CONWAY P P, et al. Formation of Sn dendrites and SnAg eutectics in a SnAgCu solder [J]. Scripta Materialia,2009,61(7):682-5.
    [109]NAH J W, KIM J H, LEE H M, et al. Electromigration in flip chip solder bump of 97Pb-3Sn/37Pb-63Sn combination structure [J]. Acta Materialia,2004,52(1):129-36.
    [110]YANG Q L, SHANG J K. Interfacial segregation of Bi during current stressing of Sn-Bi/Cu solder interconnect [J]. Journal of Electronic Materials,2005,34(11):1363-7.
    [111]GAN H, TU K N. Polarity effect of electromigration on kinetics of intermetallic compound formation in Pb-free solder V-groove samples [J]. Journal of Applied Physics,2005, 97(6):063514.
    [112]CHIU S H, SHAO T L, CHEN C, et al. Infrared microscopy of hot spots induced by Joule heating in flip-chip SnAg solder joints under accelerated electromigration [J]. Applied Physics Letters,2006,88(2):022110.
    [113]ALAM M O, WU B Y, CHAN Y C, et al. High electric current density-induced interfacial reactions in micro ball grid array (μBGA) solder joints [J]. Acta Materialia,2006,54(3): 613-21.
    [114]YE H, BASARAN C, HOPKINS D. Thermomigration in Pb-Sn solder joints under joule heating during electric current stressing [J]. Applied Physics Letters,2003,82(7):1045-7.
    [115]HUANG A T, GUSAK A M, TU K N, et al. Thermomigration in SnPb composite flip chip solder joints [J]. Applied Physics Letters,2006,88(14):141911.
    [116]LIU C Y, CHEN C, TU K N. Electromigration in Sn-Pb solder strips as a function of alloy composition [J]. Journal of Applied Physics,2000,88(10):5703-9.
    [117]NAH J W, REN F, PAIK K W, et al. Effect of electromigration on mechanical shear behavior of flip chip solder joints [J]. Journal of Materials Research,2006,21(3):698-702.
    [118]REN F, NAH J W, TU K N, et al. Electromigration induced ductile-to-brittle transition in lead-free solder joints [J]. Applied Physics Letters,2006,89(14):141914.
    [119]LIU S, CHEN C, LIU P, et al. Tin whisker growth driven by electrical currents [J]. Journal of Applied Physics,2004,95:7742.
    [120]CHU S N G, LI J C M. Impression creep of β-tin single crystals [J]. Materials Science and Engineering,1979,39(1):1-10.
    [121]TELANG A U, BIELER T R, CHOI S, et al. Orientation imaging studies of Sn-based electronic solder joints [J]. Journal of Materials Research,2002,17(9):2294-306.
    [122]TELANG A U, BIELER T R, LUCAS J P, et al. Grain-boundary character and grain growth in bulk tin and bulk lead-free solder alloys [J]. Journal of Electronic Materials,2004,33(12): 1412-23.
    [123]TELANG A U, BIELER T R. The orientation imaging microscopy of lead-free Sn-Ag solder joints [J]. JOM,2005,57(6):44-9.
    [124]TELANG A U, BIELER T R, ZAMIRI A, et al. Incremental recrystallization/grain growth driven by elastic strain energy release in a thermomechanically fatigued lead-free solder joint [J]. Acta Materialia,2007,55(7):2265-77.
    [125]BIELER T R, JIANG H R, LEHMAN L P, et al. Influence of Sn grain size and orientation on the thermomechanical response and reliability of Pb-free solder joints [J]. IEEE Transactions on Components and Packaging Technologies,2008,31(2):370-81.
    [126]BIELER T R, LEE T K, LIU K C. Methodology for analyzing atrain atates during in situ thermomechanical cycling in individual lead-free solder joints using synchrotron radiation [J]. Journal of Electronic Materials,2009,38(12):2712-9.
    [127]BIELER T R, TELANG A U. Analysis of slip behavior in a single shear laplead-free solder joint during simple shear at 25℃ and 0.1/s [J]. Journal of Electronic Materials,2009,38(12): 2694-701.
    [128]ALAM M, CHAN Y, TU K. Effect of 0.5 wt% Cu addition in Sn-3.5% Ag solder on the dissolution rate of Cu metallization [J]. Journal of Applied Physics,2003,94(12):7904.
    [129]ISLAM M N, SHARIF A, CHAN Y C. Effect of volume in interfacial reaction between eutectic Sn-3.5%Ag-0.5%Cu solder and Cu metallization in microelectronic packaging [J]. Journal of Electronic Materials,2005,34(2):143-9.
    [130]ZIMPRICH P, BETZWAR-KOTAS A, KHATIBI G, et al. Size effects in small scaled lead-free solder joints [J]. Journal of Materials Science:Materials in Electronics,2008,19(4):383-8.
    [131]尹立孟,杨艳,刘亮岐等.电子封装微互连焊点力学行为的尺寸效应[J].金属学报,2009,45(4):422-7.
    [132]ZIMPRICH P, SAEED U, BETZWAR-KOTAS A, et al. Mechanical size effects in miniaturized lead-free solder joints [J]. Journal of Electronic Materials,2008,37(1):102-9.
    [133]YIN L, ZHANG X, LU C. Size and volume effects on the strength of microscale lead-free solder joints [J]. Journal of Electronic Materials,2009,38(10):2179-83.
    [134]LI X, XIA J, ZHOU M, et al. The influence of standoff height and pad size on the Shear fracture behavior of BGA structured Cu/Sn3. OAg0.5Cu/Cu interconnects; proceedings of the Electronic Packaging Technology & High Density Packaging,2010 11th International Conference on, F 16-19 Aug.2010,2010 [C].
    [135]黎滨,杨艳,尹立孟等.无铅微焊点界面断裂行为的尺寸效应[J].机械工程学报,2010,46(18):77-84.
    [136]尹立孟,张新平.无铅微互连焊点力学行为尺寸效应的试验及数值模拟[J].机械工程学报,2010,46(2):55-60.
    [137]SAUNDERS N, MIODOWNIK A. The Cu-Sn (Copper-Tin) system [J]. Journal of Phase Equilibria, 1990,11(3):278-87.
    [138]RAYNOR G V. Annotated equilibrium diagram series, no.2. [M]. London; The Institute of Metals.1944.
    [139]ZURUZI A S, CHIU C H, LAHIRI S K, et al. Roughness evolution of Cu6Sn5 intermetallic during soldering [J]. Journal of Applied Physics,1999,86(9):4916-21.
    [140]BENNET J M, MATTSSON L. Introduction to surface roughness and scattering [M]. Washington, D. C.:Optical Society of America,1989.
    [141]HITCHCOCK S, CARROLL N, NICHOLAS M. Some effects of substrate roughness on wettability [J]. Journal of Materials Science,1981,16(3):714-32.
    [142]NAKAE H, INUI R, HIRATA Y, et al. Effects of surface roughness on wettability [J]. Acta Materialia,1998,46(7):2313-8.
    [143]郑冶沙,王中光,艾素华.粗糙度引入的Ⅱ型裂纹扩展的剪切阻力[J].金属学报,1993,29(6):253-61.
    [144]ZURUZI A S, LAHIRI S K, BURMAN P, et al. Correlation between intermetallic thickness and roughness during solder reflow [J]. Journal of Electronic Materials,2001,30(8):997-1000.
    [145]YU D Q, WANG L. The growth and roughness evolution of intermetallic compounds of Sn-Ag-Cu/Cu interface during soldering reaction [J]. Journal of Alloys and Compounds,2008, 458(1-2):542-7.
    [146]BERNAL J. The complex structure of the copper-tin intermetallic compounds [J]. Nature, 1928,122(3063):54.
    [147]ISIHARA T. On the equilibrium diagram of the copper-tin system [J]. Journal Institute of Metals,1924,31:315.
    [148]HAUGHTON J. The constitution of the alloys of copper with tin, part Ⅲ and Ⅳ [J]. Journal Institute of Metals,1921,25:309-30.
    [149]GANGULEE A, DAS G C, BEVER M B. An X-ray diffraction and calorimetric investigation of the compound Cu6Sn5 [J]. Metallurgical Transactions,1973,4(9):2063-6.
    [150]LIDIN S, LARSSON A K. A survey of superstructures in intermetallic NiAs-Ni2In-type phases [J]. Journal of Solid State Chemistry,1995,118(2):313-22.
    [151]LARSSON A K, STENBERG L, LIDIN S. Crystal structure modulations in η-Cu5Sn4 [J]. Zeitschrift fur Kristallographie,1995,210(11):832-7.
    [152]LARSSON A K, STENBERG L, LIDIN S. The superstructure of domain-twinned η'-Cu6Sn5 [J]. Acta Crystallographica Section B-Structural Science,1994,50(6):636-43.
    [153]GHOSH G, ASTA M. Phase stability, phase transformations, and elastic properties of Cu6Sn5:Ab initio calculations and experimental results [J]. Journal of Materials Research,2005, 20(11):3102-17.
    [154]NOGITA K, GOURLAY C M, NISHIMURA T. Cracking and phase stability in reaction layers between Sn-Cu-Ni solders and Cu substrates [J]. JOM,2009,61(6):45-51.
    [155]SCHWINGENSCHLOGL U, DI PAOLA C, NOGITA K, et al. The influence of Ni additions on the relative stability of η and η'Cu6Sn5 [J]. Applied Physics Letters,2010,96(6):061908.
    [156]NOGITA K, NISHIMURA T. Nickel-stabilized hexagonal (Cu, Ni)6Sn5 in Sn-Cu-Ni lead-free solder alloys [J]. Scripta Materialia,2008,59(2):191-4.
    [157]NOGITA K. Stabilisation of Cu6Sn5 by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys [J]. Intermetallics,2010,18(1):145-9.
    [158]DUDEK M A, HUNTER L, KRANZ S, et al. Three-dimensional (3D) visualization of reflow porosity and modeling of deformation in Pb-free solder joints [J]. Materials Characterization, 2010,61(4):433-9.
    [159]CUGNONI J, BOTSIS J, SIVASUBRAMANIAM V, et al. Experimental and numerical studies on size and constraining effects in lead-free solder joints [J]. Fatigue & Fracture of Engineering Materials & Structures,2007,30(5):387-99.
    [160]LADANI L J, RAZMI J, ASME. Interaction effect of voids and standoff height on thermo-mechanical durability of BGA solde joints [M]. IMCE2009:Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Vol 5. Lake Buena Vista.2010: 113-20.
    [161]CHIRIAC V A, YOUMIN Y. Impacts of solder voids on PQFN packages'thermal and mechanical performances [M].12th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems 2010:1-7.
    [162]JANG J W, LIN J K, FREAR D R, et al. Ripening-assisted void formation in the matrix of lead-free solder joints during solid-state aging [J]. Journal of Materials Research,2007, 22(4):826-30.
    [163]LIN X Q, LUO L. Void evolution in sub-100-micron Sn-Ag solder bumps during multi-reflow and aging and its effects on bonding reliability [J]. Journal of Electronic Materials,2008, 37(3):307-13.
    [164]BELYAKOV S, ATKINSON H V, GILL S P A. Crystallographically faceted void formation in the matrix of lead-free solder joints [J]. Journal of Electronic Materials,2010,39(8): 1295-7.
    [165]SHIN M, KIM Y. Microstructure characterization of Sn-Ag solder joints between stud bumps and metal pads [J]. Journal of Electronic Materials,2003,32(12):1448-54.
    [166]ZENG K J, STIERMAN R, CHIU T C, et al. Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability [J]. Journal of Applied Physics, 2005,97(2):024508.
    [167]CHAO B, CHAE S H, ZHANG X F, et al. Electromigration enhanced intermetallic growth and void formation in Pb-free solder joints [J]. Journal of Applied Physics,2006,100(8): 084909.
    [168]LIU C Y, CHEN J T, CHUANG Y C, et al. Electromigration-induced Kirkendall voids at the Cu/Cu3Sn interface in flip-chip Cu/Sn/Cu joints [J]. Applied Physics Letters,2007,90(11): 112114.
    [169]BYOUNG-JOON K, GI-TAE L, JAEDONG K, et al. Intermetallic compound and Kirkendall void growth in Cu pillar bump during annealing and current stressing; proceedings of the Electronic Components and Technology Conference,2008 ECTC 2008 58th, F 27-30 May 2008,2008 [C].
    [170]ANDERSON I E, HARRINGA J L. Suppression of void coalescence in thermal aging of tin-silver-copper-X solder joints [J]. Journal of Electronic Materials,2006,35(1):94-106.
    [171]GAO F, NISHIKAWA H, TAKEMOTO T. Additive effect of Kirkendall void formation in Sn-3.5Ag solder joints on common substrates [J]. Journal of Electronic Materials,2008,37(1): 45-50.
    [172]WANG Y W, LIN Y W, KAO C R. Kirkendall voids formation in the reaction between Ni-doped SnAg lead-free solders and different Cu substrates [J]. Microelectronics Reliability,2009, 49(3):248-52.
    [173]YU J, KIM J Y. Effects of residual S on Kirkendall void formation at Cu/Sn-3.5Ag solder joints [J]. Acta Materialia,2008,56(19):5514-23.
    [174]KIM J Y, YU J, KIM S H. Effects of sulfide-forming element additions on the Kirkendall void formation and drop impact reliability of Cu/Sn-3.5Ag solder joints [J]. Acta Materialia, 2009,57(17):5001-12.
    [175]KIM J Y, YU J. Effects of residual impurities in electroplated Cu on the Kirkendall void formation during soldering [J]. Applied Physics Letters,2008,92(9):092109.
    [176]YIN L, BORGESEN P. On the root cause of Kirkendall voiding in Cu3Sn [J]. Journal of Materials Research,2010,26 (03):455-66.
    [177]BORGESEN P, YIN L, KONDOS P. Assessing the risk of "Kirkendall voiding" in Cu3Sn [J]. Microelectronics Reliability,2011,51(4):837-46.
    [178]FIELDS R, LOW S, LUCEY JR G. Physical and mechanical properties of intermetallic compounds commonly found in solder joints [J/OL] 1992,165[Metallurgy Division of National Institute of Standards and Technology (NIST), USA, Technical paper,2001.].
    [179]CHROMIK R, VINCI R, ALLEN S, et al. Nanoindentation measurements on Cu-Sn and Ag-Sn intermetallics formed in Pb-free solder joints [J]. Journal of Materials Research,2003,18(9): 2251-61.
    [180]DENG X, CHAWLA N, CHAWLA K K, et al. Deformation behavior of (Cu, Ag)-Sn intermetallics by nanoindentation [J]. Acta Materialia,2004,52(14):4291-303.
    [181]DENG X, KOOPMAN M, CHAWLA N, et al. Young's modulus of (Cu, Ag)-Sn intermetallics measured by nanoindentation [J]. Materials Science and Engineering A,2004,364(1-2):240-3.
    [182]ROSENTHAL Y, STERN A, COHEN S R, et al. Nanoindentation measurements and mechanical testing of as-soldered and aged Sn-0.7Cu lead-free miniature joints [J]. Materials Science and Engineering A,2010,527(16-17):4014-20.
    [183]DUDEK M A, CHAWLA N. Nanoindentation of rare earth-Sn intermetallics in Pb-free solders [J]. Intermetallics,2010,18:1016-20.
    [184]RAO B, WENG J, SHEN L, et al. Morphology and mechanical properties of intermetallic compounds in SnAgCu solder joints [J]. Microelectronic Engineering,2010,87(11):2416-22.
    [185]TSUKAMOTO H, DONG Z G, HUANG H, et al. Nanoindentation characterization of intermetallic compounds formed between Sn-Cu(-Ni) ball grid arrays and Cu substrates [J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials,2009,164(1): 44-50.
    [186]JIANG L, CHAWLA N. Mechanical properties of CueSn5 intermetallic by micropillar compression testing [J]. Scripta Materialia,2010,63(5):480-3.
    [187]MORRIS J W, TRIBULA D, SUMMER T S E, et al. Solder joint reliability [M]//LAU J H. New York, Van Nostrand Reinhold.1991:225-65.
    [188]SIDHU R S, CHAWLA N. Microstructure characterization and creep behavior of Pb-free Sn-rich solder alloys:part I. microstructure characterization of bulk solder and solder/copper joints [J]. Metallurgical and Materials Transactions A,2008,39(2):340-8.
    [189]SIDHU R S, DENG X, CHAWLA N. Microstructure characterization and creep behavior of Pb-free Sn-rich solder alloys:part II. creep behavior of bulk solder and solder/copper Joints [J]. Metallurgical and Materials Transactions A,2008,39(2):349-62.
    [190]CHONG D Y R, CHE F, PANG J H L, et al. Drop impact reliability testing for lead-free and lead-based soldered IC packages [J]. Microelectronics and reliability,2006,46(7):1160-71.
    [191]TSAI K, LIU F, WONG E, et al. High strain rate testing of solder interconnections [J]. Soldering & Surface Mount Technology,2006,18(2):12-7.
    [192]J00 S M, KIM H K. Shear deformation behavior of a Sn-3Ag-0.5 Cu single solder ball at intermediate strain rates [J]. Materials Science and Engineering A,2010,528(6):2711-7.
    [193]CHONG D Y R, CHE F X, PANG J H L, et al. Drop impact reliability testing for lead-free and lead-based soldered IC packages [J]. Microelectronics Reliability,2006,46(7):1160-71.
    [194]SUH D, KIM D W, LIU P, et al. Effects of Ag content on fracture resistance of Sn-Ag-Cu lead-free solders under high-strain rate conditions [J]. Materials Science and Engineering A, 2007,460:595-603.
    [195]LEE J, SUBRAMANIAN K. Effect of dwell times on thermomechanical fatigue behavior of Sn-Ag-based solder joints [J]. Journal of Electronic Materials,2003,32(6):523-30.
    [196]HUANG J H, JIANG Y H, QIAN Y Y. The influence of dwell time on reliability of SMT solder joints under thermal cycling [J]. Microelectronics and reliability,1994,34(5):897-904.
    [197]GOSWAMI T, HANNINEN H. Dwell effects on high temperature fatigue damage mechanisms: Part II [J]. Materials & Design,2001,22(3):217-36.
    [198]GOSWAMI T, H NNINEN H. Dwell effects on high temperature fatigue behavior:Part I [J]. Materials & Design,2001,22(3):199-215.
    [199]GUO F, LEE J, HOGAN T, et al. Electrical conductivity changes in bulk Sn, and eutectic Sn-Ag in bulk and in joints, from aging and thermal shock [J]. Journal of Materials Research, 2005,20:364-74.
    [200]SUBRAMANIAN K, LEE J. Effects of internal stresses on the thermomechanical behavior of Sn-based solder joints [J]. Materials Science and Engineering A,2006,421(1-2):46-56.
    [201]JADHAV S, BIELER T, SUBRAMANIAN K, et al. Stress relaxation behavior of composite and eutectic Sn-Ag solder joints [J]. Journal of Electronic Materials,2001,30(9):1197-205.
    [202]SUBRAMANIAN K, LEE J. Effect of anisotropy of tin on thermomechanical behavior of solder joints [J]. Journal of Materials Science:Materials in Electronics,2004,15(4):235-40.
    [203]LEE J, TELANG A, SUBRAMANIAN K, et al. Modeling thermomechanical fatigue behavior of Sn-Ag solder joints [J]. Journal of Electronic Materials,2002,31(11):1152-9.
    [204]MATIN M A, COENEN E W C, VELLINGA W P, et al. Correlation between thermal fatigue and thermal anisotropy in a Pb-free solder alloy [J]. Scripta Materialia,2005,53(8):927-32.
    [205]MATIN M A, VELLINGA W P, GEERS M G D. Thermomechanical fatigue damage evolution in SAC solder joints [J]. Materials Science and Engineering A,2007,445-446:73-85.
    [206]MATIN M A, VELLINGA W P, GEERS M G D. Microstructure evolution in a Pb-free solder alloy during mechanical fatigue [J]. Materials Science and Engineering A,2006,431(1-2): 166-74.
    [207]MATIN M A, THEEVEN J G A, VELLINGA W P, et al. Correlation between localized strain and damage in shear-loaded Pb-free solders [J]. Microelectronics Reliability,2007,47(8): 1262-72.
    [208]JEDEC. JESD 22-B117 solder ball shear [M]. JEDEC Solid State Technology Association. 2002.
    [209]HA S, KIM J, HA S, et al. Shear test parameters for brittle fracture of flip chip solder joint [J]. Materials Science and Technology,2011,27(3):696-701.
    [210]SHEN Y L, CHAWLA N, EGE E S, et al. Deformation analysis of lap-shear testing of solder joints [J]. Acta Materialia,2005,53(9):2633-42.
    [211]ALAM M O, LU H, BAILEY C, et al. Finite-element simulation of stress intensity factors in solder joint intermetallic compounds [J]. IEEE transactions on device and materials reliability,2009,9(1):40-8.
    [212]ALAM M 0, LU H, BAILEY C, et al. Fracture mechanics analysis of solder joint intermetallic compounds in shear test [J]. Computational Materials Science,2009,45(2):576-83.
    [213]XU H, BANG W H, MA H T, et al. Fracture mechanics of lead-free solder joints under cyclic shear load [M]. Electronic Components and Technology Conference (ECTC),2010 Proceedings 60th.2010:484-9.
    [214]BHATE D, CHAN D, SUBBARAYAN G, et al. Singularities at solder joint interfaces and their effects on fracture models [J]. Journal of Electronic Packaging,2010,132:021007.
    [215]许金泉.界面力学[M].北京:科学出版社,2006.
    [216]汤丽华.粘弹性界面端及界面裂纹的奇异场[D].上海;上海交通大学,2007.
    [217]NADIMPALLI S P V, SPELT J K. Effect of geometry on the fracture behavior of lead-free solder joints [J]. Engineering Fracture Mechanics,2011,78(6):1169-81.
    [218]NADIMPALLI S P V, SPELT J K. Fracture load prediction of lead-free solder joints [J]. Engineering Fracture Mechanics,2010,77(17):3446-61.
    [219]FREAR D, VIANCO P. Intermetallic growth and mechanical behavior of low and high melting temperature solder alloys [J]. Metallurgical and Materials Transactions A,1994,25(7):1509-23.
    [220]PRATT R, STROMSWOLD E, QUESNEL D. Mode I fracture toughness testing of eutectic Sn-Pb solder joints [J]. Journal of Electronic Materials,1994,23(4):375-81.
    [221]HAYES S M, CHAWLA N, FREAR D R. Interfacial fracture toughness of Pb-free solders [J]. Microelectronics Reliability,2009,49(3):269-87.
    [222]PRATT R E, STROMSWOLD E I, QUESNEL D J. Effect of solid-state intermetallic growth on the fracture toughness of Cu/63Sn-37Pb solder joints [J]. IEEE Transactions on Components Packaging and Manufacturing Technology Part A,1996,19(1):134-41.
    [223]HE M, CHEN Z, QI G. Mechanical strength of thermally aged Sn-3.5 Ag/Ni-P solder joints [J]. Metallurgical and Materials Transactions A,2005,36(1):65-75.
    [224]DENG X, SIDHU R S, JOHNSON P, et al. Influence of reflow and thermal aging on the shear strength and fracture behavior of Sn-3.5Ag Solder/Cu joints [J]. Metall Mater Trans A-Phys Metall Mater Sci,2005,36A(1):55-64.
    [225]SHIN C, BAIK Y, HUH J. Effects of microstructural evolution and intermetallic layer growth on shear strength of ball-grid-array Sn-Cu solder joints [J]. Journal of Electronic Materials,2001,30(10):1323-31.
    [226]YOON J W, KIM S W, K00 J M, et al. Reliability investigation and interfacial reaction of ball-grid-array packages using the lead-free Sn-Cu solder [J]. Journal of Electronic Materials,2004,33(10):1190-9.
    [227]LEE C C, WANG P J, KIM J S, et al. Are intermetallics in solder joints really brittle? [M].57th Electronic Components & Technology Conference,2007 Proceedings.2007:648-52.
    [228]NOH B I, K00 J M, KIM J W, et al. Effects of number of reflows on the mechanical and electrical properties of BGA package [J]. Intermetallics,2006,14(10-11):1375-8.
    [229]YOON J W, CHUN H S, JUNG S B. Correlation between interfacial reactions and shear strengths of Sn-Ag-(Cu and Bi-In)/ENIG plated Cu solder joints [J]. Materials Science and Engineering A,2008,483-484:731-4.
    [230]NADIMPALLI S P V, SPELT J K. R-curve behavior of Cu-Sn3. OAgO.5Cu solder joints:Effect of mode ratio and microstructure [J]. Materials Science and Engineering A,2010,527(3):724-34.
    [231]QIN H B, LI B, ZHANG X P. Finite element simulation of interfacial fracture and impact behavior at the interfaces of microscale Sn-Ag-Cu solder interconnects; proceedings of the Electronic Packaging Technology & High Density Packaging,2010 11th International Conference on, F 16-19 Aug.2010,2010 [C].
    [232]SIVASUBRAMANIAM V, GALLI M, CUGNONI J, et al. A study of the shear response of a lead-free composite solder by experimental and homogenization techniques [J]. Journal of Electronic Materials,2009,38(10):2122-31.
    [233]LI B, YIN L, YANG Y, et al. FE simulation of size effects on interface fracture characteristics of microscale lead-free solder interconnects; proceedings of the Electronic Packaging Technology & High Density Packaging,2009 10th International Conference on,2009: 242-7,2009 [C].
    [234]LEE G W, SONG J M, LAI Y-S, et al. Size and substrate effects on microstructure and shear properties of solder joints [M]. International Conference on electronic materials and packaging,2008 EMAP 2008 2008:187-90.
    [235]CUGNONI J, BOTSIS J, JANCZAK RUSCH J. Size and constraining effects in lead-free solder joints [J]. Advanced Engineering Materials,2006,8(3):184-91.
    [236]ARZT E. Size effects in materials due to microstructural and dimensional constraints: a comparative review [J]. Acta Materialia,1998,46(16):5611-26.
    [237]BOGY D B, WANG K C. Stress singularities at interface corners in bonded dissimilar isotropic elastic materials [J]. International Journal of Solids and Structures,1971,7(8): 993-1005.
    [238]DUNDURS J. Discussion of edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading [J]. J appl Mech,1969,36:650-2.
    [239]NIED H F. Mechanics of interface with applications in electronic packaging [J]. Device and Materials Reliability, IEEE Transactions on,2003,3(4):129-43.
    [240]郑慧淼,许金泉.粘弹性结合材料界面端奇异场[J].力学季刊,2008,28(2):187-93.
    [241]CHRISTIAN J W. The theory of transformations in metals and alloys [M].2nd ed. Oxford: Elsevier Science Ltd,2002.
    [242]徐洲,赵连城.金属固态相变原理[M].北京:科学出版社,2004.
    [243]J. M. TARASCON, ARMAND M. Issues and challenges facing rechargeable lithium batteries [J]. Nature,2001,414(15):9.
    [244]GHOSH G. Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging [J]. Journal of Materials Research,2004,19(5): 1439-54.
    [245]SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures [J]. Analytical Chemistry,1964,36(8):13.
    [246]渡辺诚,佐藤繁.同步辐射科学基础[M].上海:上海交通大学出版社,2010.
    [247]HO C E, YANG S C, KAO C R. Interfacial reaction issues for lead-free electronic solders [J]. Journal of Materials Science:Materials in Electronics,2007,18(1-3):155-74.
    [248]CHAN Y C, YANG D. Failure mechanisms of solder interconnects under current stressing in advanced electronic packages [J]. Progress in Materials Science,2010,55(5):428-75.
    [249]张克从.近代晶体学基础上册[M].北京:科学出版社,1998.
    [250]CHAN Y C, TU P L, TANG C W, et al. Reliability studies μBGA solder joints-effect of Ni-Sn intermetallic compound [J]. Advanced Packaging, IEEE Transactions on,2001,24(1): 25-32.
    [251]MEI Z, SUNWOO A, MORRIS J. Analysis of low-temperature intermetallic growth in copper-tin diffusion couples [J]. Metallurgical and Materials Transactions A,1992,23(3): 857-64.
    [252]WATANABE Y, FUJINAGA Y, IWASAKI H. Lattice modulation in the long-period superstructure of Cu3Sn [J]. Acta Crystallographica Section B-Structural Science,1983,39(06): 306-11.
    [253]CHAWLA N, SIDHU R S. Microstructure-based modeling of deformation in Sn-rich (Pb-free) solder alloys [J]. Journal of Materials Science:Materials in Electronics,2007,18(1-3): 175-89.
    [254]FREAR D R. Issues related to the implementation of Pb-free electronic solders in consumer electronics [J]. Journal of Materials Science:Materials in Electronics,2007,18(1-3): 319-30.
    [255]TSAI J, HU Y, TSAI C, et al. A study on the reaction between Cu and Sn3.5Ag solder doped with small amounts of Ni [J]. Journal of Electronic Materials,2003,32(11):1203-8.
    [256]GAO F, TAKEMOTO T, NISHIKAWA H. Effects of Co and Ni addition on reactive diffusion between Sn-3.5Ag solder and Cu during soldering and annealing [J]. Materials Science and Engineering A,2006,420(1-2):39-46.
    [257]OHRINER E. Intermetallic formation in soldered copper-based alloys at 150℃ to 250℃ [J]. Welding Journal:Research suppliment,1987,191s.
    [258]KIM K S, HUH S H, SUGANUMA K. Effects of fourth alloying additive on microstructures and tensile properties of Sn-Ag-Cu alloy and joints with Cu [J]. Microelectronics Reliability, 2003,43(2):259-67.
    [259]CHUANG C M, SHIH P C, LIN K L. Mechanical strength of Sn-3.5Ag-based solders and related bondings [J]. Journal of Electronic Materials,2004,33(1):1-6.
    [260]SONG J M, HUANG C F, CHUANG H Y. Microstructural characteristics and vibration fracture properties of Sn-Ag-Cu-TM (TM=Co, Ni, and Zn) alloys [J]. Journal of Electronic Materials,2006, 35(12):2154-63.
    [261]HUNG F Y, LUI T S, CHEN L H, et al. Deformation fracture characteristics of microelectronic Sn-3.0Ag-0.5Cu-xNi solders [J]. Materials Transactions,2007,48(11):3014-20.
    [262]GOURLAY C M, NOGITA K, DAHLE A K, et al. In situ investigation of unidirectional solidification in Sn-0.7Cu and Sn-0.7Cu-0.06Ni [J]. Acta Materialia,2011,59(10):4043-54.
    [263]VENTURA T, TERZI S, RAPPAZ M, et al. Effects of Ni additions, trace elements and solidification kinetics on microstructure formation in Sn-0.7Cu solder [J]. Acta Materialia, 2011, In Press.
    [264]CHENG C Q, ZHAO J, XU Y. Effect of high magnetic field on the morphology of (Cu, Ni)6Sn5 at Sn0.3Ni/Cu interface [J]. Materials Letters,2009,63(17):1478-80.
    [265]HWANG J S. Solder paste in electronics packaging:technology and applications in surface mount, hybrid circuits, and component assembly [M]. Van Nostrand Reinhold,1989.
    [266]傅献彩,沈文霞,姚天扬等.物理化学[M].北京;高等教育出版社.2006.
    [267]沈钟,赵振国,王国庭.胶体与表面化学[M].北京:化学工业出版社,2004.
    [268]倪冰,罗志国,邹宗树.固壁上液体内气泡附着的热力学分析[J].过程工程学报,2008,8:140-3.
    [269]TU K, THOMPSON R. Kinetics of interfacial reaction in bimetallic Cu-Sn thin films [J]. Acta Metallurgica,1982,30(5):947-52.
    [270]TU K N. Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions [J]. Phys Rev B,1994,49:2030-4.
    [271]刘小兵,程良骏.空泡在任意流场中的运动研究[J].水动力学研究与进展,1994,9:150-62.
    [272]BADER W. Dissolution of Au, Ag, Pd, Pt, Cu and Ni in a molten tin-lead solder [J]. WELD J,1969,48(12).
    [273]PLUMBRIDGE W, GAGG C. Effects of strain rate and temperature on the stress-strain response of solder alloys [J]. Journal of Materials Science:Materials in Electronics,1999, 10(5):461-8.
    [274]BAI N, CHEN X, FANG Z. Effect of strain rate and temperature on the tensile properties of tin-based lead-free solder alloys [J]. Journal of Electronic Materials,2008,37(7):1012-9.
    [275]PING FENG Y, YI SHAO L, SHENG RUI J, et al. Nanoindentation identifications of mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds derived by diffusion couples [J]. Materials Science and Engineering A,2008,305-10.
    [276]JENN MING S, YU LIN S, CHIEN WEI S, et al. Strain rate dependence on nanoindentation responses of interfacial intermetallic compounds in electronic solder joints with Cu and Ag substrates [J]. Materials Transactions,2009:1231-4.
    [277]ZHIHAO Z, JONGMYUNG K, MINGYU L. Nanoindentation characteristics of Cu6Sn5 formed in lead free solder joints [J]. Proceedings of the 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP 2010),2010,953-6.
    [278]YAMAGUCHI M, UMAKOSHI Y. The deformation behaviour of intermetallic superlattice compounds [J]. Progress in Materials Science,1990,34(1):1-148.
    [279]VITEK V. Structure of dislocation cores in metallic materials and its impact on their plastic behaviour [J]. Progress in Materials Science,1992,36:1-27.
    [280]NOEBE R, BOWMAN R, NATHAL M. Physical and mechanical properties of the B2 compound NiAl [J]. International Materials Reviews,1993,38(4):193-232.
    [281]ZHOU W, LIU L, WU P. Structural, electronic and thermo-elastic properties of Cu6Sn5 and Cu5Zn8 intermetallic compounds:First-principles investigation [J]. Intermetallics,2010, 18(5):922-8.
    [282]COURTNEY T H. Mechanical behavior of materials [M].2nd ed. Boston:McGrawHill,2004.
    [283]ZOU H F, ZHANG Z F. Ductile-to-brittle transition induced by increasing strain rate in Sn-3Cu/Cu joints [J]. Journal of Materials Research,2008,23(6):1614-7.
    [284]JONES W, LIU Y, ZAMPINO M, et al. The mechanical properties of lead-tin based solders in the temperature range from-200℃ to 150℃ [J]. The International journal of microcircuits and electronic packaging,1997,20(2):150-4.
    [285]LEE H T, CHEN M H, JAO H M, et al. Influence of interfacial intermetallic compound on fracture behavior of solder joints [J]. Materials Science and. Engineering A,2003,358(1-2): 134-41.
    [286]MOY W, SHEN Y. On the failure path in shear-tested solder joints [J]. Microelectronics Reliability,2007,47(8):1300-5.
    [287]SHEN Y L, ALURU K. Numerical study of ductile failure morphology in solder joints under fast loading conditions [J]. Microelectronics Reliability,2010,50(12):2059-70.
    [288]K. NOGITA, C.M. GOURLAY, NISHIMURA T. Cracking and phase stability in reaction layers between Sn-Cu-Ni solders and Cu substrates[J]. JOM,2009,61(6):7.
    [289]MA H. Effects of temperature and strain rate on the mechanical properties of lead-free solders [J]. Journal of Materials Science,2010,45:2351-8.
    [290]JIUNN C, YI SHAO L, CHUNG YUAN R, et al. First-principles calculations of elastic properties of Cu3Sn superstructure [J]. Applied Physics Letters,2008,081901.
    [291]RATCHEV P, VANDEVELDE B, VERLINDEN B, et al. Brittle to ductile fracture transition in bulk pb-free solders [J]. IEEE Trans Compon Packaging Technol,2007,30(3):416-23.
    [292]DATE M, SHOJI T, FUJIYOSHI M, et al. Ductile-to-brittle transition in Sn-Zn solder joints measured by impact test [J]. Scripta Materialia,2004,51(7):641-5.
    [293]LAMBRINOU K, MAURISSEN W, LIMAYE P, et al. A novel mechanism of embrittlement affecting the impact reliability of tin-based lead-free solder joints [J]. Journal of Electronic Materials, 2009,38(9):1881-95.
    [294]戴瑛,嵇醒.界面端应力奇异性及界面应力分布规律研究[J].中国科学(G辑:物理学力学天文学),2007,37(4):535-43.
    [295]张彦华.焊接力学与结构完整性原理[M].北京:北京航空航天大学出版社,2007.
    [296]BOGY D. Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions [J]. Journal of Applied Mechanics,1971,38:377.
    [297]刘勇,梁丽华,曲建民.微电子器件及封装的建模与仿真[M].北京:科学出版社,2010.
    [298]RICE J R. Elastic fracture mechanics concepts for interfacial cracks [J]. J Appl Mech (Trans ASME),1988,55(1):98-103.
    [299]KUHL A, QU J. A technique to measure interfacial toughness over a range of phase angles [J]. Journal of Electronic Packaging,2000,122:147.
    [300]SUN C T, JIH C. On strain energy release rates for interfacial cracks in bi-material media [J]. Engineering Fracture Mechanics,1987,28(1):13-20.
    [301]WEST A, SAXTON H, TELELMAN A, et al. Deformation and failure of thin brazed joints-microscopic considerations [J]. Metallurgical and Materials Transactions B,1971,2(4): 1009-17.
    [302]SAXTON H, WEST A, BARRETT C. Deformation and failure of brazed joints-macroscopic considerations [J]. Metallurgical and Materials Transactions B,1971,2(4):999-1007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700