用户名: 密码: 验证码:
青藏高原陆面过程与亚洲夏季风系统联系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原作为亚洲夏季风系统的主要成员之一,其热力强迫在亚洲夏季风系统中具有重要作用。由于其特殊的地理位置和海拔高度,青藏高原成为中、低纬度地带多年冻土面积最广、厚度最深、温度最低的地区,其中积雪和冻土是青藏高原地表过程中最重要的因子。以积雪和冻土为主要内容的高原陆面过程必然影响青藏高原的热状况和热性质,进而对青藏高原与其上大气之间的相互作用产生影响。对青藏高原陆面过程与亚洲夏季风之间相互联系的研究,不仅对加深理解青藏高原地区的非绝热加热在亚洲夏季风系统中的作用,深入认识春季青藏高原陆面过程特征及其与其上大气之间的相互作用具有重要意义,也有助于我们深入认识青藏高原热力强迫在亚洲夏季风系统中的贡献,有利于提高我国夏季季风降水的预测。
     在用感、潜热通量,积雪,冻土等对青藏高原热力作用对亚洲季风影响研究的基础上,本文主要关注的问题是,在季风建立前期的春季,青藏高原陆面过程与亚洲夏季风之间存在着什么样的联系。因此,本文主要点集中在青藏高原春季的主要过程——融雪和融冻引起的陆面特征的变化与亚洲夏季风之间的联系展开研究。首先,利用高原东北部地区玛曲观测站的资料,分析了青藏高原陆面过程的水热变化特征,重点分析了夏季风建立前的春季,高原融冻过程中土壤水热状况和热性质随季节的变化特征。在此基础上,利用GAME/Tibet试验中,高原西部地区改则和狮泉河两站近地面边界层观测资料和NCEP、ERA40等再分析资料,进一步深入研究了季风建立前期的春季,青藏高原融雪和融冻过程对高原地表与其上大气水热交换过程及高原地表非绝热加热计算的影响。在上述工作的基础上,利用台站观测的地温、气温资料,采用EOF和REOF方法,分析了季风建立前期的春季,青藏高原地表非绝热加热的时空变化及其与高原积雪融雪和冻土融冻过程之间的联系。其次,基于再分析资料和观测资料,研究了青藏高原非绝热加热与东亚夏季风强度之间的联系;通过检测春季青藏高原非绝热加热异常变化中的低频信号,分析研究了典型强弱季风年东亚夏季风建立期间青藏高原非绝热加热与纬向风相互作用及其传播特征;揭示了春季高原非绝热加热变化与东亚夏季风之间的联系机制。最后,通过RegCM3.0区域气候模式的数值模拟试验,研究探讨了春季青藏高原陆面过程中土壤湿度变化对季风建立过程中高原地表热状况,大气环流,及中国夏季降水的影响。主要的研究内容和结论如下:
     (1)季风建立前期青藏高原地区水热变化特征的分析。结果表明:在亚洲夏季风建立前期的春季,青藏高原土壤融冻过程发生期间,随着土壤温度上升,土壤湿度有一段快速升高的阶段。不同土壤状态下(完全冻结,冻融过渡、完全融化),土壤温度和湿度之间存在不同的关系。春季土壤冻融过程对高原浅层土壤热通量的分布具有重要影响。
     (2)青藏高原陆面过程对非绝热加热计算影响的分析。春季,高原土壤冻融的日周期循环会引起土壤水分的变化,而土壤水分的变化会进一步引起感、潜热的变化。因此,春季冻融日周期循环引起的土壤水分的剧烈变化会在计算高原地区的地表感、潜热通量中产生显著影响。但高原融雪和土壤冻融过程引起的土壤湿度与三种再分析资料的土壤湿度之间存在的差异,也是造成再分析感、潜热资料计算误差的主要原因。因此,NCEP-Ⅰ、AR-Ⅱ和ERA40感、潜热再分析资料在青藏高原地区存在着差异,在诊断高原春季非绝热加热异常状况中需审慎对待,也必须对其进行修正。
     (3)季风建立前期青藏高原地表非绝热加热变化特征的分析研究。夏季风建立前期,受高原积雪融雪和冻土融冻过程的影响,青藏高原地表非绝热加热的年际异常变化敏感区从3月高原中部的河谷地带移到4月的东南部地区,5月异常敏感区在面积扩大之后稳定在高原东南部地区。季风建立前期的春季4月份,由于积雪的反照率引起的辐射冷却作用,高原地表非绝热加热在20世纪60年代到70年代中期呈显著减小趋势,之后呈增大的趋势。在5月份,从20世纪60年代到90年代,受地表融雪和融冻过程的影响,高原地表非绝热加热呈现出减小趋势。
     (4)高原非绝热加热与东亚夏季风强度联系的研究。EP通量的分析结果显示,在强、弱季风年春季3-5月,青藏高原地表非绝热加热强迫激发的大气热力波均向对流层中上层传播。强季风年春季,高原北侧40-500N的区域对流层上层的大气定常波同时向中高纬度地区和对流层低层传播并增强;而在弱季风年,其仅向中高纬度地区传播。青藏高原及其北侧40~60°N区域是强、弱季风年EP通量散度差异最大的区域。春季青藏高原地表非绝热加热异常对亚洲夏季风建立前期中高纬度西风气流的变化具有重要影响。春季青藏高原非绝热加热异常和东亚夏季风强度之间存在显著的反相关关系。
     (5)青藏高原非绝热加热与东亚夏季风建立关系的研究。春季,东亚夏季风建立期间,青藏高原地区的高度场和纬向风场存在30~60天大气低频振荡、准双周和5-7天的大气振荡。在典型强季风年份,高原在北部形成低频振荡并向北传播;而在弱季风年份,高原地区的低频振荡具有原地振荡的显著特征。在强季风年,高原的非绝热加热削弱高原地区低频波,非绝热加热在高原东西两侧以外的地区再现出来。在弱季风年份,高原地区的非绝热加热起着加强高原地区低频波的作用;形成了以高原为中心的准南北方向上的振荡特征。在强季风年,高原非绝热加热与大气低频振荡之间的相互作用不仅显著且会持续到南海季风稳定建立。相反在弱季风年,两者之间的相互作用在南海季风建立之后迅速消失。高原地区的非绝热加热和季风强度之间在时空上都存在着密切联系。
     (6)青藏高原非绝热加热异常在亚洲季风中作用的研究。为了验证与高原春季陆面过程相联系的非绝热加热异常在亚洲夏季风中的作用,设计了一组土壤湿度变化的数值试验。模拟结果表明:高原春季土壤湿度的增加(减少),会引起4月份对流层中上层东亚急流区附近西风气流的减弱(增强),高原南侧的南支急流增强(减弱);夏季风建立前期的4、5月份东亚中高纬度地区的槽脊系统出现异常变化;6月份我国东部季风区低层的南风加强(减弱);我国长江和黄河中下游地区、华南东南部地区初夏降水的增加(减少),华南其他地区和淮河流域初夏降水的减少(增加)。表明春季青藏高原冻融过程中土壤湿度的变化,通过对亚洲夏季风建立前期4、5月份的高原南支气流、中高纬度的西风气流和槽脊系统演变的影响,对我国东部的夏季降水产生影响。
As one of the critical members of Asian summer monsoon(ASM) system, the diabatic heating of Qinghai-Xizang plateau(QXP) plays an important role in the Asian summer monsoon. Because of its special geographical location and altitude, the snow cover and frozen ground are the main surface features of the QXP. The changes of land surface processes will inevitably affect on the thermal status property of the QXP, furthermore affect the interaction between the land surface and the air over the QXP. Therefore, studying on the relationships between the land surface processes of the QXP and AMS, not only benefits us to understand the interaction between land and the air over the QXP, but also to expand our comprehension the role of the QXP diabatic heating in the ASM system. Certainly, it is also beneficial to enhance the predicting ability of the summer monsoon rainfall of China.
     By using sensible and latent heat fluxes, snow cover and frozen ground over the QXP, a lot of researcher have investigated the thermal effects of the QXP on the ASM, and got much meaningful achievements. The relationships between the land surface process of Qinghai-Xizang plateau in spring and the Asian summer monsoon are concerned in this paper. First, by using of observational data of Maqu weather station, we comprehensively analyzed the soil thermal property variation of Qinghai-Xizang plateau, especially in the early stage of Asian summer monsoon onset. Basing on the above results, using the observational data of GAME/Tibet in Shiquan River and Gaize stations, and the reanalysis dataset (NCEP-I, AR-II, ERA40), the effects of the soil moisture and temperature variation, which caused by snow melting and soil thawing processes, on computing the surface diabatic heating of the QXP are further investigated. Then, using the the observational surface and air temperature data, the temporal-spatial changing characteristics of the diabatic heating over the QXP in spring of the early stage of ASM establishment are studyed through the empirical orthogonal function(EOF) and rotated empirical orthogonal function(REOF) methods. The relationships between the diabatic heating of the QXP and the snow cover, soil freezing processes are also discussed. Second, we investigate the relationships between the diabatic heating of the QXP in spring and the intensity of East Asian summer monsoon. Furthermore, the interaction between the diabatic heating and the zonal wind and its propagation characteristics are analyzed. Finally, the influences of the soil moisture variation in spring on the QXP surface thermal regime, atmospheric circulation during the ASM building-up, and eastern China early summer precipitation are also investigated through the RegCM3.0 regional climate model simulation. The major contents and results as follows:
     (1) The soil hydrothermal features of the QXP in spring are studied by using the station observational data. The results show that the time soil freezing processes occurred is the early stage of ASM onset. In the soil freezing processes, with the soil temperature rises up, the soil moisture sharply increases in a short time. As the soil under the different condition(frozen, frozen-thawing transition, melt), there arethe different relationships between the soil temperature and soil moisture. In spring the soil freezing processes siginificantly influences the soil heat flux gradient distribution in the shallow layer over the QXP.
     (2) The land surface process impacts on the diabatic heating over the QXP are investigated. In spring, the diurnal freezing-thawing cycle of the soil over the QXP leads to the soil moisture changes, furthermore causes the sensible and latent heat fluxes changes. Therefore, the change of soil moisture, which is caused by the soil diurnal freezing-thawing cycle, has a significant influence on the calculation of surface heating fluxes over the QXP. The soil moisture differences among the observation NCEP-Ⅰ, AR-Ⅱand ERA40 reanalysis data, which are caused by the snow melting and soilthawing processes, are the major reason for the computing error of reanalysis sensible and latent heat fluxes. In spring, due to the impacts of the snow melting and soil thawing processes, there are remarkable differences among the three kinds of reanalysis sensible and latent heat fluxes. It needs to be careful and make correction, while the sensible and latent heat fluxes in reanalysis data are used to diagnosed the diabatic heating anomaly of the QXP in spring.
     (3) The temporal-spatial characteristics of the diabatic heating of the QXP in spring are analyzed. During the early stage of ASM onset, due to the soil thawing and snow melting process impacts, the interannual anomaly center of diabatic heating of the QXP moves from the valley areas of the central in March to the southeastern the QXP in April. Coming into May, after its range expands, it steadily locates on the southeastern the QXP. Due to the influence of the cooling effect of the snow albedo, the diabatic heating of the QXP in April remarkably decreased from 1960s to 1970s, then increased until to the end of 1990s. The diabatic heating of the QXP in May took on a decrease trend from 20th century 60s to 90s, which closely related to the snow melting and soil thawing processes over the QXP under the global warming background.
     (4) The relationships between the diabatic heating of the QXP and the intensity of East Asian summer monsoon are studied through EP flux and other methods. In spring of the strong/weak monsoon years, the atmospheric waves that were excitated by the heat forcing of the QXP propagated to the upper layer of troposphere and strengthened. In the spring of strong monsoon years, the atmospheric stationary waves, which located in upper layer of troposphere on the north side region of the QXP at 40-50°N, spread to the high latitude areas and the lower troposphere, and gradually strengthened; but in the weak monsoon years, they only spread to the high latitude areas. The QXP and 40-60°N areas on the north side of the QXP are the remarkable difference regions of EP flux divergence between the strong and weak monsoon years. In the early stage of ASM onset, the diabatic heating anomaly of the QXP in spring has the important influence on the west flow in the middle-high latitude. There is a signicifant negative correlation between the diabatic heating of the QXP and strength of East Asian summer monsoon.
     (5) The relationships between the diabatic heating of the QXP and the East Asian summer monsoon onset are investigated. The results indicate that, in the spring, the early stage of the East Asian summer monsoon onset, there are 30~60 days, quasi-bi-weekly, and 5-7 days atmospheric oscillation over the QXP. The locations and strength and transmission of the MJO are different in strong and weak monsoon years. The MJO propagates northward in strong monsoon years, but remains in situ in weak monsoon years. In strong monsoon years, the diabatic heating of the QXP prevents low-frequency oscillation and reproduces in the east and west sides of the QXP. But in weak monsoon years, the diabatic heating of the QXP strengthens the MJO over the QXP, and forms the quasi-south-north oscillation centered on thethe QXP. In the strong years, the interactions between the diabatic heating of the QXP and zonal wind MJO are remarkable, and persistent to the South China Sea summer monsoon building up. On the contrary, the interactions between diabatic heating and zonal wind MJO rapidly disappear, while South China Sea summer monsoon breaks out in the weak years.
     (6) The role of diabatic heating of the QXP in the Asian summer monsoon is investigated through numerical simulation experiments of RegCM3.0, The numerical simulation results show that:the soil moisture increase (decrease) over the QXP in the spring, may lead to weaken(strengthen) the upper tropospheric westerly flow near the East Asian jet region in April, and the south branch airflow of the QXP strengthen (weakened). It also may cause the anomaly of the trough-ridge systems in middle-high latitude areas in the early stage of ASM onset. In addition, the soil moisture increase (decrease) over QXP in the spring may lead to the change of the early summer precipitation over eastern China, such as an increase (decrease) in the amount of the monsoon precipitation over the lower-middle reaches of Yangtze River, Yellow River and the southeast areas of South China, and an decrease (increase) over other areas of South China and Huaihe River areas. All of the above indicating that, through influencing on the adjustment of south branch airflow of the QXP, westerly flow and trough-ridge systems during the early stage of ASM onset, the soil moisture change of the QXP in spring has the significant impact on the early summer precipitation over eastern China.
引文
Ananthakrishnam R., Soman M. K., The onset of the south-west monsoon over Kerala:1901-1980, J. Climatol,1988,8,283-296.
    Ananthakrishnam R., Soman M. K.., Onset dates of the south-west monsoon over Karala for the period 1870-1900, Int. J. Climatol.,1989,9,321-322.
    Bamzai A. S., Shukla J., Relationships between Eurasian snow influence of Tibetan snow on monsoon and precipitation-cover, snow depth, and the Indian summer monsoon:an observation, J. Climate,1999,12,3117-3132.
    Barnett T. P., Dumenil L., Schiese V. V., Roeckner E., Latif M, The effect of Eurasian snow cover on regional and global climate variations, J. Atmos. Sci.,1989,46,661-685.
    Blandford H. F., On the connection of Himalayas snow fall and seasons of drought in India, Procedings of the Royal Society,1884,37,3-22.
    Bolin B., On the influence of the Earth's orography on the general character of the westerlies, Tellus,1950,2,184-195.
    Broccoli A. J., Manabe S., The effects of orography on midlatitude Northern Hemisphere dry climate, J. Climate,1992,5,1181-1201.
    Chang C. P., Chen T. C., Tropical circulations associated with southwest monsoon onset and westerly surges over the South China Sea, Mon.Weather Rev,1995,123,3254-3267.
    Charney J. G., Eliassen A., A numerical method for predicting the perturbation of the middle latitude westerlies, Tellus,1949,1.
    Dickson R. R., Eurasian snow cover versus Indian monsoon rainfall-an intension of the Hahn-Shukla results, Journal of Applied Meteorology and Climatology,1984,23,171-173.
    Ding Y. H., Seasonal march of the East-Asia summer monsoon:Chang CP, Eds,East Asian Monsoon,2004, World Scientific Publishing, Singapore,562.
    Ding Y. H., Wang Q. Y., Yan J. Y, Some aspects of climatology of the summer over the South China Sea, From Atmospheric Circulation to Global Chang,1996, China Meteorology Press, BeiJing,289-313."
    Duan A. M., Wu G X., Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia, Clim.Dynam.,2005,24,793-807.
    Duan A. M., Wu G X., Liang X. Y., Influence of the Tibetan Plateau on the summer climate patterns over Asia in the IAP/LASG SAMIL model, Adv. Atmos. Sci.,2008,25,518-528.
    Flohn H., Contributions to a meteorology of Tibetan Highland, Atm. Sci. Paper,1957, No.130, Colorado State Univ., Ft Collons.
    Fu R., Hu Y., Wright J. S., Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau Proc. Nat. Acad. Sci.,2006,103, 5664-5669.
    Hadley G., Concerning the cause of the general trade winds, Phil. Trans. Roys. Soc. London,1735, 39,58-65.
    Hahn D. G., Manabe S., The role of moutains in the south Asian mosoon circulation, J. Atmos. Sci., 1975,32,1515-1541.
    Hahn D. G., Shukla J., An apparent relationships between Eurasian snow cover and Indian monsoon rainfall, Journal of Atmospheric Sciences,1976,33,2.
    Halley E., An historical account of the trade winds and monsoons observable in the seas between and near the tropical with an attempt to assign the physical cause of the said wind, Phil. Trans. Roys. Soc. London,1686,16,153-168.
    Huang R. H., Gu L., Zhou L. T., Impact of the thermal state of the tropical western Pacific on Onset date and process of the South China Sea summer monsoon, Adv. Atmos. Sci.,2006, 23,909-924.
    Johnson D. R., Yanai M., Global and regional distributions of atmospheric heat sources and sinks during the GWE.:Chang CP, Krishnamuri TN, eds, Monsoon Meteorology 1987, Oxford University Press, Oxford,271-297.
    Kripalani R. H., Kulkarni A., Sabade S. S., Western Himalayan and Indian monsoon rainfall:A ree-examination with INSAT and NCEP/NCAR data, Theor. Appl. Climatol.,2003,74, 1-18.
    Krishnamurti T. N., Daggupaty S. M., Fein J., Tibetan high and upper tropospheric tropical circulations during northern summer, Bull. Amer. Meteor. Soc,1973,54,1234-1248.
    Lau K. M., Yang S., Climatology and interannual variability of the southeast Asia summer monsoon, Adv. Atmos. Sci.,1997,14,141-162.
    Li W., Chen L. X., Characteristics of the seasonal variation of the surface total heating over the Tibetan Plateau and its surrounding area in summer 1998 and its relationships with the convection over the subtropical area of the Western Pacific, Adv. Atmos. Sci.,2003,20, 343-348.
    Li W. P., Theo C. C, Liu X., Wu G. X., Atmospheric diabatic heating and summer time circulation in Asia-Africa area, Adv. Atmos. Sci.,2001,18,257-268.
    Luo H. B., Yanai M., The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part Ⅱ:Heat and moisture budgets, Mon.Weather. Rev.,1984,112,966-989.
    Luo L. F., Alan R., Kenneth Y., et al. Effects of frozen soil on soil temperature, spring infiltration, and runoff:Results from the PILPS 2(d) experiment at Valdai, Russia, J.Hydrometeorology 2003,4,334-351.
    Manabe S., Terpstra T. B., The effects of moutains on the general circulation of the atmosphere as identified by numerical experiments, J. Atmos. Sci.,1974,31,3-42.
    Mooley D. A., Shukla J., Variability and forcasting of the summer monsoon rainfall over India: Chang CPea, Monsoon Meteorology,1987, Oxford University Press, Oxford,26-58.
    Murakami T., Ding Y. H., Wind and temperature changes over Eurasia during the early summer of 1979, J. Meteorol. Soc. Japan,1979,60,183-196.
    Murakami T., Matsumoto J., Summer monsoon over the Asian continent and western north Pacific, J. Meteorol. Soc. Japan,1994,72,719-740.
    Oh J. H., Kwon W. T, Lee D. K., Review of the researches on Changma and future ovservational study(KORMEX), Adv. Atmos. Sci.,1997,14,207-222.
    Reiter E. R., Ding Y. H., The role of the Qinghai-Xizang Plateau in feedback mechanisms affecting the planetary circulation, Chin.J. Atmos. Sci.,1980,5,301-309.
    Sato T., Kimura F., How does the Tibetan Plateau affect the transition of Indian monsoon rainfall?, Mon. Weather.Rev,2006,135, doi:10.1175/MWR3386.1.
    Song J. H., Kang H. S., Byun Y. H., Hong S. Y., Effects of the Tibetan Plateau on the Asian summer monsoon:a numerical case study using a regional cliamte model, Int. J. Climatol., 2009, doi:10.1002/joc.1906.
    Tanaka M., Intraseasonal oscillation and the onset and retreat dates of the summer monsoon over east, southeast Asia and the western Pacific region using GMS high cloud amount data, J. Meteorol. Soc. Japan,1992,70,613-629.
    Tao S. Y., Chen L. X., A review of recent research on the East Asian summer monsoon in China, Chang C.P. Krishna Murti T.N.,eds. Monsoon Meteorology,1987, Oxford University Press, 60-92.
    Vernekar A. D., Zhou J., The effect of Eurasian snow cover on the indian monsoon J. Climate, 1995,8,248-266.
    Walker G. T., Correlation in seasonal variation of weather, Memairs of the Indian Meterological Department,1990,21,22-45.
    Wang B., Lin H., Rainy season of the Asian-Pacific summer monsoon, J. Climate,2002,15, 386-398.
    Wang C. H., Dong W. J., Wei Z. G., Study on relationships between freezing-thawing processes of the Qinghai-Tibet Plateau and the atmospheric circulation over East Asia, Chinese Journal Geophysics,2003,46,438-441.
    Webster P. J., The elementary monsoon Fein JS, Stephens PL, Eds. Monsoons.,1987, John Wiley, New York,3-32.
    Webster P. J., Magana V. O., Palmer T. N., et al, Monsoon:processes, predictability, and the propects for prediction, J. Geophys. Res.,1998,103,14451-14510.
    Wu A. M., Ni Y. Q., The influence of Tibetan Plateau on the interannual variability of atmospheric circulation over tropocal Pacific, Adv. Atmos. Sci.,1997,14,69-80.
    Wu G X., Liu Y. M., Wang T. M., Wang R. J., Liu X., Li W. P., et al., The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate, J. Hydrometeorol.,2007,8, 770-789.
    Wu G. X., Zhang Y. S., Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea, Mon.Weather Rev,1998,126,913-927.
    Wu T. W., Qian Z. A., The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall:an observational investigation, J. Climate,2003,16,2038-2051.
    Xie L., Yan T. Z., Pietrafesa L. J., Karl T., Xu X. D., Relationships between western North Pacific typhoon activity and Tibetan Plateau winter and spring snow cover, Geophys. Res. Lett., 2005,32, doi:10.1029/2005GL0232337.
    Yan Q. M., Zheng Q. L., A numerical study on the effects of the Qinghai-Xizang Plateau on the medium-range weather processes of the summer monsoon rain in East Asia, Acta. Meteor. Sinica,1991,2,171-183.
    Yasunari T, Kitoh A., Tokioka T, Local and remote response to excess snow mass over Eurasian appearing in the northern spring and summer climate:a study with the MRIGCM, J. Meteorol. Soc. Japan,1991,69,473-487.
    Ye D. Z., Wu G X., The role of the heat source of the Tibetan Plateau in the general circulation, Meteorol. Atmos. Phys.,1998,67,181-198.
    Yeh T. C, The circulation of the high troposphere over China in the winter of 1945-1946, Tellus, 1950,2,173-183.
    Yin M. T., A synoptic-aerologic study of the onset of the summer monsoon over India and Burma, Journal of Meteorology,1949,6,393-400.
    Zhang Y. S., Li T., Wang B., Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon, J. Climate, 2004,17,2780-2793.
    Zhao H. X., Moore G W. K., On the relationships between Tibetan snow cover, the Tibetan plateau monsoon and the Indian summer monsoon, Geophys. Res. Lett.,2004,31, 14204-14208.
    Zhao P., Chen L. X., Interannual variability of atmospheric heat source/sink over the Qinghai-Xizang(Tibetan) Plateau and its relation to circulation, Adv. Atmos. Sci.,2001,18, 106-116.
    Zheng Q. L., Liou K. N., Dynamic and thermodynamic influences of the Tibetan Plateau on the atmosphere in a general circulation model, J. Atmos. Sci.,1984,41,1340-1354.
    Zheng Q. L., Wu J., Numerical study on the dynamic and thermodynamic effects of the Qinghai-Xizang Plateau on the seasonal transition in the early summer in East Asia, Acta. Meteor. Sinica,1995,9,35-47.
    Zhu Q. G., He J. H.,Wang P. X., A study of circulation differences between East-Asian and Indian summer monsoons with their interaction, Adv. Atmos. Sci.,1986,4,466-477.
    丁一汇,马鹤年,东亚季风的研究现状:何金海编,亚洲季风研究的新进展,1996,气象出版社,北京,1-13.
    中国气象局国家气候中心,98'中国大洪水与气候异常,1998,北京,气象出版社.
    下同美,吴国雄,万日金,青藏高原的热力和动力作用对亚洲季风区环流的影响,高原气象,2008.27.1-8.
    王澄海,师锐,左宏超,青藏高原西部冻融期陆面过程的模拟分析,高原气象,2008,27,1-10.
    王澄海,尚大成,藏北高原土壤温、湿度变化在高原干湿季节转换中的作用,高原气象,2007a,26,677-685.
    王澄海,师锐,青藏高原西部陆面过程特征的模拟分析,冰川冻土,2007b,29,73-81.
    王澄海,董文杰,韦志刚,青藏高原季节冻融过程与东亚大气环流关系的研究,地球物理学报,2003,46,309-316.
    王叶堂,何勇,侯书贵,青藏高原冬春季积雪对亚洲夏季风降水影响的研究,冰川冻土,2008,30.452-460.
    占瑞芬,李建平,青藏高原和热带西北太平洋大气热源在亚洲地区夏季平流层-对流层水汽交换的年代际变化中的作用,中国科学(D辑),2008,38,1028-1040.
    朱抱真,大尺度热源、热汇和地形对西风带的定常扰动,气象学报,1957,28,122-140.
    朱福康,赵卫,青藏高原地面净辐射对大气环流作用的一些观测事实,青藏高原气象科学试验文集(三),1987,科学出版社,北京,54-61.
    江宁波,罗会邦,青藏高原加热与南海季风爆发,中山大学学报,1996,35,194-199.
    江爱良,全球变化与亚洲季风,第四纪研究,1995,3,232-242.
    何金海,东亚季风体系和研究进展以及爆发特征和可能机制,现代大气科学前沿与展望,1995,气象出版社,北京,51-55.
    何金海,罗京佳,南海季风爆发和亚洲季风推进特征及其形成机制的探讨:何金海编,亚洲季风研究的新进展,1996,气象出版社,北京,71-81.
    何家骅,陈隆勋,李维亮,大气热源和青藏高原对季风环流形成的数值试验的初步结果,青藏高原气象科学试验文集(一),1984,科学出版社,北京,324-332.
    宋正山,杨辉,我国夏季降水和青藏高原的作用,灾害性气候的过程及诊断,1996,气象出版社,北京,114.
    宋正山,鲍媛媛,杨辉,初夏东南亚季风建立过程的气候诊断分析,高原气象,2002,21,119-127.
    李培基,对“喜马拉雅山积雪与印度季风降水呈明显反相关关系的商榷”,气象学报,2001,27,8-12.
    李栋梁,魏丽,李维京,吕芝兰,钟海玲,季国良,青藏高原地面感热对北半球大气环流和中国气候异常的影响,气候和环境研究,2003,8,60-70.
    沈如金,纪立人,陈于湘等,夏季青藏高原热力影响的数值试验,青藏高原气象科学试验文集(三),1987,科学出版社,北京,181-190.
    尚大成,王澄海,高原地表过程中冻融过程在东亚夏季风中的作用,干旱气象,2006,24, 19-22.
    段安民,刘屹岷,吴国雄,4-6月青藏高原热状况与盛夏东亚降水和大气环流的异常,中国科学(D辑),2003a,33,997-1004.
    段安民,吴国雄,7月青藏高原大气热源空间型及其与东亚大气环流和降水的相关研究,气象学报,2003b,61,447-456.
    徐明,朱永,青藏高原冬季积雪对华东梅汛期降水影响的数值试验,应用气象学报,1997,8,110-115.
    徐国昌,李珊,洪波,青藏高原雪盖异常对我国环流和降水影响,应用气象学报,1994,5,62-67.
    高由禧,徐淑英,郭其蕴等,东亚季风研究的若干问题,1962,北京,科学出版社.
    梁潇云,刘屹岷,吴国雄,青藏高原对亚洲夏季风爆发位置及强度的影响,气象学报,2005,63.799-805.
    梁潇云,刘屹岷,吴国雄,热带、副热带海陆分布与青藏高原在亚洲夏季风形成中的作用,地球物理学报,2006,49,983-992.
    陶诗言,中国之暴雨,1980,北京,气象出版社.
    陶诗言,季风研究中有待解决的问题:国家自然科学基金委员会编,现代大气科学前沿与展望,1996,气象出版社,北京,35-37.
    陶诗言,何师秀,杨祖芳,1979年季风试验期间东亚夏季风爆发的观测研究,大气科学,1983,7.347-355.
    陶诗言,陈隆勋,亚洲夏季大陆上空大气环流的结构,气象学报,1957,28,234-247.
    章基嘉,李维京,徐祥德等,1991年江淮暴雨期间环流异常的动力延伸预报试验,气象学报,1994,52,180-186.
    曾庆存,张邦林,卢佩生,大气环流的季节变化和季风,现代大气科学前沿与展望,1996,气象出版社,北京,37-38.
    焦彦军,一嵌套区域气候模式的建立和中国夏季风降水的区域气候模拟,1998,中国科学院兰州高原大气物理研究所博士论文,兰州,1-30.
    葛旭阳,朱永褆,青藏高原热力状况异常特征及其与长江中下游地区夏季降水的关系,气象科学,2001,21,147-153.
    董文杰,封国林,韦志刚,陆—气相互作用对我国气候变化的影响,2005,北京,气象出版社.
    蔡学湛,青藏高原雪盖与东亚季风异常对华南前汛期降水的影响,应用气象学报,2001,12,358-367.
    丛春华,李维亮,周秀骥,青藏高原及其邻近地区上空平流层—对流层之间大气的质量交换,科学通报,2001,46,1914-1918.
    冯瑞权,王安宇,吴池胜,南海夏季风建立的气候特征Ⅰ—40年平均,热带气象学报,2001,17.345-354.
    刘新,李伟平,吴国雄,夏季青藏高原加热和北半球环流年际变化的相关分析,气象学报,2002a,60,267-277.
    刘新,李伟平,许晃雄,吴国雄,青藏高原加热对东亚地区夏季降水的影响,高原气象,2007,26.1287-1292.
    刘新,吴国雄,刘屹岷,刘平,青藏高原加热与亚洲环流季节变化和夏季风爆发,大气科学,2002b,26,781-793.
    刘华强,孙照渤,朱伟军,青藏高原积雪与亚洲季风环流年代际变化的关系,南京气象学院 学报,2003,26,733-739.
    卢咸池,罗勇,青藏高原冬春季雪盖对东亚夏季大气环流影响饿数值试验,应用气象学报,1994.5.385-393.
    叶笃正,高由禧,青藏高原气象学,1979,北京,科学出版社.
    叶笃正,陶诗言,李麦村,在六月和十月大气环流突变现象,气象学报,1958,29,249-263.
    叶笃正,张捷迁,青藏高原加热作用对夏季东亚大气环流影响的初步模拟试验,中国科学,1974.3.301-320.
    叶笃止,罗四维,朱抱真,青藏高原及其附近的流场结构和对流层的热量平衡,气象学报,1957,28,108-121.
    叶笃正,黄荣辉,黄河长江流域旱涝规律和成因研究,1996,济南,山东科技出版社.
    吕俊梅,陶诗言,张庆云,琚建华,气候平均状况下亚洲夏季风的季节内演变过程,高原气象,2006,25,814-823.
    吴国雄,毛江玉,段安民,张琼,青藏高原影响亚洲夏季气候研究的最新进展,气象学报,2004,62,528-540.
    吴国雄,李伟平,郭华等,青藏高原感热气泵和亚洲夏季风,赵九章纪念文集,1997,科学出版社,北京,116-126.
    吴国雄,薛纪善,刘辉等,青藏高原化雪迟早的辐射效应对季节变化的影响,灾害性气候的模拟和预测。,1996,北京,气象出版社.
    吴国雄,刘屹岷,刘新,段安民,梁潇云,青藏高原加热如何影响亚洲夏季的气候格局,大气科学,2005,29,47-56.
    吴国雄,刘新,张琼,钱永甫,毛江玉,刘屹岷,et a1.,青藏高原抬升加热气候效应研究的新进展,气候与环境研究,2002,7,184-201.
    吴国雄,张永生,青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅰ.爆发地点,大气科学,1998,22,825-837.
    吴国雄,张永生,青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅱ.爆发时间,大气科学,1999,23,51-61.
    吴统文,钱正安,青藏高原冬春积雪异常与中国东部地区夏季降水关系的进一步分析,气象学报,2000,58,570-581.
    张耀存,钱永甫,青藏高原隆升作用于大气临界高度的数值研究,气象学报,1999,57,157-167.
    张艳,钱永甫,青藏高原地面热源对亚洲季风爆发的热力影响,南京气象学院学报,2002,25,298-306.
    张顺利,陶诗言,青藏高原积雪对亚洲季风影响的诊断及数值研究,大气科学,2001,25,372-390.
    张顺利,陶诗言,青藏高原对1998年长江流域天气异常的影响,气象学报,2002,60,442-452.
    杨梅学,姚檀栋,青藏高原雪盖对亚洲季风影响研究进展,冰川冻土,1998,20,17-19.
    杨梅学,姚檀栋,亚洲季风研究进展,自然杂志,1999,21,330-335.
    杨梅学,姚檀栋,何元庆,青藏高原土壤水热分布特征及冻融过程在季节转换中的作用,山地学报,2002,20,553-558.
    杨梅学,姚檀栋,Hirose N., Hideyuki F.,青藏高原表层土壤的日冻融循环,科学通报,2006,51.1974-1976.
    罗会邦,陈蓉,夏半年青藏高原东部大气热源异常对环流和降水的影响,气象科学,1995,15,94-102.
    蒋尚城,卫星观测揭示的热带大气环流的新事实,东亚季风和中国暴雨,1998,气象出版社,北京,427-435.
    谢立安,南海夏季风活动的诊断分析,南京气象学院学报,1986,2,129-124.
    谢安,刘霞,叶谦,南海夏季风爆发的气候特征:何金海编,亚洲夏季风研究的新进展,1996,气象出版社,北京,132-142.
    赵平,陈隆勋,35年来青藏高原大气热源气候特征及其与中国降水的关系,中国科学(D辑),2001,31,327-332.
    赵勇,钱永甫,青藏高原地表热力异常与我国江淮地区夏季降水的关系,大气科学,2007,31,145-154.
    赵声蓉,宋正山,纪立人,青藏高原热力异常与华北汛期降水关系的研究,大气科学,2003,27.881-893.
    郑益群,钱永甫,苗曼倩等,青藏高原积雪对中国夏季风气候的影响,大气科学,2000,24,761-773.
    郑庆林,王三杉,张朝林,宋青丽,青藏高原动力和热力作用对热带大气环流影响的数值研究,青藏高原,2001,20,14-21.
    郑庆林,梁丰,青藏高原动力和热力作用对季节转换期全球大气环流影响的数值研究,热带气象学报,1999,15,247-257.
    郑庆林,燕启民,宋青丽,一次南亚高压中期活动过程的数值研究,热带气象学报,1993,9,3745.
    钱永甫,张艳,郑益群,青藏高原冬春季积雪异常对中国春夏季降水的影响,干旱气象,2003,21.1-7.
    钱永甫,彦宏,骆启仁,一个大地形影响的初始方程数值预报模式,大气科学,1978,2,91-102.
    陈烈庭,热带印度洋—太平洋海温纬向异常及其对亚洲夏季风的影响,大气科学,1988,12,142-148.
    陈烈庭,阎志新,青藏高原冬春积雪对大气环流和我国南方汛期降水的影响:长江流域规划办公室,中长期水文气象预报文集(1),1979,水利电力出版社,北京,185-194.
    陈乾金,高波,李维京,青藏高原冬春积雪异常和长江中下游主汛期旱涝及其与环流关系的研究,气象学报,2000,58,582-595.
    陈隆勋,朱乾根,罗会邦,东亚季风,1991,北京,气象出版社.
    陈隆勋,宋毅,村上胜人,夏季风爆发时期对流云团的变化特征:何金海编,亚洲季风研究的新进展,1996,气象出版社,北京,54-64.
    陈隆勋,李维亮,亚洲季风区各月的大气热源结构,全国热带夏季风学术会议文集,1983,云南人民出版社,云南.
    陈隆勋,金祖辉,夏季东亚季风环流系统内中期变化的南北半球相互作用,全国热带夏季风学术会议文集,1983,218-231.
    陈丽娟,吕世华,罗四维,青藏高原春季积雪异常对亚洲季风降水影响的数值试验,高原气象,1996,15,122-130.
    陈兴芳,宋文玲,欧亚和青藏高原冬春积雪与我国夏季降水关系的分析和预测应用,高原气象,2000,19,214-223.
    韦志刚,我国西部大尺度陆面状况的变化及其对我国夏季降水的影响,高原气象,2003a,24,366-377.
    韦志刚,青藏高原冬春积雪对长江流域夏季降水的影响,湖泊科学,2003b,15,68-76.
    韦志刚,罗四维,董文杰,青藏高原积雪资料分析及其与我国夏季降水的关系,应用气象学报,1998,9,39-46.
    顾震潮,西藏高原对东亚大气环流的动力影响和它的重要性,中国科学,1951,2,283-303.
    黄荣辉,李维京,夏季西太平洋热源异常的作用,大气科学,1988,特刊,107-117.
    黄荣辉,顾磊,徐予红,等,东亚夏季风爆发和北进的年际变化特征及其与热带西太平洋热力状态的关系,大气科学,2005,29,20-31
    Council U. S. N. R., GOALS(Global Ocean-Atmosphere-Land System) for Predicting Seasonal to International Climate[M] Washington D C:National Academy Press,1994,103.
    Goodrich L. E., The influence of snow cover on the ground thermal regime, Canadian Geotechnology Journal,1982,19,421-434.
    Keith A. C., Dennis P. L., Hydrologic effects of frozen soils in the upper Mississipi River basin, Journal of Geographical Research,1999,104,19599-19610.
    Pavlov A. V., Current change of climate and permafrost in the Arctic and Sub-Arctic of Russia, Permafrost and Periglacial Processes,1994,5,101-110.
    王澄海,尚大成,藏北高原土壤温、湿度变化在高原干湿季节转换中的作用,高原气象,2007,26.677-685.
    王澄海,师锐,左洪超,青藏高原西部冻融期陆面过程的模拟分析,高原气象,2008,27,239-248.
    李述训,南卓铜,赵林,冻融作用对地气系统能量交换的影响分析,冰川冻土,2002,24,506-511.
    周余华,叶伯生,胡和平,土壤冻融条件下的陆面过程研究概述,水科学进展,2005,16,887-891.
    杨梅学,姚檀栋,勾晓华,青藏公路沿线土壤的冻融过程及水热分布特征,自然科学进展,2000,10,443-450.
    杨梅学,姚檀栋,何元庆,青藏高原土壤水热分布特征及冻融过程在季节转换中的作用,山地学报,2002,20,553-558.
    Barnett T. P., Dumenil L., Schiese V. V., Roeckner E., Latif M., The effect of Eurasian snow cover on regional and global climate variations, J. Atmos. Sci.,1989,46,661-685.
    Broccoli A. J., Manabe S., The effects of orography on midlatitude Northern Hemisphere dry climate, J. Climate.1992,5.1181-1201.
    Busubger J. A., A note on the Businger-Dyer profiles, Bound-Layer meteor,1988,42,145-151.
    Duan A. M., Wu G. X., Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia, Clim.Dynam.,2005,24,793-807.
    Dyer A. J., Hicks B. B., Flux-Gradient Relationships in the Constant Flux Layer, Quart J Roy Meteorol Soc,1970,96,715-721.
    Flohn H., Contributions to a meteorology of Tibetan Highland, Atm. Sci. Paper,1957, No.130, Colorado State Univ., Ft Collons.
    Flohn H., Recent investigation on the machanism of the "summer monsoon" of southern and eastern Asia,1960, New Delhi, Hindu Union Press.
    Flohn H., Contributions to a Meteorology of the Tibetan Highlands, Atm. Sci. paper,1968,130, 1-120.
    Hahn D. G., Manabe S., The role of moutains in the south Asian mosoon circulation, J. Atmos. Sci., 1975,32,1515-1541.
    Hicks B. B., Wind profile relationships from the Wangara experiment, Quart J Roy Meteorol Soc, 1976,102,535-551.
    http://www.ecmwf.int/.
    Janowiak J. An evalution of NMC/NCAR reanalysis tropical rainfall during 1986-8. Proc 19th Ann Climate Diagnostics Workshop. US Department of Commerce, College Park, M.D, 1994, pp.238:241.
    Janowiak J., Grubber A., Kondragunla C. R., Livezey R., Huffman G., A comparison of the NCEP/NCAR reanalysis precipitation and the GPCP raingauge-stallite combined dataset with observational error consideration, J. Climate,1998,11,2960-2979.
    Jiang H., Wang H., Wu D. X., Evaluation of monthly turbulent heat fluxes from WHOI analysis and NCEP reanalysis in the tropical Atlantic, Acta. Meteor. Sinica,2005,24,14-26.
    Kalnay E., Kanamitsu M., Kistler R., The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc,1996,77,437-471.
    Kanamitsu M., Ebisuzaki W., Woolen J., An overview of NCEP/DOE reanalysis-2,Proc Conf 2nd Intl Conf on Reanalysis, WCRP-109(WMO/TD985),2000, Geneva, WMO,2000,1-4.
    Li C. F., Yanai M., The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast, J. Climate,1996,9,358-375.
    Li W. P., Wu G. X., Liu Y. M., How the surface processes over the Tibetan Plateau affect the summer time Tibetan Anticyclone:numerical experiments, Chin. J. Atmos. Sci.,2001,25, 809-816.
    Poccard I., Janicot S., Camberlin P., Comparison of rainfall structures between NCEP/NCAR reanalysis and ovserved data over tropical Africa, Climate Dynamics,2000,16,897-915.
    Santer B. D., Hnilo J. J., Wigley T. M. L., Uncertainties in observational estimates of temperature change in the free atmosphere, J. Geophys. Res.,1999,104,6305-6333.
    Stendel M., Christy J. R., Bengtsson, Assessment levels of uncertainty in recent temperature time series,2000.
    Stndel M., Arpe K., ECMWF reanalysis project report series,6. Evaluation of the hydrological cycle in reanalyeses and observations. Rep.228, Max-Planck-Institute fur Meteorological, Hamburg, Germany,1997,52.
    Sun B., Yu L., Weller R. A., Comparisons of surface meteorology and turbulent heat fluxes over the Atlantic:NWP model analyses versus moored buoy observations, J. Climate,2003,16, 679-695.
    Tao S. Y., Ding Y. H., Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurence of heavy rain and severe convective storms in China, Wea. Forecasting,1981,2,89-112.
    Trenberth K. E., Guillemot C. J., Evalution of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses, Clim.Dynam.,1995,14,213-231.
    Weller R. A., Anderson S. P., Surface meteorology and air-sea fluxes in the western equatorial Pacific warm pool during the TOGA couple ocean-atmosphere experiment, J. Clmate,1996, 9,1959-1990.
    Yanai M., Li C. F., Song F., Seasonal heating of Tibetan Plateau and effects of in the evolution of the Asia summer monsoon, J. Meteorol. Soc. Japan,1992,70,319-351.
    Zhao P., Chen L. X., Climate features of atmospheric heat source/sink over the Qinghai-Xizang Plateau in 35 years and its relation to rainfall in China, Sci in China Ser D,2001,44, 858-864.
    丁一汇,李崇银,何金海,等,南海季风试验与东亚夏季风,气象学报,2004,62,561-586.
    王澄海,尚大成,藏北高原土壤温、湿度变化在高原干湿季节转换中的作用,高原气象,2007a,26,677-685.
    王澄海,董文杰,韦志刚,青藏高原季节冻融过程与东亚大气环流关系的研究,地球物理学报,2003,46,309-316.
    王澄海,师锐,青藏高原西部陆面过程特征的模拟研究,冰川冻土,2007b,29,73-81.
    余锦华,刘晶淼,丁裕国,青藏高原西部地表通量的年、日变化特征,高原气象,2004,23,353-359.
    宋敏红,吴统文,钱正安,高原地区NCEP热通量再分析资料的检验及在夏季降水预测中的应用,高原气象,2000,19,467-475.
    李川,张廷军,陈静,近40年青藏高原地区的气候变化,高原气象,2004,23,97-103.
    李国平,段廷扬,巩远发,青藏高原西部的总体输送系数和地面通量,科学通报,2000,45,865-869.
    段安民,刘屹岷,吴国雄,4~6月青藏高原热状况与盛夏东亚降水和大气环流的异常,中国科学(D辑),2003a,33,997-1004.
    段安民,吴国雄,7月青藏高原大气热源空间型及其与东亚大气环流和降水的相关研究,气象学报,2003b,61,447-456.
    徐影,丁一汇,赵宗慈,美国NCEP/NCAR近50年全球再分析资料在我国气候变化研究当中可信度的初步研究,应用气象学报,2001,23,337-347.
    梁建茵,吴尚森,南海西南季风爆发日期及其影响因子,大气科学,2002,26,829-844.
    章基嘉,朱抱真,朱福康等.青藏高原气象学进展.气象出版社,北京,1988.
    魏丽,李栋梁,青藏高原地区NCEP新再分析地面通量资料的检验,高原气象,2003,22,478-487.
    刘新,吴国雄,刘屹岷,刘平,青藏高原加热与亚洲环流季节变化和夏季风爆发,大气科学,2002,26.781-793.
    叶笃正,罗四维,朱抱真,青藏高原及其附近的流场结构和对流层的热量平衡,气象学报,1957,28,108-121.
    吴国雄,刘屹岷,刘新,段安民,梁潇云,青藏高原加热如何影响亚洲夏季的气候格局,大气科学,2005,29,47-56.
    杨梅学,姚檀栋,何元庆,青藏高原土壤水热分布特征及冻融过程在季节转换中的作用,山地学报,2002;20,553-558.
    苏志侠,吕世华,罗四维,美国NCEP/NCAR全球再分析资料及其初步分析,高原气象,1999,18.209-218.
    赵天宝,艾丽坤,冯锦明,NCEP再分析资料和中国站点观测资料的分析与比较,气候与环境研究,2004,9,278-294.
    钱永甫,江静,张艳,等,亚洲热带夏季风的首发地区和机理研究,气象学报,2004,62,129-139.
    《气候变化国家评估报告》编写组,气候变化国家评估报告,2007,北京,科学出版社.
    Bansod S. D., Yin Z. Y., Lin Z. Y, Zhang X. Q., Thermal field over Tibetan Plateau and indian summer monsoon rainfall, Int. J. Climatol.,2003,23,1589-1605.
    Barnett T. P., Dumenil L., Schiese V. V., Roeckner E., Latif M., The effect of Eurasian snow cover on regional and global climate variations, J. Atmos. Sci.,1989,46,661-685.
    Cui Y, Wang C. H., Compared Study on the Sensible and Latent Fluxes'Quality of Reanalysis Data over the Western Tibetan Plateau, Progress in Nature Science,2009,19,719-726.
    Duan A. M., Wu G. X., Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia, Clim.Dynam.,2005,24,793-807.
    Flohn H., Recent investigation on the machanism of the "summer monsoon" of southern and eastern Asia,1960, New Delhi, Hindu Union Press.
    Flohn H., Contributions to a Meteorology of the Tibetan Highlands, Atm. Sci. paper,1968,130, 1-120.
    Wang C. H., Cheng G. D., Deng A. J., Dong W. J., Numerical simulation on climate effects of freezing-thawing processes using CCM3, Science in Cold Arid Regions,2008,1, 0068-0079.
    Wu G. X., Zhang Y. S., Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea, Mon. Weather Rev,1998,126,913-927.
    Yanai M., Li C. F., Song F., Seasonal heating of Tibetan Plateau and effects of in the evolution of the Asia summer monsoon, J. Meteorol. Soc. Japan,1992,70,319-351.
    Ye D. Z., Wu G. X., The role of the heat source of the Tibetan Plateau in the general circulation, Meteorol. Atmos. Phys.,1998,67,181-198.
    Yeh T. C, The circulation of the high troposphere over China in the winter of 1945-1946, Tellus, 1950,2,173-183.
    Yin Z. Y., Lin Z. Y., Zhao X. Y., Temperature anomalies in central and eastern Tibetan Plateau in relation to general circulation patterns during 1951-1993, Int. J. Climatol.,2000,20, 1431-1449.
    Zhang W. G., Li S. X., Wu T. H., Changes and spatial patterns of the differences between ground and air temperature over the Qinghai-Xizang Plateau, Journal of Geographical Sciences, 2007,17,20-32.
    王澄海,尚大成,藏北高原土壤温、湿度变化在高原干湿季节转换中的作用,高原气象,2007a,26,677-685.
    王澄海,崔洋,靳双龙,燕青,南海夏季风强弱年青藏高原地区春季大气的低频振荡特征,自然科学进展,2009,19,111-119.
    王澄海,董文杰,韦志刚,青藏高原季节性冻土年际变化的异常特征,地理学报,2001,56,523-531.
    王澄海,董文杰,韦志刚,青藏高原季节冻融过程与东亚大气环流关系的研究,地球物理学报,2003,46,309-316.
    王澄海,师锐,青藏高原西部陆面过程特征的模拟研究,冰川冻土,2007b,29,73-81.
    何平,程国栋,朱元林,土体冻结过程中的热质迁移研究进展,冰川冻土,2001,23,92-97.
    李培基,高亚洲积雪检测,冰川冻土,1996,18,105-114.
    李树训,南卓铜,赵林,冻融作用对地气系统能量交换的影响分析,冰川冻土,2002,24, 506-511.
    周玉淑,高守亭,邓国等,青藏高原冬春季地温异常对长江下游夏季旱涝影响的研究,南京气象学院学报,2002,25,611-619.
    周明煜,徐祥德,卞林根等,青藏高原大气边界层观测分析与动力学研究,2000,北京,气象出版社.
    季国良,姚兰昌,袁福茂等,1982年冬季青藏高原地面和大气的加热场特征,中国科学(B辑),1986,2,214-224.
    林振耀,赵昕奕,青藏高原气温降水变化的空间特征,中国科学(D辑),1996,26,354-358.
    建军,余锦华,达琼,近30年青藏高原年平均Ocm地温的分布和变化特征,气象,2006,32,611-619.
    戴加洗,青藏高原气候,1990,北京,气象出版社.
    刘颖,徐祥德,施晓晖,春季地气温差与长江中下游夏季旱涝异常的相关,气象科技,2009,37,301-305.
    叶笃止,高由禧,青藏高原气象学,1979,北京,科学出版社.
    吴祥定,林振耀,历史时期青藏高原气候变化特征的初步分析,气象学报,1981,39,90-97.
    杨梅学,姚檀栋,Hirose N., Hideyuki F.,青藏高原表层土壤的日冻融循环,科学通报,2006,51,1974-1976.
    汤懋苍,程国栋,林振耀,青藏高原近代气候变化及对环境的影响,1998,广州,广东科学技术出版社.
    韦志刚,吕世华,青藏高原积雪的分布特征及其对地面反照率的影响,高原气象,1995,14,67-73.
    韦志刚,黄荣辉,陈文等,青藏高原地面站积雪的空间分布和年代际变化特征,大气科学,2002,26,496-508.
    Goswami B. N., Krishnamurthy V., Annamalai H., A broad-scale circulation index for the interannual variability of the Indian summer monsoon, Quart. J. Roy. Meteor. Soc,1999, 125,611-633.
    Lau K. M., Kim K. M., Yang S., Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon, J. Climate,2000,13,2461-2482.
    Lu E., Chan J. C., A unified monsoon index for south China,Journal of Climate, J. Climate,1999, 12,2375-2385.
    Nitta T., Covective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation, J Meteor. Soc. Japan,1987,61,590-605.
    Tao S. Y., Chen L. X., A review of recent research on the East Asian summer monsoon in China, Chang C.P. Krishna Murti T.N.,eds. Monsoon Meteorology,1987, Oxford University Press, 60-92.
    Wang B., Lau K. M., Interannual variability of the Asian summer monsoon:Contrasts between the Indian and the western north Pacific-East Asian monsoons, J. Climate,2001,14, 4073-4090.
    Webster P. J., Yang S., Monsoon and ENSO,selectively interactive systems, Quart. J. Roy. Meteor. Soc,1992,118,877-926.
    Zeng Q. C, Zhang B. L., Liang Y. L., Zhao S. X., The Asian summer monsoon-a case study, Proceedings of the India Science Academy,1994,60,81-96.
    何金海,丁一汇,高辉,徐海明,南海夏季风建立日期的确定与季风指数,2001,北京,气象出版社.
    李建平,曾庆存,一个新的季风指数及其年际变化和与雨量的关系,气候与环境研究,2005,10,351-365.
    李峰,何立富,长江中下游地区夏季旱涝年际、年代际变化的可能成因研究,应用气象学报,2002,13,718-726.
    施能,近40年东亚冬季风强度的多时间尺度变化特征及其与气候的关系,应用气象学报,1996,7,175-182.
    施能,朱乾根,吴彬贵,近40年东亚夏季风及我国夏季大尺度天气气候异常,大气科学,1996,20,575-583.
    祝从文,何敏,何金海,热带环流指数与夏季长江中下游旱涝的年际变化,南京气象学院学报,1998,21,15-22.
    梁建茵,吴尚森,南海西南季风爆发日期及其影响因子,大气科学,2002,26,829-844.
    郭其蕴,东亚夏季风强度指数及其变化的分析,地理学报,1983,38,207-216.
    曾庆存,张邦林,大气的季节变化和季风,大气科学,1998,22,805-813.
    乔云亭,陈烈庭,张庆云,东亚季风指数的定义及其与中国气候的关系,大气科学,2002,26,69-82.
    孙颖,丁一汇,1997年东亚夏季风异常活动在汛期降水中的作用,应用气象学报,2002,13,277-287.
    张秀芝,李江龙,闫俊岳,丁一汇,南海夏季风爆发的环流特征及指标研究,气候与环境研究,2002,7,321-331.
    张庆云,陶诗言,陈烈庭,东亚夏季风指数的年际变化与东亚大气环流,气象学报,2003,61,559-568.
    谢安,毛玉江,宋焱云等,长江中下游地区水汽输送的气候特征,应用气象学报,2002,13,67-77.
    谢安,刘霞,叶谦,南海夏季风爆发的气候特征,热带气象学报,1998,14,28-37.
    黄刚,东亚夏季风环流异常指数与夏季气候变化关系的研究,应用气象学报,1999,10,61-69.
    黄荣辉,李维京,夏季热带西太平洋上空的热源异常对东亚上空副热带高压的影响及其物理机制,大气科学,1988,特刊,95-107.
    黄荣辉,顾磊,徐予红,等,东亚夏季风爆发和北进的年际变化特征及其与热带西太平洋热力状态的关系,大气科学,2005,29,20-36.
    Chen L. X., Reiter E. R., Feng Z. Q., The atmospheric heat source over the Tibetan Plateau:
    May-August 1979, Mon. Weather Rev,1985,113,1771-1790.
    Cui Y., Wang C. H., Compared Study on the Sensible and Latent Fluxes'Quality of Reanalysis Data over the Western Tibetan Plateau, Progress in Nature Science,2009,19,719-726.
    Krishnamuri T. N., Gadgil S., On the structure of the 30 to 50 day mode over the globe during FGGE, Tellus,1985,37A,336-360.
    Krishnamurti T. N., Subrahmanyan D., The 30-50 day mode at 850mb during MONEX, J. Atmos. Sci.,1982,39,2088-2095.
    Luo H. B., Yanai M., The large scale circulation and heat source over the Tibetan plateau and surrounding areas during the early summer of 1979. Part Ⅱ:Heat and moisture budgets, Mon. Weather Rev,1984,112,966-989.
    Madden R. A., Julian P. R., Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific, J. Atmos. Sci.,1971,28,702-708.
    Madden R. A., Julian P. R., Description of globe scale circulation cells in the tropics with 40-50 day period, J. Atmos. Sci.,1972,29,1109-1123.
    Wang C. H., Cheng G. D., Deng A. J., Dong W. J., Numerical simulation on climate effects of freezing-thawing processes using CCM3, Science in Cold Arid Regions,2008,1, 0068-0079.
    Wang C. H., Dong W. J., Wei Z. G., Study on relationships between freezing-thawing processes of the Qinghai-Tibet Plateau and the atmospheric circulation over East Asia, Chinese Journal Geophysics,2003,46,438-441.
    Yanai M., Li C. F., Song F., Seasonal heating of Tibetan Plateau and effects of in the evolution of the Asia summer monsoon, J. Meteorol Soc. Japan,1992,70,319-351.
    王澄海,尚大成,藏北高原土壤温、湿度变化在高原干湿季节转换中的作用,高原气象,2007a,26,677-685.
    王澄海,师锐,青藏高原西部陆面过程特征的模拟研究,冰川冻土,2007b,29,73-81.
    王澄海,师锐,左洪超,青藏高原西部冻融期陆面过程的模拟分析,高原气象,2008,27,239-248.
    何金海,丁一汇,高辉,徐海明,南海夏季风建立日期的确定与季风指数,2001,北京,气象出版社.
    李崇银,张利平,南海夏季风特征及其指数,自然科学进展,1999,9,536-541.
    李崇银,龙振夏,穆明权,大气季节内振荡及其重要作用,大气科学,2003,2003,518-534.
    季国良,姚兰昌,袁福茂等,1982年冬季青藏高原地面和大气的加热场特征,中国科学(B辑),1986,2,214-224.
    季国良,顾本文,吕芝兰,青藏高原北部的大气加热场特征,高原气象,2002,21,238-242.
    尚大成,王澄海,高原地表过程中冻融过程在东亚夏季风中的作用,干旱气象,2006,24,19-22.
    施能,朱乾根,东亚冬季风强度异常与夏季500hPa环流及我国气候异常的关系,热带气象学报,1996,12,26-33.
    徐国强,朱乾根,大气低频振荡研究回顾与概述,气象科技,2003,31,194-200.
    章基嘉,孙国武,陈葆德,青藏高原大气低频变化的研究,1990,北京,气象出版社.
    焦彦军,钱正安,冬季青藏高原对东亚大槽动力影响的研究(Ⅰ)若干统计事实,高原气象,1994,18,153-161.
    戴念军,谢安,张勇,南海夏季风活动的年际和年代际特征,气候与环境研究,2000,5,363-374.
    刘新,李伟平,许晃雄,等,青藏高原加热对东亚地区夏季降水的影响,高原气象,2007,26,1287-1292.
    叶月珍,方之芳,青藏高原热力状况与四川盆地汛期降水的联系,高原气象,1999,18,162-170.
    叶笃正,高由禧,青藏高原气象学,1979,北京,科学出版社.
    吴尚森,梁建茵,南海夏季风强度指数及其变化特征,热带气象学报,2001,17,337-344.
    吴尚森,梁建茵,李春晖,南海夏季风强度与我国汛期降水的关系,热带海洋学报,2003,19,25-36.
    孙安健,唐国利,黄荣辉,1983与1985年夏季北半球500hPa高度场大气低频波的振荡特征,大气科学,1994,18,576-585.
    张可苏,40-50天的纬向基流低频振荡及其失稳效应,大气科学,1987,11,227-236.
    张庆云,陶诗言,陈烈庭,东亚夏季风指数的年际变化与东亚大气环流,气象学报,2003,61,559-568.
    谢安,刘霞,叶谦,南海夏季风爆发的气候特征,热带海洋学报,1998,14,28-37.
    谢安,叶谦,陈隆勋,青藏高原及其附近地区大气周期振荡在OLR资料上的反映,气象学报,1989,47,272-278.
    Anthes R. A., Acumulus parameterization scheme utilizing a one-dimensional cloud model, Mon. Weather Rev,1977,105,270-286.
    Bansod S. D., Yin Z. Y., Lin Z. Y., Zhang X. Q., Thermal field over Tibetan Plateau and indian summer monsoon rainfall, Int. J. Climatol.,2003,23,1589-1605.
    Barnett T. P., Dumenil L., Schiese V. V., Roeckner E., Latif M., The effect of Eurasian snow cover on regional and global climate variations, J. Atmos. Sci.,1989,46,661-685.
    Bates G T., Giorgi F., Hostetler S., Towards the simulation of the effects of the great lakes on regional climate, Mon.Weather Rev,1993a,121,1373-1387.
    Bates G. T., Hostetler S. W., Giorgi F., Two year simulation of the Great Lakes region with a coupled modeling system, Mon.Weather Rev,1993b,121,1505-1522.
    Bates G. T., Hostetler S. W., Shided C. B., Analysis of the surface hydrology in a regional climate model, Q. J. R. Meteorol. Soc 1994,120,161-183.
    Broccoli A. J., Manabe S., The effects of orography on midlatitude Northern Hemisphere dry climate, J. Climate,1992,5,1181-1201.
    Chen L. X., Li W., Zhao P., Tao S. Y, On the process of summer monsoon onset over East Asia, Climatic and Environmental Research,2000,5,345-355.
    Chow K. C., Chan J. C. L., Shi X. L., Liu Y. M., Ding Y. H., Time-lagged effects of spring Tibetan Plateau soil moisture on the monsoon over China in early summer, Int. J. Climatol.,2008, 28,55-67.
    Dickson R. R., Henderson-Sellers A., Kennedy P. J., Biosphere-atmosphere transfer scheme(bats) version le as coupled to the ncar community climate model, Tech. rep., National Center for Atmospheric Research,1993.
    Douville H., Influence of soil moisture on the Asian and African monsoons. Part II:Interannual variability, J. Climate,2002,15,701-720.
    Douville H., Assessing the influence of soil moisture on seasonal climate variability with AGCMs, J. Hydrometeorol.,2003,1044-1066.
    Douville H., Chauvin F., Relevance of soil moisture for seasonal climate predictions:a preliminary study Climate Dynamics,2000,16,719-736.
    Douville H., Chauvin F., Broqua H., Influence of soil moisture on the Asian and African Monsoons.Part I:Mean monsoon and daily precipitation, J. Climate,2001,14,2381-2403.
    Duan A. M., Wu G X., Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia, Clim.Dynam.,2005,24,793-807.
    Emanuel K. A., A scheme for representing cumulus convection in large-scale models, J. Atmos. Sci.,1991,48,2313-2335.
    Emanuel K. A., Zivkovic-Rothman, Development and evaluation of a convection scheme for use in climate model, J. Atmos. Sci.,1999,56,1766-1782.
    Feng S., Tang M. C., Wang D. M., New evidence for the Qinghai-Xizang(Tibet) plateau as a pilot region of climatic fluctuation in China, Bulletin,1998,43,1745-1749.
    Flohn H., Contributions to a meteorology of Tibetan Highland, Atm. Sci. Paper,1957, No.130, Colorado State Univ., Ft Collons.
    Flohn H., Recent investigation on the machanism of the "summer monsoon" of southern and eastern Asia,1960, New Delhi, Hindu Union Press.
    Flohn H., Contributions to a Meteorology of the Tibetan Highlands, Atm. Sci. paper,1968,130, 1-120.
    Giorgi F., Simulation of regional climate using a limited-area model nested in a general circulation model, J. Climate,1990,3,941-963.
    Giorgi F., Bi X. Q., Qian Y., Indirect vs. direct effects of anthropogenic sulfate on the climate of east Asia as sumulated with a regional coupled climate-chemistry/aerosol model, Climatic Change,2003,58,345-376.
    Giorgi F., Marinucci M. R., Bates G T., Development of a second generation regional climate model(RegCM2) I:boundary layer and radiative transfer processes, Mon.Weather Rev, 1993a,121,2794-2813.
    Giorgi F., Marinucci M. R., Bates G T., Development of a second generation regional climate model(RegCM2) Ⅱ:convective process and assimilation of lateral boundary conditions, Mon.Weather Rev,1993b,121,2814-2832.
    Grell G, Prognostic evaluation of assumptions used by cumulus parameterizations, Mon. Weather Rev,1993,121,764-787.
    Hack J. J., Description of the NCAR community Climate Model(CCM2).//Tech. Note. NCAR TN2382+STR, NCAR, Boulder, Colorado,1992,1992.
    Hahn D. G., Manabe S., The role of moutains in the south Asian mosoon circulation, J. Atmos. Sci., 1975,32,1515-1541.
    He H. Y., Mcginnis J. M., Song Z. S., Yanai M., Onset of the Asian summer monsoon in 1979 and the effect of the Tibetan Plateau, Mon. Weather Rev,1987,115,1966-1995.
    Hirasawa N., Kato K., Takeda T., Abrupt change in the characteristics of the cloud zone in subtropical east Asia around the middle of May, J Meteor. Soc. Japan,1995,73,221-239.
    Holtslag A. A. M., Bruijn E. I. F., Pan H. L., A high resolution air mass transformation model for short-range weather forecasting, Mon.Weather Rev,1990,118,1561-1575.
    Hsu H. H., Liu X., Relationships between the Tibetan Plateau heating and East Asian summer monsoon rainfall, Geophys. Res. Lett.,2003,30, doi:10.1029/2003GL017909.
    Krishnamuri T. N., Gadgil S., On the structure of the 30 to 50 day mode over the globe during PGGE, Tellus,1985,37A,336-360.
    Krishnamuri T. N., Jayakaurnar Y., Pasch R., On the onset vortex of the summer monsoon, Mon.Weather Rev,1981,109,344-363.
    Li C. F., Yanai M., The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast, J. Climate,1996,9,358-375.
    Liu Y. M., Bao Q., Duan A. M., Qian Z. A., Wu G. X., Recent progress in the impact of Tibetan on climate of China, Adv. Atmos. Sci.,2007,24,1060-1076.
    Lu J. M., Zhang Q. Y., Tao S. Y., Ju J. H., The onset and advance of the Asian summer monsoon, Chinese Journal Bulletin,2006,51,80-88.
    Luo H. B., Yanai M., The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part Ⅰ:Precipitation and kinematic analyses, Mon.Weather Rev,1983,111,922-944.
    Luo H. B., Yanai M., The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part Ⅱ:Heat and moisture budgets, Mon.Weather. Rev.,1984,112,966-989.
    Manabe S., Broccoli A. J., Moutains and arid climates of middle latitudes Science,1990,247, 192-195.
    Murakami T., The sudden change of upper westerlies near the Tibetan Plateau at the beginning of summer season, J Meteor. Soc. Japan,1958,36,239-247.
    Nellie E., Bi X., Giorgi F., RegCM Version 3.0 User's Guide.
    Ookouchi Y., Segal M., Kessler R. C, Pielke R. A., Evaluation of soil moisture effects on the generation and modification of mesoscale circulations, Mon.Weather Rev,1984,112, 2281-2292.
    Sato T., Kimura F., How does the Tibetan Plateau affect the transition of Indian monsoon rainfall?, Mon.Weather Rev,2006,135, doi:10.1175/MWR3386.1.
    Tao S. Y., Ding Y. H., Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurence of heavy rain and severe convective storms in China, Wea. Forecasting,1981,2,89-112.
    Ueda H., Yasunari T., Role of warming over the Tibetan Plateau in early onset of the summer monsoon over the bay of the Bengal and the South China Sea, J. Meteorol. Soc. Japan,1998, 76,1-12.
    Vernekar A. D., Zhou J., The effect of Eurasian snow cover on the indian monsoon J. Climate, 1995,8,248-266.
    Wang C. H., Dong W. J., Wei Z. G., Study on relationships between freezing-thawing processes of the Qinghai-Tibet Plateau and the atmospheric circulation over East Asia, Chinese Journal Geophysics,2003,46,438-441.
    Wu G. X., Liu Y. M., Wang T. M., Wang R. J., Liu X., Li W. P., et al., The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate, J. Hydrometeorol.,2007,8, 770-789.
    Yamada H., Uyeda H., Transition of the rainfall characteristics related to the moistening of the land surface over the central Tibetan plateau during the summer of 1998, Mon. Weather Rev, 2006,134,3230-3247.
    Yanai M., Li C. F., Song F., Seasonal heating of Tibetan Plateau and effects of in the evolution of the Asia summer monsoon, J. Meteorol. Soc. Japan,1992,70,319-351.
    Yang M. X., Yao T. D., Gou X. H., Fujii H. Y., Hao L. S., Levia D. F., Diurnal freeze/thaw cycles of the ground surface on the Tibetan plateau, Journal of Asian Earth Sciences,2007,21, 457-465.
    Ye D. Z., Wu G X., The role of the heat source of the Tibetan Plateau in the general circulation, Meteorol. Atmos. Phys.,1998,67,181-198.
    Yeh T. C., The circulation of the high troposphere over China in the winter of 1945-1946, Tellus, 1950,2,173-183.
    Yeh T. C., Wetherald R. T., Manabe S., The effect of soil moisture on the short-term climate and hydrology change-A numercial experiment, Mon. Weather Rev,1984,112,474-490.
    Yeh T. Z., Some aspects of the thermal influences of the Qinghai-Tibetan plateau on the atmospheric circulation, Arch. Meteor. Geophys. Bioklim,1982,31 A,205-220.
    Yin M. T., A synoptic-aerologic study of the onset of the summer monsoon over India and Burma, Journal of Meteorology,1949,6,393-400.
    Zhang Y. S., Ohata T., Kadota T, Land-surface hydrological processes in the permafrost region of the eastern Tibetan plateau, Journal of Hydrology,2003,283,41-56.
    Zhao L., Cheng G. D., Li S. X., Zhao X. M., Wang S. L., Thawing and freezing processes of active layer in Wudaoliang region of Tibetan plateau, Chinese Science Bulletin,2000,45, 2181-2186.
    王澄海,尚大成,藏北高原土壤温、湿度变化在高原干湿季节转换中的作用,高原气象,2007,26,677-685.
    王澄海,师锐,左洪超,青藏高原西部冻融期陆面过程的模拟分析,高原气象,2008,27,239-248.
    叶笃止,罗四维,朱抱真,青藏高原及其附近的流场结构和对流层的热量平衡,气象学报,1957,28,108-121.
    吴国雄,张永生,青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅰ.爆发地点,大气科学,1998,22,825-837.
    吴国雄,张永生,青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅱ.爆发时间,大气科学,1999a,23,51-61.
    吴国雄,张永生,关于亚洲季风爆发及北半球季节突变的物理机制的诊断分析:青藏高原及邻近地区地表感热加热的作用,气象学报,1999b,57,56-73.
    杨梅学,姚檀栋,何元庆,青藏高原土壤水热分布特征及冻融过程在季节转换中的作用,山地学报,2002,20,553-558.
    杨亚薇,杨梅学,RegCM3在青藏高原地区的应用研究:积云参数化方案的敏感性,冰川冻土,2008,30,250-258.
    赵勇,钱永甫,青藏高原地表热力异常与我国江淮地区夏季降水的关系,大气科学,2007,31,145-154.
    赵声蓉,宋正山,纪立人,青藏高原热力异常与华北汛期降水关系的研究,大气科学,2003,27.881-893.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700