用户名: 密码: 验证码:
东北冷涡结构特征及其强降水形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东北冷涡是我国东北地区夏季主要的天气系统,它的发生、发展及其演变不仅会给我国东北地区带来低温多雨甚至造成洪涝灾害,而且对我国华北、江南梅雨期乃至东亚地区的环流形势都有重要的影响,因此对东北冷涡系统的研究有着极其重要的意义。本文在总结、回顾过去对东北冷涡的研究的基础上,提出在对东北冷涡研究中亟待解决的几类科学问题,针对以上科学问题,本文首先对不同持续时间和移动速度的冷涡进行分类与合成分析,在此基础上,利用加密观测资料与中尺度数值模式,模拟研究了东北冷涡的发展演变特征及其强对流系统的触发机制,结合数值敏感性试验,考察了东北地形对冷涡的发生发展作用,最后,总结概括了冷涡结构特征模型及其暴雨过程的三维概念模式图,主要得到以下结论:
     1.持续缓动型东北冷涡位置多位于内蒙偏东部、吉林中西部和黑龙江中西部地区,冷涡系统多为偏东移,且此类冷涡发展和成熟阶段高层环流呈纬向型环流分布,冷涡西侧、西北侧有低槽,槽底不断有冷空气和正涡度平流向冷涡输送;强的高空急流有利于加强冷涡的气旋性环流和在冷涡东侧产生高空辐散形成上升气流,在冷涡西侧产生下沉气流。短时移动型冷涡位置多位于内蒙偏东北和黑龙江西北部地区,系统主要向偏东南方向移动,且冷涡各阶段高层环流形势呈经向型环流分布,冷涡西侧多为一暖高脊,高空急流较弱,不利于冷涡的发展和维持。
     和南方天气系统暴雨不一样,东北冷涡发展阶段暴雨,冷涡位于高空急流的出口区左侧,有利于冷涡的发展加强并且在急流出口区的北侧产生高空辐散,从而触发上升运动形成对流;由于对流层中层冷涡的强旋转作用,使得干空气在冷涡的西侧、南侧侵入,即在冷涡西侧及南侧存在旋转式干侵入,从而使得暴雨多在冷涡的东侧和东南侧形成。
     2.利用时变涡度方程和涡散场动能方程分别对冷涡的涡度和动能收支进行了分析,结果表明,西风带平均气流对扰动涡度的输送使得局地涡度增加,使得冷涡加强。对流层高层冷涡中心涡度主要由散度扰动项引起,而散度扰动又主要受高空急流和中层冷空气的作用影响。尽管辐散风动能KD(DKD)量级很小,但在冷涡涡散场动能量输送中起了极其重要的作用,即通过斜压过程的动能产生率GD和辐散风水平通量辐合HFD和为KD提供动能源,使有效位能A向KD转换再通过C(KD,KR)向KR提供动能源,成为对流层低层旋转风动能的主要能源之一。对于旋转风和散度风动能的汇源而言,冷涡不同阶段在对流层各层呈现明显的差异。发展阶段,对流层低层的旋转风动能变化率、辐散风和旋转风之间的能量交换C (KD,KR )和总动能占整层积分的主要部分;成熟阶段,对流层中层总动能最强最显著,低层减弱迅速甚至出现负增长;减弱阶段,总动能在对流层中层减弱最明显,其次是在对流层高层,动能转换项在冷涡发展过程中充当着重要的“桥梁”作用,低层C(KD,KR)的演变对冷涡强降水有一定的预报意义。
     3.对冷涡系统不同时期对流云的垂直结构和云内部中小尺度结构的分析结果表明,冷涡发展阶段的初期,体现为孤立的深对流回波亮带,对流系统表现为孤立、深厚的特征,冷涡发展成熟阶段,回波强度比冷涡发展初期的对流系统有所减弱,且为较浅薄的对流系统,冷涡系统下发展的锢囚锋不同于传统的锢囚锋结构,锢囚锋尾部存在干、冷空气的侵入,整个锢囚锋回波系统顶部呈现独特的结构特征:东南部为干、冷空气侵入造成的回波区、中部为锢囚锋主体对流区、西北部为暖锋遇冷锋抬升作用形成的回波区。在锢囚锋尾部存在冰水含量与液态水含量分层现象,干冷空气侵入层在5km左右,在干冷空气侵入层上部为冰态水含量分布的弱回波区,下部为液态水分布的弱回波区;冷涡成熟阶段,对流系统分布在冷涡外沿,表现为多个孤立的对流系统。
     4.东北地形对东北冷涡环流及其降水有较大影响。大兴安岭对东北冷涡系统环境流场的影响比较明显,其作用直接影响东侧及北侧的大气辐合程度,并使东侧辐合带的涡度、垂直速度以及温度平流等的垂直分布发生变化,从而影响冷涡降水强度。小兴安岭的地形对黑龙江中西部和北部地区环流及其降水影响较为敏感,是影响黑龙江的降水的直接影响因子。长白山山脉对我国东北中东部地区的冷涡环流及其降水影响较大,直接影响东北中部、中东部地区降水,且影响幅度大于大兴安岭和小兴安岭地区,其中,吉林受长白山地形影响最大。
     5.总结归纳了东北冷涡暴雨的结构特征以及冷涡的概念模型。冷涡中心对流层中、高层为高PV库,并向低层伸展,侵入,有利于在系统移动前方激发出上升运动,东侧为来自中低纬的西南或偏东暖、湿气流且为上升运动区;有利于强对流在冷涡的东侧发生。冷涡发展阶段,冷涡位于高空急流的北侧,有利于冷涡的发展加强并且在急流出口区的北侧产生高空辐散,高空辐散区东侧为大风中心,位于大风中心入口区的南侧,增强了冷涡东侧的高层辐散,在对流层低层,水汽输送常有两个通道:一个为西南低空急流携带的暖湿气流,另一个是偏东气流。在有区域性暴雨发生时,地面自动站资料可观测到有明显的湿舌和高能舌伸向暴雨区;冷涡衰退阶段,高、低空急流强度减弱,冷涡位于高空急流入口区北侧,西侧大风中心出口区南侧,对应高空辐合区,冷涡中心位涡值减小,冷涡东移逐渐减弱。
The cold vortex is the main weather systems in summer over northeastern China, its generation and evolution could not only cause microtherm and flood events over northeastern China, but also have significant impact on the circulation over northern China, Meiyu period over southern China and Eastern Asia. Thereby the research on the cold vortex over northeastern China (CVNE) has great significance for us. Several issues are promoted after reviewing and summarizing the past groundwork on the CVNE. Aiming to these issues, this paper first classifies the different duration and velocity of CVNE, and then composite analysis of CVNE is conducted. Furthermore, the evolution characteristics, triggering mechanism of convective systems and the terrain effects are analyzed using encrypt observational data and mesoscale model. Finally, the configuration model and tri-dimensional conception model of heavy rainfall related to CVNE are studied. The major results are listed as follows:
     1. The durative and slow CVNEs, which circulation of the development and mature state are zonal distribution, are mainly situated at the eastern Neimenggu municipality, the middle and west of Jilin and Heilongjiang province. Continuous cold air and positive vorticity advection are transported to the CVNEs from the West and northwest low trough, and the strong high level Jet favorably strengthen the cyclonic circulation and the divergent field at the east of CVNEs, and it accelerates the updraft motion in the east and sinking motion in the west of CVNESs. The brief and fast CVNEs which circulation of the entire state are meridional distribution and has weaker high level Jet and warm high ridge in the west side of CVNE, mainly situated at the northeastern Neimenggu municipality, the northwest of Heilongjiang province.
     Different from the heavy rainfall over southern China, the rainstorm during the development of the CVNE have its particular characteristics. The cold vortex locates at the left side of exit area of high level Jet, which strengthens the cyclonic circulation and the divergent field, and it could trigger upward flow and cause convection. At the west side and south side of the CVNE, there is circumrotate dry incursion because of the high rotation of the CVNE, which could bring rainstorm at the east and north of the CVNE.
     2. Budgets of vorticity and divergent and rotational components kinetic energy (KD and KR) are examined. The vorticity perturbation brings by average field of westerly causes the enhancement of local vorticity. The high level vorticity of the CVNE mainly decided by the divergent perturbation item which caused by the high level Jet and middle level cold air. Although KD is minimum, it has great impact on the kinetic energy transport between KD and KR. Source of KD is provided by the kinetic generation item GD and horizontal convergent item HFD of divergent wind via baroclinic process, which makes available potential energy convert to KD then provides kinetic energy source to the KR via transport item C(KD,KR), and it’s one of the main kinetic energy source of low level KR. The sources of divergent and rotational components kinetic energy have various characteristics at different level and different state of CVNE. At the development state, the generate rate of KR, KD and C(KD,KR) are mainly concentrate at the lower troposphere, while at the mature state, the generate rate of KR and KD is convert to the mid-troposphere, and generate rate of KR and KD in the lower troposphere is turn into negative. At the weaken state, kinetic energy diminish remarkably in the mid-troposphere, then in the upper troposphere. The convert item C(KD,KR) which serve as the― bridge‖effect during the evolution of the CVNE, has some prediction meaning to the rainfall related to the CVNE.
     3. The vertical structure of convective clouds at different state and mesoscale and microscale structure of convective system are analyzed, and the results show that, at the beginning of development stage, the structure of the warm front is characterized with isolated and deep convective systems; at the development and matured stage, the intensity of radar echo is weaker than its development stage, and the convective systems are shallow. The echo top of occlusion under the cold vortex system presents some special characters: at the southeast of occlusion, its echo area drive by the cold-dry air; at the middle area of occlusion is the main convective system and northwest area with echo caused by the lifting effect of warm front confront the cold front. There is delamination between ice water and liquid water at the tail of the occlusion front. The height of incursion layer of dry-cold air is about 5km, above is the weak echo consist of ice water, while below is the echo with liquid water; At the mature stage of the cold vortex, the convective systems are located mainly outside the cold vortex, and with isolated convective systems, which contains plenty of ice water content mainly locates at the north of the cold vortex, while liquid water content exists below the 0℃layer of the cold vortex center.
     4. The terrain of northeast China has great impact on the circulation and rainfall of CVNE, while the Greater Higgnan Mountains (GHM) account for the primary effect, which caused by the by-pass-hill airflow and climbing-hill ascending flow. Convergence, vorticity, vertical motion, temperature advection, and rainfall of north and east side of GHM are corresponding changing with the terrain height. XiaoHingganLing (XHL) which has direct impact on the rainfall over Heilongjiang province mainly causes local circumfluence and rainfall. Changbai Mountain (CM) has great impact on the rainfall over the middle and east of northeastern China. Its impact extent is larger than GHM and XHL, while Jilin province accounts for the main effect of CM.
     5. Structure model and heavy rainfall model of CVNE are summarized. At the middle and upper troposphere, high PV pool in the center of CVNE stretches and invades into lower troposphere, which caused upward flow ahead of the direction of CVNE. Warm and high moisture air from lower latitude transports to the east side of CVNE, and it bring strong convection. At the development state, the CVNE locates at the exit area of north side of high level Jet and entrance part of east gale center, causing divergent and triggering upward flow of the east part of CVNE. There are two vapor transporting ways at the lower troposphere: one is warm-wet airflow brought by southwest wind, the other is eastward wind. High moisture and high energy tongue extend to heavy rainfall places when local rainstorms of CVNE take place. At the weakening state, high level Jet and low level jet weaken and the CVNE locates over north of entrance area and south of exit area of west gale center, which cause corresponding convergence ahead of the CVNE, the PV at the center of CVNE diminishes and the CVNE wear off eastward.
引文
Singleton.A.T, Reason.C.J.C. A numerical Model Study of an Intense Cutoff Low Pressure System over South Africa (J). Mon. Wea. Rev, 2007. 135:1128-1149
    Hill, E. F, and K. A. Browning. Case study of a persistent mesoscale cold pool (J). Meteor. Mag., 1987. 116, 297–309
    K. Ninomiya. Objective analysis of a mesosacle disturbance developed under cold vortex, Papers in meteorology and geophysics (J), 1975, 26(4): 149-165
    Kei Sakamoto,Masaaki Takahashi. Cut off and Weakening Processes of an Upper Cold Low (J). Journal of the Meteorological Society of Japan, 2005. 83:817-834
    Keyser, D, and M. A. Shapiro. A review of the structure and dynamics of upper level frontal zones (J). Mon. Wea. Rev., 1986. 114, 452–499
    L. Qi, Y.Wang,a, L.M.Leslie. Numerical Simulation of a cut-off low over Southern Australia (J), Meteorol. Atmos. Phys. 2000. 103-115
    Namias.J. Characteristic of the General Circulation over The Northern Hemisphere during the Abnormal Winter of 1946-1947 (J). Mon. Wea. Rev., 1947. 75:145-152
    Palmén, E. On the distribution of temperature and wind in the upper westerlies (J). J. meteor., 1948. 5:20-27
    ——and K.M.Nagler. The Formation and Structure of a Large-Scale Disturbance in the Westerlies (J), Jou of Meteo, 1949. 6(4):227-242
    ——, and C. W. Newton. Atmospheric Circulation Systems: Their Structure and Physical Interpretation (M). Academic Press, 1969. 603 pp
    Petterssen S, S J Smebye. On the development of extratropical cyclones (J). Quart. Juart.r. Meteor. Soc., 1971. 97:457-482
    Raquel nieto, Luis Gimeno, and Laura de La Torre, Pedro Ribera and David Gallego, Ricardo García-Herrera, JoséAgustín García and Marcelino Nu?ez, Angel Reda?o and Jerónimo Lorente. Climatological Features of Cutoff Low Systems in the Northern Hemisphere (J). Journal of climate, 2005. 18:3085-3103
    S. Matsumoto, K. Ninomiya. On the Analysis of a Cold Vortex with Steady Eastward Movement (J), J. Met. Soc. Japan. 1965, 42(1):1-8
    S. Matsumoto, K. Ninomiya. Meso-scale Disturbance Observed in the Vicinity of a Cold Vortex Center (J), J. Met. Soc. Japan. 1965, 42(1): 9-22
    S. Matsumoto, K. Ninomiya, R. Hasegawa, and Y. Miki. The Structure and Role of a Sub-Synoptic Cold Vortex on the Heavy Precipitation (J). J. Meteor. Soc. Japan, 1982. 60, 339–353
    Shou-Jun Chen, Stanley L. Barnes. Omega Diagnosis of a Cold Vortex with Severe Convection (J). Weather and forecasting, 1988, 3:296-30
    T.Sato. On the structure of cold vortex, Meteorological Research Institute(J), 1951.3(2):157-171
    Yi-Ping Hsieh. An Investigation of a Selected Cold Vortex over North America (J). Journal of the Atmospheric Sciences, 1949. 6, 401-410
    Yi-Ping Hsieh. On the Formation of Shear Lines in the Upper Atmosphere (J), Journal of Meteorology, 7(6):382-387
    白人海.东北冷涡加密观测事实的分析(J).黑龙江:黑龙江气象,1997,4:1-3
    白人海,孙永罡.东北冷涡中尺度天气的背景分析(J),黑龙江气象,1997,3:6-8
    陈力强,陈受钧,周小珊,潘向党.东北冷涡诱发的一次MCS结构特征数值模拟(J).气象学报,2005. 63(2):173-183
    何金海,吴志伟,江志红等.东北冷涡的―气候效应‖及其对梅雨的影响(J).科学通报,2006,51(23):2803-2809
    胡开喜.东北冷涡的气候特征,变异及其气候效应(D),中国科学院研究生院博士学位论文,2010. 19-28
    姜学恭,孙永刚,沈建国.一次东北冷涡暴雨过程的数值模拟试验(J).气象,2001, 27(1):26-28
    雷雨顺,吴宝俊,吴正华.冰雹概论(M),北京:科学出版社,1978. 174pp 廉毅,水登朝.一次东北冷涡暴雨的中尺度分析(C),1982-1986暴雨文摘(东北、华
    北、西北),北京:气象出版社,1987. 212pp
    刘宗秀,廉毅等.东北冷涡持续活动时期的北半球500 hPa环流特征分析(J).大气科学,2002,26(3),361-372.
    斯公望.暴雨和强对流环境系统(M).北京:气象出版社,1989. 349pp
    寿亦萱,许健民.东北暴雨中尺度对流系统研究Ⅰ:MCS动力结构特征的雷达卫星资料分析(J).气象学报,2002. 65(2): 160-171
    寿亦萱,许健民.―05.6‖东北暴雨中尺度对流系统研究Ⅱ:MCS动力结构特征的雷达卫星资料分析(J).气象学报,2007. 65(2):171-182
    孙力,郑秀雅,王琪等,东北冷涡的时空分布特征及其东亚大型环流之间的关系(J).应用气象学报,1994,5(3),297-303
    孙力.东北冷涡持续活动的分析研究(J).大气科学,1997,21(3),297-307.
    孙力,安刚.东亚地区春冬季与夏季大气环流异常相互关系的研究(J).应用气象学报,2002,13(06):650-661
    孙力,安刚,高枞亭,唐晓玲,丁立,沈柏竹. 1998年夏季嫩江和松花江流域东北冷涡暴雨的成因分析(J),应用气象学报,2002,13(2):156-162
    陶诗言.中国之暴雨(M).北京:科学出版社, 1980. 133-146
    张立祥.东北冷涡中尺度对流系统的研究(D).南京信息工程大学理学博士学位论文,2008,pp. 65
    张玲,李泽椿. 1998年8月嫩江流域一次大暴雨的成因分析(J),2003. 29(8):7-12
    赵思雄、刘苏红、刘名扬.夏季北京冷涡强对流天气的中尺度分析.暴雨及强对流天气的研究(C),中国科学研大气物理所集刊,北京:科学出版社,1980.第9号
    郑秀雅、张延治、白人海.东北暴雨(M).气象出版社, 1992. 129-152
    周琳.东北气候(M).气象出版社,1991. pp. 122
    朱乾根,林锦瑞,寿绍文,唐东升.天气学原理和方法(M).北京:气象出版社,2000. 186-187
    Browning K A, Golding B W. Mesoscale aspects of a dry intrusion within a vigorous cyclone (J). Quart J Roy Meteor Soc, 1995, 121:463~493
    Browning K A, Roberts N M. Structure of a frontal cyclone (J). Quart J Roy Meteor Soc, 1994,120:1535~1557
    Gray W M. Recent advance in tropical cyclone research from rawnsonde analysis (P), WMO Program on Research in Tropical Meteorology. Department of Atmospheric Science , Colorado State University. 1979, 80:5-23
    白人海,谢安.东北冷涡过程中的飑线分析(J).气象,1998,24(4):37-40
    丁一汇.高等天气学(M).北京:气象出版社, 1991. 140-155pp,316-317pp
    顾清源,师锐,徐会明.移出与未移出高原的两类低涡环流特征的对比分析(J).气象,2010,36(4):7-15
    李英,陈联寿,王继志.登陆热带气旋长久维持与迅速消亡的大尺度环流特征(J).气象学报,2004,62(2)167-179
    孙力,王琪,唐晓玲.暴雨类冷涡与非暴雨类冷涡的合成对比分析(J).气象,1995,21(3):7-10
    孙力.东北冷涡持续活动的分析研究(J).大气科学,1997,21(3):297-307
    孙力,安刚,廉毅,沈柏竹,唐晓玲.夏季东北冷涡持续性活动及其大气环流异常特征的分析(J).大气科学,2000,58(6):704-714
    覃庆第.高空急流入口区次级环流在一次突发性强降水过程中的作用(J).广西气象,2001,24(4):20-21
    王丽娟,何金海,司东,温敏,钟珊珊.东北冷涡过程对江淮梅雨期降水的影响机制,大气科学学报,33(1):89-97
    徐辉.西南季风强劲江南华南暴雨成灾,东北冷涡活跃东北华北降雨偏多(J).气象,2006,9(32):121-125
    阎凤霞,寿绍文,张艳玲,沈新勇.一次江淮暴雨过程中干空气侵入的诊断分析(J),南京气象学院学报,2005,28(1):117-124
    杨大升等,动力气象学(M),气象出版社,1982,181pp
    杨帅.华北暴雨形成机理研究(D).中国科学院研究生院博士学位论文,2007, 21-37pp
    张立祥,东北冷涡中尺度对流系统的研究(D).南京信息工程大学理学博士学位论文,2008,11-13
    张云,雷恒池,钱贞成.一次东北冷涡衰退阶段暴雨成因分析(J).大气科学, 2008, 32(3): 481-497
    郑秀雅,张延治,白人海.东北暴雨(M).气象出版社, 1992. 129-152
    Blackmon m l. A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere (J). J Atmos Sct. 1976.33:737-760
    Carolina s. Vera,Paula K. Vigliarolo. A Diagnostic Study of Cold-Air Outbreaks over South America (J),Mon. Wea. Rev., 2000,128:3-24
    Chen T C, Alpert J C, Schlatter TW. The Effects of Divergent and Nondivergent Winds on the Kinetic Energy Budget of a Mid2Latitude Cyclone: A Case Study (J). Mon. Wea. Rev., 1978,106 (4):458-468
    Chen T C, W iin-Nielsen A. On the kinetic energy of the divergent and nondivergent flow in the atmosphere (J). Tellus, 1976, 28: 486-498
    Cressman G P. 1981. Circulation of the West Pacific jet stream (J). Mon. Wea. Rev., 109:2450-2463
    Green J S A. The weather during July 1976: Some dynamical consideration of the drought (J). Weather. 1977,32:120-126
    H. Mark Helfand, Siegfried D. Schubert. Climatology of the Simulated Great Plains Low-Level Jet and Its Contribution to the Continental Moisture Budget of the United States (J). Journal of Climate, 1995, 8(4): 784-806
    Henry E. Fuelberg, Dennis E. Buechler. Energy analysis of convectively induced wind perturbations (J). Mon. Wea. Rew. 1988, 117:745-764
    Henry E. Fuelberg, Peter A. Browning. Roles of Divergent and Rotational Wind in the Kinetic Energy Balance during Intense Convective Activity (J), Mon. Wea. Rev., 1983, 111: 2176-2193
    J. Shukla, K.R. Saha. Computation of non-divergent streamfunction and irrotational velocity potential from the observed winds (J). 1974. Mon. Wea. Rev., 1974, 102: 419-425
    Sinclair M R. Extratropical Transition of Southwest Pacific Tropical Cyclone. Part I: Climatology and Mean Structure Changes (J). Mon. Wea. Rev., 2002,130 (3):590-609
    Tsing-chang Chen, Jordan C. Alpert, Thomas W. Schlatter. The Effects of Divergent and Nondivergent Wind on the Kinetic Energy Budget of a Mid-Latitude Cyclone: A Case Study (J). Mon. Wea. Rev., 1978, 106: 458-468
    Zeng Qincun. The evolution of Rossby wave packet in a three dimentional baroclinic atmosphere (J), J Atmos Sci, 1983, 40: 73-84
    段旭,孙绩华,汪钟兴.暴雨与非暴雨过程涡散场能量收支特征(J).高原气象,1997,2:204-209
    励申申,寿绍文.台风区和外围暴雨区的旋转风、散度风动能收支(J).南京气象学院学报.1997,20(1):108-113
    刘辉,吴国雄,曾庆存,北半球阻塞高压的维持.1.准地转和Ertel位涡分析(J),气象学报,1995,53(2):177-185
    汪钟兴,刘勇,梅雨锋次天气尺度涡旋旋转风和辐散风动能收支(J),高原气象,1994,13(1):28-34
    汪钟兴.暴雨过程涡散场能量转换特征(J).大气科学, 1993, 17 (2) : 185~191
    谢安,肖文俊,陈受钧.梅雨期间次天气尺度扰动的动能平衡(J).气象学报,1980,38( 4):351- 358
    翟国庆,丁华君,孙淑清等.与低空急流相伴的暴雨天气诊断研究(J).大气科学, 1999,23(1):112-118
    朱佩君,郑永光,陶祖钰.台风变性再度发展的动能收支分析(J).北京大学学报(自然科学版) .2005,41(1):93-103
    Decker, S. G., and J. E. Martin, A local energetic analysis of the life cycle differences between consecutive, explosively deepening, continental cyclones (J). Mon. Wea. Rev., 2005: 133, 295–316
    Derek J. Posselt, Graeme L. Stephens, et al., CloudSat Adding A New Dimension to A Classical View of Extratropical Cyclones (J), American Meteorological Society, 2008, 598-609
    Kei Sakamoto. Cut off and Weakening Processes of an Upper Cold Low (J). Journal of the Meteorological Society of Japan, 2005, 83, 817-834
    Mailier, P. J., D. B. Stephenson, C. A. T. Ferro, and K. I. Hodges, Serial clustering of extratropical cyclones (J). Mon. Wea. Rev., 2006: 134, 2224–2240
    Orlanski, I., and E. K. M. Chang, Ageostrophic geopotential fluxes in downstream and upstream development of baroclinic waves (J). J. Atmos. Sci., 1993:50:212–225
    Posselt, D. J., and J. E. Martin, The role of latent heat release in the formation of a warm occluded thermal structure (J). Mon. Wea. Rev., 2004:132, 578–599
    Richard Austin. Level 2 Cloud Ice Water content Product Process Description and Interface Control Document (P). Colorado State University, 2004, 3:1-29
    Shapiro, M. A., and D. Keyser, Fronts, jet streams, and the tropopause. Extratropical Cyclones, (J), Amer. Meteor. Soc., 1990:167–191
    Simmons, A. J. and B. J. Hoskins, The downstream and upstream development of unstable baroclinic waves (J). J. Atmos. Sci., 1979,36, 1239–1254
    Stephens, G.L., Coauthors. The CloudSat mission and the A-train (J). Bull. Amer. Meteor. Soc., 2002, 83: 1771-1790
    Thorncroft, C. D., and B. J. Hoskins, Frontal cyclogenesis (J). J. Atmos. Sci., 1990, 47, 2317-2336
    陈力强,陈受钧,周小珊,等.东北冷涡诱发的一次MCS结构特征数值模拟.气象学报,2005,63(2):173-183
    陈文选,王俊,刘文.一次冷涡过程降水的微物理机制分析.应用气象学报, 1999,10(2):190-198
    方宗义,覃丹宇.暴雨云团的卫星监测和研究进展.应用气象学报,2006,17(5):584-593
    姜学恭,孙永刚,沈建国. 98.8松嫩流域一次东北冷涡暴雨的数值模拟初步分析.应用气象学报,2001,12(2):176-187
    刘健,张文建,朱元竞等.中尺度强暴雨云团云特征的多种卫星资料综合分析.应用气象学报,2007,18(2):158-164
    齐彦斌,郭学良,金德镇.一次东北冷涡中对流云带的宏微物理结构探测研究.大气科学, 2007,31(4):621~634
    乔枫雪,赵思雄,孙建华.一次引发暴雨的东北低涡的涡度和水汽收支分析.气候与环境研究,2007,12(3):397-411
    孙力,郑秀雅,王琪.东北冷涡的时空分布特征及其与东亚大型环流系统之间的关系. 应用气象学报,1994,5(3):297-303
    陶诗言.中国之暴雨.北京:科学出版社,1980,225pp
    王东海,钟水新,刘英,等.东北暴雨的研究.地球科学进展,2007, 22(6),549-560
    章国材,李晓莉,乔林.夏季500hPa副热带高压区域一次暴雨过程环流条件的诊断分析. 应用气象学报,2005,16(3):396-401
    赵思雄,刘苏红,刘名扬.夏季北京冷涡强对流天气的中尺度分析.中国科学院大气物理所集刊,第9号,北京:科学出版社,1980
    郑秀雅,张延治,白人海. 1992.东北暴雨.北京:气象出版社,129-130
    钟水新.一次东北冷涡暴雨过程的诊断分析与数值模拟研究.中国气象科学研究院硕士论文. 2008, 19-40
    Browning K A, Golding B W. Mesoscale aspect of a dry intrusion within a vigorous cyclone (J). Q J R Meteorol Soc, 1995.121(523):463—493
    Browning K A. The dry intrusion perspective of extra-tropical cyclone development (J). Meteorol Appl, 1997. 4(4): 317—324
    Eric A. Aligo, william A. Gallus Jr., Moti Segal. On the impact of WRF model vertical grid resolution on midwest summer rainfall forecasts (J). Weather and forecasting. 2009, 24:575-594
    Hobbs P V, R A J r Houze , T J Matejka. The dynamical and microphysical structure of an occluded frontal system and its modification by orography (J). J Atmos Sci, 1975. 32: 1542-1562
    Hoerling, M., K. Schaak, and A. Lenzen. Global objective tropopause analysis (J). Mon. Wea. Rev.., 1991. 119, 1816-1831
    Hoskins. B. J. The diagnostic of middle Latitude Synoptic development (J). Q. J. K. Met,1980.1(106):707-719
    Hoskins. B. J. Mclntyre M E, Robertson A W. On the use and significance of isentropic potential vorticity maps (J). Q.J. R. Meteorol Soc,1985,111:877-946
    Mei han, Scott A. Braun, P. Ola G. Persson, et al. Alongfront Variability of Precipitation Associated with a Midlatitude Frontal Zone: TRMM Observations and MM5 Simulation (J). Mon. Wea. Rev., 2008. 137:1008-1028
    Michael Sprenger, Heini Wernli, Michel Bourqui. Stratosphere–Troposphere Exchange and Its Relation to Potential Vorticity Streamers and Cutoffs near the Extratropical Tropopause (J), Mon. Wea. Rev., 2007. 64:1587-1602
    Neiman P J, M A Shapiro , L S Fedor . The life cycle of an extratropical marine cyclone. Part II. Mesoscale structure and diagnostics (J). Mon. Wea. Rev., 1993.121: 2177-2199
    Reed, R. J. A study of a characteristic type of upper-level frontogenesis (J). J. Meteor., 1955. 12, 226-237
    Renhe Zhang, Yongqi Ni,Liping Liu, Yali Luo,Wang Yehong. South China Heavy Rainfall Experiments(SCHeREX) (J). J.Meteo.Soc.Japan,89A,153-166
    Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M.Barker, W. Wang, and J. G. Powers, 2005:Adescription of the Advanced Research WRF version 2 (P). NCAR Tech. NoteNCAR/TN-4681STR, pp.88. [Available online at http://www.wrf-model.org/wrfadmin/docs/arw_v2.pdf]
    Spaete, P., D. Johnson, and T. Schaak. Stratospheric–tropospheric mass exchange during the Presidents’Day storm (J). Mon. Wea. Rev., 1994. 122, 424-439
    Uccellini L M and O R Johnson. The coupling of upper and lower tropospheric jet streaks andimplication for the development of severe storms (J). Mon. Wea. Rev. 1979. 107:682-703
    Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification (J). Meteor. Atmos. Phys., 75,161–193
    Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications (J). Meteor. Atmos. Phys., 76, 143–165
    Xue, M.,D.-H. Wang, J.-D. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction, and data assimilation (J). Meteor. Atmos. Phys., 82, 139–170
    陈力强,陈受钧.东北冷涡诱发的一次MCS结构特征数值模拟(J).气象学报,2005. 63(2): 173-183
    崔晓鹏,吴国雄,高守亭.西大西洋锋面气旋过程的数值模拟和等熵分析(J).气象学报, 2002. 60(4): 385—398
    丁一汇.高等天气学(M).北京:气象出版社, 1991. 140-155pp,316-317pp
    郭英莲,徐海明.对流层中上层干空气对―碧利斯‖台风暴雨的影响(J).大气科学学报,2010. 33(1):99-109
    姜学恭,孙永刚,沈建国.一次东北冷涡暴雨过程的数值模拟试验(J).气象,2001. 27(1):26-28
    刘宗秀,廉毅等.东北冷涡持续活动时期的北半球500 hPa环流特征分析(J).大气科学,2002. 26(3):361-372
    寿亦萱,许健民.东北暴雨中尺度对流系统研究Ⅰ:MCS动力结构特征的雷达卫星资料分析(J).气象学报,2002. 65(2): 160-171
    寿亦萱,许健民.―05.6‖东北暴雨中尺度对流系统研究Ⅱ:MCS动力结构特征的雷达卫星资料分析(J).气象学报,2007. 65(2):171-182
    孙健,赵平,周秀骥.一次华南暴雨的中尺度结构及复杂地形的影响(J).气象学报,2002.60(3):333-342
    孙建华,赵思雄.华南946特大暴雨的中尺度对流系统及其环境场研究II.物理过程、环境场以及地形对中尺度对流的作用(J).大气科学, 2002, 26 (5) : 633~646
    孙力,王琪,唐晓玲.暴雨类冷涡与非暴雨类冷涡的合成对比分析(J).气象, 1995.21(3):7-10
    孙永罡,于振东等.东北冷涡的Q矢量诊断分析(J).黑龙江气象. 1997. 3: 8-14
    陶诗言.暴雨和强对流天气的研究(J).大气科学,1979. 3(3):227-238
    陶诗言.中国之暴雨(M).北京:科学出版社, 1980. 115pp
    王东海,杨帅.一个干侵入参数及其应用(J).气象学报. 2009. 04: 522-529
    吴国雄,刘还珠.全型垂直涡度倾向方程和倾斜涡度发展(J).气象学报, 1999. 57(1): 1—15
    阎凤霞,寿绍文,张艳玲等.一次江淮暴雨过程中干空气侵入的诊断分析(J).南京气象学院学报, 2005. 28(1):117-124
    杨贵名,毛冬艳,姚秀萍.―强降水和黄海气旋‖中的干侵入分析(J).高原气象, 2006. 25(1):16-28
    杨帅.华北暴雨形成机理研究(D),中国科学院研究生院博士学位论文, 2007, 21-37pp
    姚秀萍,吴国雄,赵兵科等.与梅雨锋上低涡降水相伴的干侵入研究.中国科学, D辑:地球科学, 2007.37(3):417-428
    于玉斌,姚秀萍.干侵入的研究及其应用进展(J).气象学报, 2003. 61(6):769-778
    袁美英,李泽椿,张小玲. 2010.东北地区一次短时大暴雨β中尺度对流系统分析(J). 气象学报,68(1): 125-136
    张庆云,陶诗言. 1998.夏季东亚热带和副热带季风与中国东部汛期降水(J),应用气象学报,9:17-23
    张小玲,陶诗言,张庆云. 2002. 1998年梅雨锋的动力热力结构分析(J),应用气象学报,13(3):257-268
    赵思雄,刘苏红,刘名扬.夏季北京冷涡强对流天气的中尺度分析(C).中国科学院大气物理所集刊,第9号,北京:科学出版社,1980
    郑秀雅,张延治,白人海.东北暴雨(M).北京:气象出版社,1992. 19-43
    A.T.Singleton, C.J.C.Reason. A numerical Model Study of an Intense Cutoff Low Pressure System over South Africa (J). Mon. Wea. Rev, 2007,135, 1128~1149
    Brian A. Colle. Numerical Simulations of the Extratropical Transition of Floyd (1999): StructuralEvolution and Responsible Mechanisms for the Heavy Rainfall over the Northeast United States (J). Mon. Wea. Rew. 2003, 131(12):2905-2926
    Brian A. Colle,Bradley F. Smull,Ming-Jen Yang. Numerical Simulations of a Landfalling Cold Front Observed during COAST:Rapid Evolution and Responsible Mechanisms (J). Mon. Wea. Rew. 2002, 130(8):1945-1966
    Brian A. Colle,Sandra E. Yuter. The Impact of Coastal Boundaries and Small Hills on the Precipitation Distribution across Southern Connecticut and Long Island, New York (J). Mon. Wea. Rew. 2007, 135(3):933-954
    Pierrehumbert R T. Linear results on the barrier effects of mesoscale mountains (J). J Atmos Sci, 1984, 41:1356-1367
    Pierrehumbert R T, Wyman b. Upstream effects of mesoscale mountains (J). J Atmos Sci, 1985, 42: 977-1003
    Qingqing Li, Yihong Duan, Hui Yu, Gang Fu. High-Resolution Simulation of Typhoon Rananim (2004) with MM5. Part I: Model Verification, Inner-Core Shear, and Asymmetric Convection (J). Mon. Wea. Rev, 2008, 136(7):2488-2506
    Queney P. The problem of airflow over mountains: a summary of theoretical studies (J), bull Amer Meteor Soc, 1948, 29(4):16-26
    Scorer R S. Theory of waves in the lee of mountains (J), quart J Roy Meteor Soc, 1949, 75(2):41-56
    Scott A B, Richard R, Klemp J B. Effects of coastal orography on landfalling cold fronts. PartⅡ: effects of surface friction (J). J Atmos Sci, 1999, 56:3366-3384
    Takeda. Look at the effects of terrain impacting on heavy rainfall from cloud physica (J). Weather Japan, 1977, 24(1):43-53
    毕宝贵,刘月巍,李泽椿.秦岭大巴山地形对陕南强降水的影响研究(J),高原气象,2006,25(3):485-494
    迟竹萍,李昌义,刘诗军.一次山东春季大暴雨中螺旋度的应用(J).高原气象.2006, 25(5):792-799
    丁一汇.高等天气学(第二版)(M),气象出版社,2004,492pp
    丁一汇,蔡则怡,李吉顺. 1975年8月上旬河南特大暴雨的研究(J).大气科学, 1978, 2(4):276~290
    胡开喜.东北冷涡的气候特征,变异及其气候效应(D),中国科学院研究生院博士学位论文,2010. pp.21
    姜勇强,王元.地形对1998年7月鄂东特大暴雨鞍型场的影响(J),高原气象,2010,29(2):297-308
    李燕,邹耀仁,胡筱敏.辽东半岛一次大暴雨的中尺度模拟及物理结构分析(J).高原气象. 2009, 28(4):915-923
    刘栋. MM5模式对区域气候模拟的性能试验(J).高原气象. 2003, 22(1):71-77
    钱永甫,颜宏,王谦谦等.行星大气中地形效应的数值研究(J).北京:科学出版社, 1988
    陶诗言.中国之暴雨(M).北京:科学出版社, 1980,13pp
    湘中中、小尺度系统试验基地暴雨组.中尺度暴雨分析和预报(C).北京:气象出版社, 1988
    张建海,陈红梅,诸晓明.台风Haitang(0505)登陆过程地形影响的数值模拟试验(J),海洋通报,2006,25(2):1-7
    张可欣,汤剑平,邰庆国,裴洪芹.鲁中山区地形对山东省一次暴雨影响的敏感性数值模拟试验(J).气象科学,2007,27(5):511-515
    郑祚芳,王迎春,刘伟东.地形及城市下垫面对北京夏季高温影响的数值研究(J).热带气象学报,2006,22(6):672-676
    郑秀雅、张延治、白人海.东北暴雨(M).气象出版社, 1992. 142-145
    中国的地形,中国自然地理知识丛书(M),商务印书馆,1992,pp.19
    Kei Sakamoto. Cut off and Weakening Processes of an Upper Cold Low (J). Journal of the Meteorological Society of Japan, 2005,83:817-834
    Palmen E,C W Newton. Atmospheric circulation systems (M),1969,academic press, pp. 603
    Louis W. Uccellini, Donald R. Johnson. The Coupling of Upper and Lower Tropospheric Jet Streaks and Implications for the Development of Severe Convective Storms (J), Mon. Wea. Rev., 1979,107 (6):682-703
    北方暴雨编写组,中国北方暴雨丛书(C), 1992.气象出版社
    丁一汇,陆尔.据1991年特大洪涝过程的物理分析试论江淮梅雨预测(J). 1997,2(1): 32-38
    柳俊杰,丁一汇,何金海.一次典型梅雨锋锋面结构分析(J).大气科学,2003,61(3): 291-302
    倪允琪,周秀骥.中国长江中下游梅雨锋暴雨形成机理以及监测与预测理论和方法研究(J).气象学报,2004,62(5):647-662
    倪允琪,周秀骥,张人禾,王鹏云,仪清菊.我国南方暴雨的试验与研究(J),应用气象学报,2006,17(6):690-704
    孙建华,赵思雄. 2008年初南方雨雪冰冻灾害天气静止锋与层结结构分析(J).2008,13(4):368-384
    孙力,王琪,唐晓玲.暴雨类冷涡与非暴雨类冷涡的合成对比分析(J).气象, 1995, 21(3):7-10
    徐祥德,陈联寿,王秀荣,苗秋菊,陶诗言.长江流域梅雨带水汽输送源-汇结构(J).2003,48(21):2288-2294
    张云,雷恒池,钱贞成.一次东北冷涡衰退阶段暴雨成因分析(J).大气科学, 2008, 32(3): 481-497
    赵思雄,孙建华. 2008年初南方雨雪冰冻天气的环流场与多尺度特征(J).2008,13(4):351-367
    郑秀雅,张延治,白人海.东北暴雨(M). 1992,气象出版社, pp.129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700