用户名: 密码: 验证码:
锂离子电池铜集流体表面功能结构设计、加工及性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为移动电子设备、电动工具、电动汽车等的电源以及在工业储能方面的巨大潜力,锂离子电池引人注目。锂离子电池的广泛应用,对其性能提出了更高的要求,推动了高容量负极材料的发展。但是,高容量负极材料在实际应用中受到诸多限制,因为在与锂离子的合金化和脱合金过程中,其体积发生严重变化,致使电极材料粉化、与铜集流体之间发生脱离,电极结构被破坏,锂离子电池容量快速衰减。针对这个问题,本文提出具有表面功能结构的高性能新型铜集流体,围绕结构的设计、成形、作用机理及对锂离子电池循环性能的影响展开系统研究,主要研究工作如下:
     1.高容量负极材料粉化失效的数学模型
     基于线弹性材料的基本假定,根据锂离子电池中锂离子在负极材料中的扩散规律,分析电极材料中应力的产生机理。将锂离子在负极材料中扩散引起的膨胀等效成热膨胀,通过对电极材料膨胀时的力学分析,得出了电极材料中应力的函数。根据线弹性材料脆性断裂的K准则,讨论了电极材料的断裂失效,得出了决定材料失效的关键函数,即高容量负极材料粉化失效的数学模型。
     2.铜集流体表面结构设计及数学模型
     根据材料粉化失效模型,当锂离子在电极材料中扩散时会有内应力产生。为了避免内应力导致的电极材料失效,提出铜集流体表面微盲孔结构及微球结构。结构对电极材料的体积变化有较好的约束,即可以提供良好的力学环境来抑制电极材料的膨胀。根据结构应满足的约束条件,建立了表面微盲孔结构及微球结构的数学模型。分析表明:同种孔形,深宽比越大,材料受到孔的约束就越大,限制膨胀的效果就越好;不同孔形,相同深宽比的情况下,锥形孔、圆柱形孔及球形孔的功能依次增强。微球结构的数学模型与球形孔的模型相同,理论上两种结构在抑制电极材料膨胀上的作用相同。
     3.微盲孔结构激光加工成形、微球结构烧结成形
     采用激光技术制备具有微盲孔结构的铜集流体。针对激光光束移动的特点,本文提出光束同心圆扫描——光束定点的加工方案,在一定程度上提高了打孔的质量。实验结果表明:当激光输出功率、激光扫描速度、激光脉冲重复频率及激光光束离焦量分别取20W、500mm/s、20kHz、10μm时,可以得到较好的孔形。
     采用固相烧结技术制备表面微球结构铜集流体,制定了球形铜粉颗粒与板状铜集流体的烧结工艺。结果表明:在烧结时间及铜粉粒径不变的情况下,烧结温度与烧结颈的大小成正比,即烧结温度越高烧结颈越大,烧结强度就越高;在铜粉颗粒粒径及烧结温度不变时,烧结时间越长,烧结颈就越大,烧结强度就越高。得出:烧结温度为1000℃,烧结时间为3h时,各粒径铜粉与铜集流体之间的烧结强度最大,为最佳的烧结工艺。
     4.铜集流体性能测试、高容量硅负极锂离子电池性能测试
     通过循环伏安实验、接触角测试及拉伸实验分别研究了铜集流体的电化学性能、表面润湿性及力学性能。结果表明:表面具有结构的铜集流体在电解液中性质稳定,作为负极集流体时负极电压不得高于3.5V vs. Li+/Li;表面结构对铜集流体的亲水性影响不大;表面微盲孔结构铜集流体的抗拉强度可以满足要求,表面微球结构铜集流体的抗拉强度偏低。
     通过充放电循环实验,测试表面微盲孔结构及微球结构铜集流体制备的高容量硅负极锂离子电池的性能。结果表明这两种结构可以提供高效的约束力来抑制电极材料的膨胀,改善锂离子电池的性能。微盲孔的结构参数对锂离子电池的性能有一定的影响:同一孔径下,孔越深性能越好;同一深度下,孔径小的表现出的性能好。对于微球结构铜集流体,随着微球粒径的增大,锂离子电池的性能表现逐渐变好,即大粒径微球结构更具优势。
Lithium ion battery (LIB) is regarded as an attractive power source, which can be usedfor portable electronic devices, power tools, electric vehicles, and industrial energy storage.The critical requirements of LIB’s performance promote the development of anode materialswith high capacity. The anode materials are limited in practice, because of severe volumechanges during insertion and extraction of Lithium ion, which leads to capacity fading andthe breakage of anode materials. To this end, a novel copper current collector with surfacestructures of micro-blind holes and micro-balls were proposed in this thesis. The design,fabrication, mechanism and effects on LIB of the surface structure were symmetricallystudied, The main contents in this thesis were as follows:
     1. Pulverization model of anode materials with high capacity
     The stress in electrode materials was analyzed based on difusion law of lithium ions inanode materials which were supposed as linear elastic material. The expansion caused bydifusion of lithium ions was equivalent as thermal expansion. The stress functionwasobtained by mechanical analysis of anode materials. The fracture failure was discussed basedon the K criterion of linear elastic material brittle fracture, and the key function of materialfailure was obtained.
     2. The design and mathematical model of surface structures
     The stress growed when difusion. A novel copper current collector with surfacestructures of micro-blind holes and micro-balls were proposed to avoid electrode failure. Thestructures could providedbinding force. Therefore, structure models were built. The modelsindicated that: the bigger the ratio of depth to width, the bigger the binding force, and thebetter the effect of restricted expansion at the same holes. Cone holes, cylinder holes andspherical holeshad the better function in turn. The model of micro-balls was same as themodel of spherical holes, they had the same function theoretically.
     3. Fabrication of micro-blind holes by laser processing and micro-balls by sintering
     The copper current collector with micro-blind holes was fabricated by laser system. Inthis thesis, the processing programme of concentric circles scanning-fixed beam wasproposed to increase processing quality. The experimental results show that: the values of laser out power, laser scanning speed,pulse frequency of laser and laser focuses should be20W,500mm/s,20kHz and10μm for better structures.
     The copper current collector with micro-balls was fabricated by solid phase sinterprocessing, sintering process was formulated. The experimental results show that: thesintering temperature is proportional to thesintering neckat the under of the condition ofconstant of sintering time and the copper powder diameter. The higher sintering temperature,the bigger thesintering neck andsintering strength. At the under of the condition of constant ofsintering time and the copper powder diameter, the longer sintering time, the biggerthesintering neck andsintering strength. Sintering temperature1000℃and sintering time3hwas the best sintering process.
     4. Performance test of copper current collector, Performance test of LIB withcopper current collector
     Electrochemical performance, surface wettability and tensile performance of coppercurrent collector were investigated by cyclic voltammetry test, contact angle test and tensiletest. The results indicated: the copper current collector with surface structures were stable inthe electrolyte, and the anode potential should be under3.5V vs. Li+/Li. The surfacestructures effected on surface wettability slightly. The tensile strength of copper currentcollector with micro-blind holes was to meet the requirements of industry, but the tensilestrength of copper current collector with micro-balls was lower.
     LIBs fabricated by copper current collector with micro-balls and copper current collectorwith micro-blind holes were test by Charge-Discharge cycling. The results show that: thesurface structures could provide reasonable binding force to increase cycle performance ofLIB. The increasing depth of micro-blind hole help to increase cycle performance of LIB atthe same diameter. The smaller the diameter, the better performance the LIB at the samedepth. The bigger diameter of copper powders was advantageous to performance of LIB.
引文
[1]郭炳焜,李新海,杨松青.化学电源—电池原理及制造技术[M].长沙:中南工业大学出版社,2000
    [2] Tarascon J.-M.. Key challenges in future Li-battery research[J]. Phil. Trans. R. Soc. A.,2010,368:3227-3241
    [3]吴宇平,戴晓兵,马军旗,等.锂离子电池—应用与实践[M].北京:化学工业出版社,2004
    [4]崔胜民.新能源汽车技术[M].北京:北京大学出版社,2009
    [5] Yang Zhenguo, Zhang Jianlu, Kintner-Meyer M.C., et al. Electrochemic al EnergyStorage for Green Grid[J]. Chem. Rev.,2011,111:3577-3613
    [6]秩名.锂电池公司转型——工业储能成先进电池制造新战场[EB/OL].http://www.chinasmartgrid.com.cn/news/20121018/395426.shtml,2012-10-18
    [7]可心.俞永福:移动互联网发展瓶颈是电池[EB/OL].http://people.techweb.com.cn/2011-08-20/1083265.shtml,2011-08-20
    [8]日信证券研究所.锂电池行业深度研究报——解析市场格局及前景
    [EB/OL].http://www.chinasmartgrid.com.cn/news/20120830/384455.shtml,2012-08-30
    [9] Winter M., Besenhard J.O., Spahr M.E., et al. Insertion Electrode MaterialsforRechargeable Lithium Batteries[J]. Adv. Mater.,1998,10(10):725-763
    [10] Khomenko V.G., Barsukov V.Z.. Characterization of silicon-and carbon-basedcomposite anodes for lithium-ion batteries[J]. Electrochimica Acta,2007,52:2829-2840
    [11] Dahn J.R., Zheng Tao, Liu Yinghu, et al. Mechanisms for Lithium Insertion inCarbonaceous Materials[J]. Science,1995,270(5236):590-593
    [12] Yoshio M., Kugino S., Dimov N.. Electrochemical behaviors of silicon based anodematerial[J]. Journal of Power Sources,2006,153:375-379
    [13] Zhang T., Fu L.J., Takeuchi H., et al. Studies of the structure of vacuum depositedsilicon flms on metal substrates as anode materials for Li-ion batteries[J]. Journal ofPower Sources,2006,159:349-352
    [14] Kasavajjula U., Wang Chunsheng, Appleby A.J.. Nano-and bulk-silicon-based insertionanodes for lithium-ion secondary cells[J]. Journal of Power Sources,2007,163:1003-1039
    [15] Holzapfel M., Buqa H., Hardwick L.J., et al. Nano silicon for lithium-ion batteries[J].ElectrochimicaActa,2006,52:973-978
    [16] Lee S.-J., Lee J.-K., Chung S.-H., et al. Stress effect on cycle properties of the siliconthin-film anode[J]. Journal of Power Sources,2001,97-98:191-193
    [17] Obrovaca M.N., Krause L.J.. Reversible Cycling of Crystalline Silicon Powder[J].Journal of The Electrochemical Society,2007,154(2): A103-A108
    [18] Boukamp B.A, Lesh G.C., Huggins R.A.. All-Solid Lithium Electrodes with Mixed-Conductor Matrix[J]. J. Electrochem. Soc.,1981,128(4):725-729
    [19] Jiang Tao, Zhang Shichao, QiuXinping, et al. Preparation and characterization ofsilicon-based three-dimensional cellular anode for lithium ion battery[J].Electrochemistry Communications,2007,9:930-934
    [20] Kim Y.-L., Sun Y.-K., Lee S.-M.. Enhanced electrochemical performance ofsilicon-based anode material by using current collector with modifed surfacemorphology[J]. Electrochimica Acta,2008,53:4500-4504
    [21] Nguyen C.C., Song Seung-Wan. Interfacial structural stabilization on amorphoussilicon anode for improved cycling performance in lithium-ion batteries[J].ElectrochimicaActa,2010,55:3026-3033
    [22] Chan C.K., Peng Hailin,Liu Gao, et al. High-performance lithium battery anodes usingsilicon nanowires[J]. Nature Nanotechnology,2008,3:31-35
    [23] Harris W.S., Ph.D. Thesis UCRL-8381, University of California, Berkeley
    [24] Chilton Jr., Cook G.M.. Abstract, ECS Fall Meeting, Boston,1962,90–91
    [25] Braeuer K., Moyes K.R.. U.S. Patent3514337,1970
    [26] Keda H., Saito T., Tamaru H.. Denki Kagaku,1977,5:314
    [27]黄彦瑜.锂电池发展简史[J].物理,2007,36(8):643-651
    [28] Whittingham M.S.. Electrical Energy Storage and Intercalation Chemistry[J]. Science,1976,192(4244):1126-1127
    [29] Whittingham, M. S. Chalcogenide battery. U.S. Patent4009052
    [30] Whittingham M.S.. Lithium Batteries and Cathode Materials[J]. Chem. Rev.2004,104:42714301
    [31] Rao B.M.I., Francis R.W., Christopher H.A.. Lithium-Aluminum Electrode[J]. J.Electrochem. Soc.: Electrochemical Science and Technology.1977,124(10):1490-1492
    [32] HaeringR.R., StilesJ.A.R., BrandtK., U.S. Patent4,224,390,1980
    [33] Armand M.B., Murphy D.W., Broadhead I., et al. Materials for Advanced Batteries[M].New York: Plenum Press,1980
    [34] Mizushima K., JonesP.C., Wiseman P.J., et al. LixCoO2(0    [35] Thackeray M.M., David W.I.F., Bruce P.G., et al. Lithium insertion into manganesespinels[J]. Materials Research Bulletin,1983,18(4):461–472
    [36] Armand M.B. PhD thesis, Grenoble,1978
    [37] Basu S., U.S. Patent4,423,125,1982
    [38] Basu S., U.S. Patent4,304,825,1980
    [39]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社,2008
    [40] Ohzuku T., Ueda A., Nagayama M., et al. Comparative study of LiCoO2, LiNi1/2Co1/2O2and LiNiO2for4volt secondary lithium cells[J]. Electrochimica Acta,1993,38(9):1159-1167
    [41] Reimers J.N., DahnJ.R.. Electrochemical and In Situ X-Ray Diffraction Studies ofLithium Intercalation in LixCoO2[J]. J. Electrochem. Soc.,1992,139(8):2091-2097
    [42] Ohzuku T., Ueda A.. Solid-State Redox Reactions of LiCoO2(R3m) for4VoltSecondary Lithium Cells[J]. J. Electrochem. Soc.,1994,141(11):2972-2977
    [43] Amatucci G.G., Tarascon J.M., Klein L.C.. CoO2, The End Member of the LixCoO2Solid Solution[J]. J. Electrochem. Soc.,1996,143(3):1114-1123
    [44] Nakai I., Takahashi K., Shiraishi Y., et al. Study of the Jahn–Teller Distortion in LiNiO2,a Cathode Material in a Rechargeable Lithium Battery, by in Situ X-Ray AbsorptionFine Structure Analysis[J]. Journal of Solid State Chemistry,1998,140:145-148
    [45] Ohzuku T., Ueda A.. Why transition metal (di) oxides are the most attractive materialsfor batteries[J]. Solid State Ionics,1994,69(3-4):201-211
    [46] Antolini E.. LiCoO2: formation, structure, lithium and oxygen nonstoichiometry,electrochemical behaviour and transport properties[J]. Solid State Ionics,2004,170:159–171
    [47] Lundblad A., Bergman B.. Synthesis of LiCoO2starting from carbonate precursors I.The reaction mechanisms[J]. Solid State Ionics,1997,96:173-181
    [48] Yamada A., Chung S.C., Hinokuma K.. Optimized LiFePO4for Lithium BatteryCathodes[J]. Journal of The Electrochemical Society,2001,148(3): A224-A229
    [49] Liu Hansan, Yang Yong, Zhang Jiujun. Reaction mechanism and kinetics of lithium ionbattery cathode material LiNiO2with CO2[J]. Journal of Power Sources,2007,173:556–561
    [50] Amriou T., Khelifa B., Aourag H., et al. Ab initio investigation of the Jahn–Tellerdistortion effect on the stabilizing lithium intercalated compounds[J]. MaterialsChemistry and Physics,2005,92:499–504
    [51] Rougier A., Gravereau P., Delmas C.. Optimization of the Composition of theLi1-zNi1+zO2Electrode Materials: Structural, Magnetic, and Electrochemical Studies[J].J. Electrochem. Soc.,1996,143(4):1168-1175
    [52] Belharouak I., Sun Y.-K., Lu W., et al. On the Safety of the Li4Ti5O12/LiMn2O4Lithium-Ion BatterySystem[J]. Journal of The Electrochemical Society,2007,154(12):A1083-A1087
    [53] Pasquier A.D., Huang C.C., Timothy Spitler. Nano Li4Ti5O12–LiMn2O4batteries withhigh power capability and improved cycle-life[J]. Journal of Power Sources,2009,186:508–514
    [54] Molenda J., Ziemnicki M., Marzec J., et al. Electrochemical and high temperaturephysicochemical properties of orthorhombic LiMnO2[J]. Journal of Power Sources,2007,173:707–711
    [55] Thackeray M.M.. Spinel Electrodes for Lithium Batteries[J]. J. Am. Ceram. Soc.,1999,82(12):3347–3354
    [56] Liu Qun, Mao Dali, Chang Chengkang, et al. Phase conversion and morphologyevolution during hydrothermal preparation of orthorhombic LiMnO2nanorods forlithium ion battery application[J]. Journal of Power Sources,2007,173:538–544
    [57] Whittingham M.S.. Lithium Batteries and Cathode Materials[J]. Chem. Rev.,2004,104(10):4271-4302
    [58] Fergus J.W.. Recent developments in cathode materials for lithium ion batteries[J].Journal of Power Sources,2010,195:939–954
    [59] Ellis B.L., Lee K.T., Nazar L.F.. Positive Electrode Materials for Li-Ion andLi-Batteries[J]. Chem. Mater.,2010,22:691–714
    [60] Xu Bo, Qian Danna, Wang Ziying, et al. Recent progress in cathode materials researchfor advanced lithium ion batteries[J]. Materials Science and Engineering R,2012,73:51–65
    [61] Zhang S.S., Xu K., Jow T.R.. Low temperature performance of graphite electrode inLi-ion cells[J]. Electrochimica Acta,2002,48:241-246
    [62] Mabuchi A., Fujimoto H., Tokumitsu K., et al. Charge-Discharge Mechanism ofGraphitized Mesocarbon Microbeads[J]. J. Electrochem. Soc.,1995,142(9):3049-3051
    [63] Tatsumi K., Iwashita N., Sakaebe H., et al. The Influence of the Graphitic Structure onthe Electrochemical Characteristics for the Anode of Secondary Lithium Batteries[J]. J.Electrochem. Soc.,1995,142(3):716-720
    [64] Inaba M., Yoshida H., Ogumit Z.. In situ Raman Study of Electrochemical LithiumInsertion into Mesocarbon Microbeads Heat-Treated at Various Temperatures[J]. J.Electrochem. Soc.,1996,143(8):2572-2578
    [65] Mabuchi A., Tokumitsu K., Fujimoto H., et al. Charge-Discharge Characteristics of theMesocarbon Miocrobeads Heat-Treated at Different Temperatures[J]. J. Electrochem.Soc.,1995,142(4):1041-1046
    [66] Liu Yinghu, Xue J.S., Zheng Tao, et al. Mechanismof Lithium InsertionIn Hard CatbonsPrepared By Pyrolysis Of Epoxy Resins[J]. Carbon,1996,34(2):193-200
    [67] Sato K., Noguchi M., Demachi A., et al. A Mechanism of Lithium Storage inDisordered Carbons[J]. Science,1994,264(5158):556-558
    [68] Fey G.T.-K., Chen C.-L.. High-capacity carbons for lithium-ion batteries prepared formrice husk[J]. Journal of Power Sources,2001,97-98:47-51
    [69] Dahn J.R., Xing W., Gao Y..The “Falling Cards Model” for the Structure ofMicroporous Carbons[J]. Carbon,1997,35(6):825-830
    [70] Buiel E., DahnJ. R.. Reduction of the Irreversible Capacity in Hard-Carbon AnodeMaterials Prepared from Sucrose for Li-Ion Batteries[J]. J Electrochem. Soc.,1998,145(6):1977-1981
    [71] Takami N., Ohsaki T., Hasebe H., et al. Laminated Thin Li-Ion Batteries Using a LiquidElectrolyte[J]. Journal of The Electrochemical Society,2002,149(1): A9-A12
    [72] WuY.P., Rahm E., Holze R.. Carbon anode materials for lithium ion batteries[J]. Journalof Power Sources,2003,114:228-236
    [73] Isaev I., Salitra G., Soffer A., et al. A new approach for the preparation of anodes forLi-ion batteries based on activated hard carbon cloth with pore design[J]. Journal ofPower Sources,2003,119–121:28–33
    [74] Dimov N., Fukuda K., Umeno T., et al. Characterization of carbon-coated siliconStructural evolution and possible limitations[J]. Journal of Power Source,2003,114:88-95
    [75] Kim I.-S., Kumta P.N.. High capacity Si/C nanocomposite anodes for Li-ion batteries[J].Journal of Power Sources,2004,136:145–149
    [76] Yoshio M., Kugino S., Dimov N.. Electrochemical behaviors of silicon based anodematerial[J]. Journal of Power Sources,2006,153:375–379
    [77] Takamura T., Ohara S., Uehara M., et al. A vacuum deposited Si flm having a Liextraction capacity over2000mAh/g with a long cycle life[J]. Journal of Power Sources,2004,129:96–100
    [78] Jung H., Parka M., Han S.H., et al. Amorphous silicon thin-flm negative electrodeprepared by low pressure chemical vapor deposition for lithium-ion batteries[J]. SolidState Communications,2003,125:387–390
    [79] Maranchi J.P., Hepp A.F., Kumta P.N.. High Capacity, Reversible Silicon Thin-FilmAnodesfor Lithium-Ion Batteries[J]. Electrochemical and Solid-State Letters,2003,6(9): A198-A201
    [80] Kim H., Cho J.. Superior Lithium Electroactive Mesoporous Si@Carbon Core-ShellNanowires for Lithium BatteryAnodeMaterial[J]. Nano Lett.,2008,8(11):3688-3691
    [81] Wang Wei, Kumta P.N.. Nanostructured Hybrid Silicon/Carbon NanotubeHeterostructures: Reversible High-Capacity Lithium-Ion Anodes[J]. NANO,2010,4(4):2233–2241
    [82] Li Hong, Huang Xuejie, Chen Liquan, et al. A High Capacity Nano-Si CompositeAnode Material for Lithium Rechargeable Batteries[J]. Electrochemical and Solid-StateLetters,1999,2(11):547-549
    [83] Holzapfel M., Buqa H., Scheifele W., et al. A new type of nano-sized silicon/carboncomposite electrode for reversible lithium insertion[J]. Chem. Commun.,2005,1566–1568
    [84]陶占良,王洪波,陈军.锂离子电池负极硅基材料[J].化学进展,2011,23(2/3):318-327
    [85] Yoshio M., Brodd R.J., Kozawa A.. Lithium-Ion Batteries: Science andTechnologies[M]. New York: Springer Science Business Media,2009
    [86] Iwakura C., Fukumoto Y., Inoue H., et al. Electrochemical characterization of variousmetal foils as a current collector of positive electrode for rechargeable lithiumbatteries[J]. Journal of Power Sources,1997,68:301-303
    [87] Scrosati B., Abraham K.M., Schalkwijk W.V., et al. Lithium Batteries: AdvancedTechnologies andApplications[M]. New Jersey: John Wiley&Sons, Inc.,2013
    [88] Schalkwijk W.A., Scrosati B.. Advances in Lithium-Ion Batteries[M]. KluwerAcademic Publishers, New York: Kluwer Academic Publishers,2002
    [89]赵玲艳.锂离子电池用铜箔的应用与发展现状[J].有色金属加工,2008,37(1):8-10
    [90]黄洁.铜箔的生产技术及发展趋向[J].铜业工程,2003,2:83-84
    [91]陈平华.电解铜箔市场研究报告[J].有色金属,2005,5:19-27
    [92]牛慧贤.铜箔在锂离子电池中的应用与发展现状[J].稀有金属,2005,29(6):898-902
    [93]王力臻,蔡洪波,谷书华,等.直流刻蚀铝集流体对LiCoO2正极性能的影响[J].电池,2008,38(5):300-302
    [94]张成,张世超,蒋涛,等.泡沫铜的制备及其在锂离子蓄电池中的应用[J].电源技术-研究与设计,2008,132(1):17-20
    [95]樊小勇,庄全超,魏国祯,等.以多孔铜为集流体制备Cu6Sn5合金负极及其性能[J].物理化学学报,2009,25(4):611-616
    [96] Fan Xiao-Yong, Ke Fu-Sheng, Wei Guo-Zhen, et al. Sn–Co alloy anode using porousCu as current collector for lithium ion battery[J]. Journal of Alloys and Compounds,2009,476:70–73
    [97] Shin N.-R., Kang Y.-M.,Song M.-S, et al. Effects of Cu substrate morphology and phasecontrol on electrochemical performance of Sn–Ni alloys for Li-ion battery[J]. Journalof Power Sources,2009,186:201–205
    [98] Takamura T., Uehara M., Suzuki J., et al. High capacity and long cycle life siliconanode for Li-ion battery[J]. Journal of Power Sources,2006,158:1401–1404
    [99] Yazici M.S., Krassowski D., Prakash J.. Flexible graphite as battery anode and currentcollector[J]. Journal of Power Sources,2005,141:171–176
    [100] Hu Liangbing, Choi J.W.,Yang Yuan, et al. Highly conductive paper for energy-storagedevices[J]. PNAS,2009,106(51):21490-21494
    [101] Shin H.-C., Dong Jian, Liu Meilin. Nanoporous Structures Prepared by anElectrochemical Deposition Process[J]. Adv. Mater.,2003,15(19):1610-1614
    [102] Nikolic′N.D., Popov K.I., Pavlovic′Lj.J., et al. The efect of hydrogen codeposition onthe morphology of copper electrodeposits. I. The concept of efective overpotential[J].Journal of Electroanalytical Chemistry,2006,588:88–98
    [103] Li Hong, Huang Xuejie, Chen Liquan, et al. The crystal structural evolution of nano-Sianode caused by lithium insertion and extraction at room temperature[J]. Solid StateIonics,2000,135:181-191
    [104] Obrovac M.N., Christensen L.. Structural changes in silicon anodes during lithiuminsertion extraction[J]. Electrochemical and Solid-State Letters,2004,7(5): A93-A96
    [105]丁宁.锂离子电池材料的相关研究—电极合成、性能改善、新材料探索及其充放电机[D].合肥:中国科学技术大学,2009
    [106] Edwin Garc′a R., Chiang Y.M., Craig Carter W., et al. Microstructural modeling anddesign of rechargeable lithium-ion batteries[J]. J. Electrochem. Soc.,2005,152(1):A255-A263
    [107] Christensen J., Newman J.. A mathematical model of stress generation and fracture inlithium manganese oxide[J]. J. Electrochem. Soc.,2006,153(6): A1019-A1030
    [108] Christensen J., Newman J.. Stress generation and fracture in lithium insertionmaterials[J]. J Solid State Electrochem,2006,10:293–319
    [109] Cheng Y.T., Verbrugge M.W.. Evolution of stress within a spherical insertion electrodeparticle under potentiostatic and galvanostatic operation[J]. J. Power Sources,2009,190:453-460
    [110] Zhang Xiangchun, Shyy Wei, Sastry A. M.. Numerical simulation ofintercalation-induced stress in Li-ion battery electrode particles[J]. J. Electrochem. Soc.,2007,154(10): A910-A916
    [111] Prussin S.. Generation and distribution of dislocations by solute diffusion[J]. J. Appl.Phys.,1961,32(10):1876-1881
    [112] Li J.C.M.. Physical chemistry of some microstructural phenomena[J]. MetallurgicalTransactions A,1978,9:1353-1380
    [113] Yang Fuqian. Interaction between diffusion and chemical stresses[J]. Materials Scienceand Engineering A,2005,409:153-159
    [114] Yang Fuqian, Li J.C.M.. Diffusion-induced beam bending in hydrogen sensors[J]. J.Appl. Phys.,2003,93(11),9304-9309
    [115] Chiswick H.H.. The plastic deformation of uranium on thermal cycling[J]. Trans. Am.Soc. Metals,1957,49:622-654
    [116] Coffin, L.F., Jr.. A study of the effects cyclic thermal stresses on a ductile metal[J].Transactions ofASME,1954,76:931-950
    [117] Manson S.S.. Thermal Stress and Low-Cycle Fatigue[M]. New York: McGraw-Hill,1966,184-191
    [118] Kalnaus S., Rhodes K., Daniel C.. A study of lithium ion intercalation induced fractureof silicon particles used as anode material in Li-ion battery[J]. J. Power Sources,2011,196:8116-8124
    [119] Bhandakkar T.K., Gao Huajian. Cohesive modeling of crack nucleation under diffusioninduced stresses in a thin strip Implications on the critical size for faw tolerant batteryelectrodes[J]. International Journal of Solids and Structures,2010,47:1424-1434
    [120] Freund L. B., Suresh S..薄膜材料——应力、缺陷的形成和表面演化[M].卢磊,等译.北京:科学出版社,2007:187-326
    [121]王铎.断裂力学[M].南宁:广西人民出版社,1982
    [122]孙靖民.现代机械设计方法[M].哈尔滨:哈尔滨工业大学出版社,2003
    [123] Cook R D., Malkus D S., Plesha M E.,等著.有限元分析的概念与应用[M].关正西,强洪夫,译.西安:西安交通大学出版社,200
    [124] Freund L.B., Suresh S.. Thin Film Materials[M]. New York: Cambridge UniversityPress,2003
    [125] Liu X.H., Zhong Li, Huang Shan, et al. Size-Dependent Fracture of SiliconNanoparticles During Lithiation[J]. ACS NANO,2012,6(2):1522-1531
    [126]赵腾伦.ABAQUS6.6在机械工程中的应用[M].北京:中国水利水电出版社,2007
    [127] William M.S..材料激光工艺过程[M].蒙大桥等译.北京:机械工业出版社,2012
    [128] Reinhart Poprawe.激光制造工艺[M].张冬云译.北京:清华大学出版社,2008
    [129]邵丹,胡兵,郑启光.激光先进制造技术与设备集成[M].北京:科学出版社,2009
    [130]黄培云.粉末冶金原理(第二版)[M].北京:冶金工业出版社,1997
    [131]韩凤麟.粉末冶金基础教程[M].广州:华南理工大学出版社,2005
    [132] Semak V., Chen X., Mundra K., et al. Numerical simulation of hole profile in highbeam intensity laser drilling[J]. Proc. of Laser Materials Processing Conf.,1997,81-89
    [133] Jackson J.D.. Classical electrondynamics[M]. New York: John Wiley&Sons,1975
    [134]张国顺.现代激光制造技术[M].北京:化学工业出版社,2006
    [135]郑启光,辜建辉.激光与物质相互作用[M].武汉:华中理工大学出版社,1996
    [136] Darvishi S., Cubaud T., Longtin J.P.. Ultrafast laser machining of taperedmicrochannels in glass and PDMS[J]. Optics and Lasers in Engineering,2012,50(2):210-214
    [137] Qi J., Wang K.L., Zhu Y.M.. A study on the laser marking process of stainless steel[J].Journal of Materials Processing Technology,2003,139:273–276
    [138] Walther K., Brajdic M., Kreutz E.W.. Enhanced processinog speed in laser drilling ofstainless steel by spatially and temporally superposed pulsed Nd:YAG laser radiation[J].Int J Adv Manuf Technol,2008,35:895-899
    [139] Lees G.P., Cole M.J., Newson T.P.. Narrow linewidth, Q-switched Erbium doped fibrelaser[J]. Electronics Letters,1996,32(14):1299-1300
    [140] Otani T, Herbst L, Heglin M, et al. Microdrilling and micromachining withdiode-pumped solid-state lasers[J]. Appl Phys A,2004,79:1335–1339
    [141]张菲.电子材料紫外激光微加工技术与机理研究[D].武汉:华中科技大学,2009
    [142]沃道瓦托夫,维依柯,契尔男,等.激光在工艺中的应用[M].朱裕栋译.北京:机械工业出版社,1980
    [143] Zhao X., Shin Y.C.. Femtosecond laser drilling of high-aspect ratio microchannels inglass[J]. Appl Phys A,2011,104:713-719
    [144] Chung C.K., Lin S.L.. On the fabrication of minimizing bulges and reducing the featuredimensions of microchannels using novel CO2laser micromachining[J]. J MicromechMicroeng,2011,21065023
    [145] Manonmani K., Murugan N., Buvanasekaran G.. Effects of process parameters on thebead geometry of laser beam butt welded stainless steel sheets[J]. Int J Adv ManufTechnol,2007,32:1125-1133
    [146]龙日升,刘伟军,卞宏友,等.扫面方式对激光金属沉积成形过程热应力的影响[J].机械工程学报,2007,43(11):74-81
    [147]齐军,王昆林,梁绵长,等.激光脉冲重复频率对InSb划片的影响[J].微细加工技术,1999,3:69-73
    [148] German R.M.. Power Metallurgy Science[M]. USA: MPIE,1984146-150
    [149] Kuczynski G.C.. Self-Diffusion in sintering of metallic particles[J]. TRANSACTIONSOF THE AMERICAN INSTITUTE OF MINING AND METALLURGICALENGINEERS,1949,185(2):169-178
    [150] Chulovskaya S.A., Lilin S.A., Parfenyuk V.I., et al. Physicochemical properties ofultrafine copper-containing powders synthesized by cathode reduction[J]. RussianJournal of Physical ChemistryA,2006,80(2):264-267
    [151] Nayda Y.I., Stepanchuk A.N., Nayda A.Y.. Industrial product ion of powders of copperalloys by impact atomization of a jet of melt[J]. Powder Metallurgy and MetalCeramics,2006,45(1/2):93-97
    [152]黄钧声.化学还原法制备纳米铜粉的研究[J].材料科学与工程学报,2003,21(1):57-59
    [153]松山芳治,三谷裕康,铃木寿.粉末冶金学[M].日本:日刊工业新闻社,1972
    [154]倪江峰,周恒辉,陈继涛,等.锂离子电池集流体的研究[J].电池,2005,35(2):128-130
    [155]王建平,张世超.铜箔表面的粗化过程[J].中国有色金属学报,2005,15(1):174-178
    [156]张世超,蒋涛,白致铭.电解铜箔材料中晶面择优取向[J].北京航空航天大学学报,2004,30(10):1008-1012
    [157]张世超,叶帆,蒋涛.电解铜箔力学性能的主要影响因素[J].中国有色金属学报,2005,15(1):167-173
    [158]唐致远,贺艳兵,刘元刚,等.负极集流体铜箔对锂离子电池的影响[J].腐蚀科学与防护技术,2007,19(4):265-268
    [159]彭成信.锂离子电池集流体与新型离子液体电解液的相容性及界面电化学行为研究[D].上海:上海交通大学,2008
    [160]黄可龙,吕正中,刘素琴.锂离子电池容量损失原因分析[J].电池,2001,31(3):142-145
    [161] Yang L, Takahashi M., Wang B.. Astudy on capacity fading of lithium-ion battery withmanganese spinel positive electrode during cycling[J]. Electrochim. Acta,2006,51(16):3228-3234
    [162] Kim Y-S., Lee S-H., Son M-Y.. Succinonitrile as a Corrosion Inhibitor of CopperCurrent Collectors for Overdischarge Protection of Lithium Ion Batteries[J]. ACSAPPLIED MATERIALS&INTERFACES,2014,6(3):2039-2043
    [163] Kawakita J., Kobayashi K.. Anodic polarization behavior of copper in propylenecarbonate[J]. Journal of Power Sources,2001,101(1):47-52
    [164] Zhang X., Kostecki R., Richardson T.J., et al. Electrochemical and infrared studies ofthe reduction of organic carbonates[J]. J. Electrochem. Soc.,2001,148(12):A1341-A1345
    [165] Aurbach D., Talysosef Y., Markovsky B., et al. Design of electrolyte solutions for Liand Li-ion batteries: a review[J]. Electrochim. Acta,2004,50(2-3):247-254
    [166] Choe H.S., Carroll B.G., Pasquariello D.M., et al. Characterization of somepolyacrylonitrile-based electrolytes[J]. Chem. Mater.,1997,9(1):369-379
    [167]许石亮,张胜华,金荣涛,等.电解铜箔亲水性研究[J].有色金属加工,2006,35(3):1-6
    [168]赵玲艳.锂离子电池用铜箔的应用与发展现状[J].有色金属加工,2008,37(1):8-10
    [169]陈朝阳,章金晶,杭先霞,等.锂离子电池用电解铜箔的断裂研究[J].电源技术,2010,34(5):442-445
    [170]金明钢.影响锂离子电池阴极行为诸因素的研究[D].厦门:厦门大学大学,2003
    [171]张勇,武行兵,王力臻,等.扣式锂离子电池的制备工艺研究[J].电池工业,2008,13(2):86-90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700