用户名: 密码: 验证码:
聚光光伏系统中太阳能电池的冷却问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源和环境问题是当今世界面临重要难题。太阳能已成为实现能源可持续发展的重点。太阳能聚光技术能将太阳光汇聚到面积很小的高性能聚光太阳能电池上,提高太阳光辐照能量密度,提高效率;同时,廉价的聚光系统和小面积的太阳能电池可以大幅度地降低系统的成本及稀缺昂贵的太阳能电池材料。高聚光的太阳能电池散热问题是影响光伏电池性能和系统可靠性的重要因素。本文针对高倍数聚光光伏系统中高热流密度光伏电池的散热问题,确保光伏电池工作在正常的温度范围内的安全性等难题,设计了特殊的热管散热器并进行了相关的实验研究。主要开展的研究工作如下:
     1.本文基于太阳能聚光系统和太阳能聚光电池特性,分析世界典型城市太阳能聚光系统的能量传递特性。本文对上海、拉萨、西安、柏林、悉尼和纽约6个典型城市的太阳高度角、太阳方位角、太阳直射辐射强度等太阳参数进行了详细的理论计算,并根据相关单晶硅和三结砷化镓光伏组件的性能参数,对上述6个城市的日发电量进行了理论计算,计算结果表明,聚光组件的日发电量是单晶硅组件的1.85倍左右,而拉萨、悉尼和西安是比较适合光伏系统发展的理想地点。计算了温度对聚光光伏组件和单晶硅光伏组件性能的影响,结果表明,聚光光伏组件的温度系数要明显低于单晶硅光伏组件,因此适合于高倍聚光条件下。
     2.本文设计了与聚光太阳能电池匹配的热管。热管蒸发端与聚光太阳能电池接触,其传热性能和热管蒸发端温度分布对电池性能和热管效率影响显著。建立了热管散热器蒸发端数值模拟计算模型,设置了边界条件、控制方程和物性参数。通过数值计算,模拟分析得到太阳能聚光比、热管倾斜角度和充液量等参数对蒸发端底面温度分布和蒸发端内部蒸发沸腾传热特性。对热管散热端的矩形翅片的传热特性进行了数值模拟,分析了翅片间距和翅片长度对翅片换热的影响。数值模拟的结果为热管散热器的设计和安全运行提供了指导。
     3.搭建了高倍数碟式聚光光伏系统,对设计的热管散热器进行了试验研究。得到不同充液率、不同聚光比时,光伏电池和蒸发端底面温度的实验结果,并与仿真结果进行了对比,其中光伏电池的温度相差在5~9K之间,蒸发端底面的温度相差8~12K之间;根据各种工况下对聚光光伏系统中热管的实验研究结果,得到热管散热器蒸发端平均蒸发沸腾换热系数的参数关联式。
     4.实验研究了聚光比为75X、100X、125X、150X、175X、200X时聚光光伏系统的特性,当聚光比为200X,平均太阳直射辐照强度为600W/m2、环境平均温度为28.9℃时,得到聚光光伏电池的平均开路电压是2.72V、平均短路电流是0.65A、平均功率密度是2.07W/cm2、平均转换效率是26%、平均电池温度是63.51℃。实验得到光伏电池的功率、转换效率和填充因子随着太阳能电池温度增加而降低特性。
     5.基于所搭建的碟式高倍聚光光伏发电系统以及光伏电池的单二极管模型等效电路,建立了三结聚光GaInP/GalnAs/Ge叠层光伏电池电学特性的数学模型,深入分析了在聚光比分别为120X、130X、140X和150X下电池的电学特性,并与实验测量值进行了对比。高倍聚光条件下,三结砷化镓光伏电池电学特性的理论计算值与实际测量结果存在着一定的误差,聚光比相同时,开路电压的误差为2.08%,电池效率的误差为12.4%;电池温度相同时,开路电压的误差为2.04%,电池效率的误差为8.4%。
     本课题得到教育部博士点基金项目“聚光光伏系统中太阳能电池的冷却问题研究(编号200802520006)”和上海市研究生创新基金项目(JWCXSL1021)支持。
With the frequent emergency of the coal, oil and other traditional fossil fuels, theenergy shortage had become the bottleneck of the international socio-economicdevelopment. The development of new energy would be more serious. Solar energywhich were rich resources, cleanliness without any pollution, inexhaustible and withoutthe mining and transportation had broad prospects. Its development, utilization andconversion had been become a hotspot for seeking new energy. Using of solar powerwould be an important method of new energy utilization. Concentrator photovoltaicsystems may provide many economic advantages combining with the high efficiencymulti-junction solar cells and cheap optical concentrators, if high concentration ratiowas used in a system. Considerable efforts were directed towards the development ofthe high efficient III-V based single-and multi-junction solar cells that work well underhighly concentrated light. The multi-junction approach to solar cells made possible cellefficiencies far in excess of the best efficiencies achievable, both in principle and inpractice, by conventional single-junction cells. The main idea behind high concentrationwas to achieve cost reductions through saving in semiconductor utilized. As acomparison, flat-plate PV targets cost reductions through thinner PV layers and lowercost of the PV material used itself. The problem of heat dissipation has more and moreinfluence on performance of solar cell and reliability of system in high concentrationphotovoltaic system. Aiming at heat dissipation with high heating flux and ensure solarcells working under normal temperature range in high concentration photovoltaicsystem. The two-phase closed thermosyphon radiator has been designed in this paper.The two-phase closed thermosyphon does not have capillary, and the working fluidtransfers heat though its boiling and condensing, then circumfluent by its own gravity.The structure of the two-phase closed thermosyphon is simple and processabilityconvenient, therefore it is one of the most effective way to solve heating dissipationwith high heating flux.
     1. Based on the concentration photovoltaic system and the characteristics of solarcells, the energy transfer characteristics in the concentration photovoltaic system oftypical cities in the world have been analyzed. In this paper, sun parameters, such assolar elevation angle, solar azimuth, direct solar radiation intensity, of six typical citieswhich are Shanghai, Lhasa, Xi'an, Berlin, Sydney and New York have been calculatedin detailed. According to the performance parameters of single crystal silicon and triple junction gallium arsenide photovoltaic modules, a detailed theoretical calculation for thedaily generating capacity of these six cities are carried out. The results show that thedaily generating capacity of the concentration photovoltaic modules is about1.85timesthan that of the single crystal silicon. Lhasa, Sydney and Xi'an are more suitable as theideal location for the development of the photovoltaic modules. The impact of thetemperature on the performance of concentration PV modules and single crystal siliconPV modules is considered and it shows that the temperature coefficient of theconcentration PV modules is lower than that of the single crystal silicon PV modulessignificantly. Therefore, it is appropriate for high concentration conditions.
     2. A heat pipe matching the concentration photovoltaic system is designed in thispaper. The solar cell contacts with evaporator of heat pipe, the temperature distributionof evaporator effect on solar cell performance and heat pipe efficiency significantly. Thenumerical simulation model of evaporator of heat pipe radiator is established. Theboundary condition, the energy equations and the physical parameters are set. Thetemperature distribution of heat pipe bottom surface and boiling heat transfer inside theevaporator which influence by the design parameters such as concentration ratio,inclination angle and charge of working fluid has been analyzed. The numericalsimulation is adopted to study heat transfer performance of the rectangular finned. Theimpact of the side length and pitch of fin upon heat dissipating capacity have beenanalyzed as well. The results of numerical simulation provide directions for the designand safe operation of the heat pipe radiator.
     3. The test of heat pipe radiator is made by putting up high concentrationphotovoltaic system. By the contrast with numerical results and experimental resultswhich are under different working fluid rate and concentration ratio, it can conclude thatthe temperature difference between solar cell and heat pipe bottom surface are about5~9K and8~12K respectively. According to the experimental results of the heat piperadiator which based on the field test, the parameters correlation formula of averageboiling heat transfer coefficient in evaporator have been obtained.
     4. The experiment researches the characteristics of concentration photovoltaicsystems at the concentration ratio of75X、100X、125X、150X、175X、200X. Atthe concentration ratio of200X, the average direct solar radiation intensity and theaverage temperature are600W/m2and28.9℃respectively, the average open circuitvoltage of concentration solar cell is2.72V, the average open circuit voltage of concentration solar cell is2.72V, the average short circuit current of concentration solarcell is0.65A, the average power density of concentration solar cell is2.07W/cm2, theaverage efficiency of concentration solar cell is26%, the average temperature ofconcentration solar cell is63.51℃. The power、 efficiency and fill factor ofconcentration solar cell decreases as the temperature increases.
     5. The mathematical model of electrical characteristic for triple-junction solar cellwhich had excellent performance both in efficiency and temperature characteristic wasestablished based on the one-diode equivalent circuit cell model. Detailed analysis onthe influence factors of output electrical characteristic of open-circuit voltage and cellefficiency for triple-junction solar cell under high concentration (120X、130X、140Xand150X) had been done, and the calculated results was compared with experimentaldate. The results show that under high concentrated light intensity, the open-circuitvoltage and cell efficiency of the triple-junction solar cell were increasing as theconcentration ratio increased. What opposite with it was the open circuit voltage andcell efficiency were decreased as the temperature of the solar cell increased. The errorsof open circuit voltage and cell efficiency between the experimental results andcalculated values were2.04%and8.4%respectively.
     The research is support by the Ministry of Education Doctoral DisciplineFoundation (No.200802520006) and The Innovation Fund Project For Graduate Studentof Shanghai(JWCXSL1021).
引文
[1]陈刚著.京都议定书与国际气候合作.北京:新华出版社,2008.
    [2]中国能源报社国际部主编.哥本哈根一路走来.北京:中国环境科学出版社,2010.
    [3]中华人民共和国国家发展计划委员会基础产业发展司编.中国新能源与可再生能源,1999白皮书,北京:中国计划出版社.2000.4.
    [4]赵玉文.21世纪我国太阳能利用发展趋势.中国电力.2000,33(9):73~77.
    [5]净玥.我国的太阳能资源.现代家电.2004,2(1):15.
    [6]林安中,王斯成.国内外太阳电池和光伏发电的进展与前景.太阳能学报特刊,1999年
    [7]李俊峰,王斯成著.中国光伏发展报告.北京:中国环境科学出版社.2007.
    [8] Robert Foster, Majid Ghassemi, Alma Cota著.太阳能-可再生能源与环境.北京:人民邮电出版社.2010.
    [9]赵玉文,吴达成,王斯成等.中国光伏产业发展研究报告(2006—2007)(上).太阳能.2008,30(6):11~18.
    [10]赵玉文,吴达成,王斯成等.中国光伏产业发展研究报告(2006—2007)(中).太阳能.2008,30(6):6~15.
    [11]赵玉文,吴达成,王斯成等.中国光伏产业发展研究报告(2006—2007)(下).太阳能.2008,30(6):6~13.
    [12] Trieb,F.,Langniss.O.,and Klaiss,H.,Solar Electricity Generation A comparativeView of Technologies, Costs and Environmental Impact, Solar Energy,59(1997),No.3:89~99
    [13] Haaf,W.,Friedrich,K.,Mayr,G.,and Schlaich J., Solar Chimneys: Part I: Principleand Construction of the Pilot Plant in Manzanares. International Journal of Solarenergy, Vol.2(1983), No.1:3~20
    [14] Schlaich J. The Solar Chimney: Electricity from the Sun. Stuttgart: Axel Menges,1995
    [15] Schlaich, J., Schiel, W. Solar Chimneys, Encyclopedia of Physical Science andTechnology, Third Edition2000
    [16] Müller–Steinhagen, H. W rme-und Stoffübertragung, Skript zur Vorlesung WS2000/2001, Institut für Thermodynamik und W rmetechnik (ITW), Universit t Stuttgart
    [17] Alfonso C.Olivveira A. Solar chimneys: simulation and experiment. Energy andBuildings, Vol.32(2000), No.1,71~79
    [18] T.Chitsomboon, A validated analytical model for flow in solar chimney,International Journal of renewable Energy engineering,Vol.3(2001),No.2,45~50
    [19] Letay G, Bett A W.17thEuropean Photovoltaic Solar Energy Conference. Munich,2002:17~8.
    [20] http://pvlab.ioffe.ru/technology/cells/solarcells.html
    [21] Mary D A,Robert H. Clean electricity from photovoltaics [M].London:ImperialCollege Press,2001.
    [22] Wang Sicheng. Review and Trend of solar photovoltaic technology [J].International Power,2006(4):21~23.
    [23]罗运俊,何梓年,王常贵.太阳能利用技术[M].北京:化学工业出版社,2005.
    [24]陈诺夫,白一鸣.聚光光伏系统.物理.2007,36(11):862~868.
    [25]刘巍,王宗超.碟式太阳能热发电系统.重庆工学院学报.2009(10):99~103.
    [26]熊绍珍,朱美芳.太阳能电池基础与应用.北京:科学出版社.2009.
    [27] S.Kurtz. Opportunities and Challenges for Development of a Mature ConcentratingPhotovoltaic Power. Industry Technical Report NREL/TP-520-43208. RevisedSeptember2008.
    [28] Ghassan Zubi, José L. Bernal-Agustín, Gian Vincenzo Fracastoro. Highconcentration photovoltaic systems applying III—V cells.Renewable and SustainableEnergy Reviews.2009:2645-2652.
    [29] Spectrolab—www.spectrolab.com
    [30] NERL—http://www.nrel.gov
    [31] Fraunhofer ISE. World Record:41.1%efficiency reached for multi-junction solarcells at Fraunhofer ISE. Press release, January2009.
    [32]翁政军,杨洪海.应用于聚光型太阳能电池的几种冷却技术.能源技术.2008(1):16~18.
    [33] Hampe C, Metz A, Hezel R. Innovative silicon-concentrator solar cell forthermophotovoltaic application.17thEuropean Photovoltaic Solar Energy Conference.Munich,2001
    [34] Terao A, Mulligan W P, Daroczi S G, et al. A mirror-less design for micro-concentrator modules.28thIEEE PVSC [C]. Anchorage(USA),2000:1416~1419.
    [35] M.S.Kuryla, M.Ladle Ristow, L.D Partain.22.3%Efficient12Cell1000Sun GaAsConcentrator Module[C].22th IEEE PVSC,1991:506~511
    [36] K. Araki, H. Uozumi, M. Yamaguchi, A simple passive cooling structure and itsheat analysis for500X concentrator PV module.29thIEEE PVSC,2002:1568~1571.
    [37] Forson F K, Nazha M A A, Rajakaruma H. Experimental and simulation studies ona single pass, double duct solar air heater[J]. Energy Coners Mgmt,2003(44):1209~1227
    [38] Krauter S, Araujo R G, Schroer S, et al. Combined photovoltaic and solar thermalsystems for facade integration and building insulation[J]. Solar Energy,1999(67):239~248
    [39] B.J.Brinkworth, M.Sandberg. Design procedure for cooling ducts to minimiseefficiency loss due to temperature rise in PV arrays[J]. Solar Energy,2006(80):89~103
    [40]卢智恒,姚强.平板式太阳能电热联用面板.太阳能学报[J].2006,27(6):545~553
    [41] F.Chenlo, M.Cid. A linear concentrator photovoltaic module: analysis ofnon-uniform illuminated by a parabolic through concentrator[J]. Solar Cells,1987(20):27~39.
    [42]张晓霞,侯竞伟,殷盼盼,张国.太阳能光伏电池在聚光条件下冷却方式的研究.沈阳建筑大学学报(自然科学版).2008,24(6):1091~1098.
    [43] LW James, JK Williams. Freanel optics for solar concentration on photovoltaiccells.13thPhotovoltaic Specialists Conference, Washington D.C.1978:673~679.
    [44]庄骏,徐通明,石寿椿.热管与热管换热器.上海:上海交通大学出版社.1989.
    [45] A. Akbarzadeh, T. Wadowski. Heat pipe-based cooling systems for photovoltaiccells under concentrated solar radiation. Applied Thermal Engineering.1996,116(1):81~87.
    [46] PD Dunn, DA Reay. Heat pipes fourth ed.New York.1994.
    [47] BEACHRT, WH ITE R M. Heat pipe for passive cooling o f concentrator solarcells[C]. Proceedings of the15thIEEE PVSC.1981:75~80.
    [48]唐潇,赵耀华,全贞花.利用新型平板热管冷却太阳能电池板的实验研究[C].中国工程热物理学会,青岛,2009.
    [49] D.B.Tuckerman, F.W.Pease. High-performance heat sinking for VLSI[C]. IEEEElectron. Dev. Lett. EDL,1981,2(5):126~129.
    [50] D Vincenzi, F Bizzi, M Stefancich et al. Micromachined silicon heat exchanger forwater cooling of concentrator solar cells. ISES, Gothenburg, Sweden,2003.
    [51] T.M.Harms, M.J.Kazmierczak, F.M.Gerner. Developing convective heat transfer indeep rectangular microchannels[J]. Int. J. Heat Fluid FL,1999,20(2):149~157.
    [52] J.H.Ryu, D.H.Choi, S.J.Kim. Numerical optimization of the thermal performanceof a microchannel heat sink[J].Int. J. Heat Mass Transfer,2002,45(13):2823~2827.
    [53] WM Rohsenow, JP Harnett, YI Cho. Handbook of heat transfer(3rd Edition). NewYork:McGraw-Hill.1998.
    [54] BW Webb, CF Ma. Singe-phase liquid jet impingement heat transfer [J]. AdvancesIn Heat Transfer,1995,(26):105~217.
    [55] Anja Royne, Christopher J Dey. Design of a jet impingement cooling device fordensely packed PV cells under high concent ration [J]. Solar Energy,2007,(81):1014~1024.
    [56] T.Ugumori, M.Ikeya. Efficiency increase of solar cells operated in dielectricliquid[J].Japanese of Applied Physics,1981,20:77~80.
    [57] Y.A.Abrahamyan, V.I.Serago, V.M.Aroutiounian, et al. The efficiency of solar cellsimmersed in liquid dielectrics[J]. Solar Energy Materials and Solar Cells,2003,73:367~375.
    [58] Li zhu, Yiping Wang, Zhenlei Fang, et al. An effective heat dissipation method fordensely packed solar cells under high concentrations[J]. Solar Energy Materials andSolar Cells,2010,94(2):133~140.
    [59]林海浩,张雪梅,钟英杰.太阳能光伏聚光器技术进展[J].太阳能.2008(8):34~39.
    [60] http://www.wikipedia.org/
    [61] Christiana Honsberg, Stuart Bowden. Photovoltaics CDROM Part1:PhotovoltaicDevices. University of New South Wales.1999.
    [62]车孝轩.太阳能光伏系统概论[M].武汉:武汉大学出版社.2006.
    [63] http://www.solarcell.net.cn/prod_show.asp?id=15
    [64] http://am.suntech-power.com/images/stories/pdf/datasheets/hiperforma_datasheet.pdf
    [65] http://www.solfocus.com/en/downloads/sf-1136sx-cpv-system-fact-sheet.pdf
    [66] Martin A.Green.太阳能电池工作原理、技术和系统应用[M].上海:上海交通大学出版社.2011.
    [67]王革花.新能源概论.北京:化学工业出版社.2008.
    [68] W.T.威尔福德,R.维恩斯顿.非成像聚光器光学[M].北京:科学出版社.1987.
    [69] Antonio L, Steven H. Handbook of Photovoltaic Science and Engineering. In:Swanson RM ed. Photovoltaic Concentrators.West Sussex, England: JohnWiley&SonsLtd,2003.449~452
    [70]余泽通,宋长源.桂光电池板自动跟踪太阳机械装置的设计[J].新乡学院学报(自然科学版).2008,25(3):69~71.
    [71] Martin A.Green.硅太阳能电池高级原理与实践[M].上海:上海交通大学出版社.2011.
    [72] Hu C, White RM. Solar Cells: From Basic to Advanced Systems. New York:McGraw Hill,1983.
    [73] Anja Royne, Christopher J.Dey, David R.Mills. Cooling of photovoltaic cellsunder concentrated illumination: a critical review. Solar Energy Materials and SolarCells.2005(86)451~483.
    [74]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社.2003.
    [75] Nishioka K, Takamoto T, Agui T, Kaneiwa M, Uraoka Y, Fuyuki T.Annual outputestimation of concentrator photovoltaic systems using high-efficiencyInGaP/InGaAs/Ge triple junction solar cells based on experimental solar cell’scharacteristics and field-test meteorological data. Solar Energy Mater Solar Cells2006(90):57~67.
    [76] Yang Pan,W. B. Gu. Influence of Mass Transfer and Interface on CondensationInside the Two-phase Closed Thermosyphon. Proceedings of11th International heatpipe confeernce.1999:337-343
    [77] E.M. Sparrow, S.H. Lin. Heat-transfer characteristics of polygonal and plate fins.International Journal of Heat and Mass Transfer.1964,7(8):951~953.
    [78]陶文铨.计算传热学近代进展.北京:科学出版社,2000沙拉(美),塞库利克(美),程林译.换热器设计技术.北京:机械工业出版社.2010.
    [79]陈贵林.CFD软件的明日之星—CFD-FLOW3D.CAD与自动化.中国台湾:1994,10:55~62
    [80]陈贵林.CFD软件简介与评估.CAD与自动化.中国台湾:1994,11:55~66
    [81]韩占忠,王敬,兰小平FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004
    [82]王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社,2005
    [83] FLUENT6.3User Guide.2006.
    [84] Gaugler R S. Heat transfer device. U.S. Patent2350348. Dec.21,1942,June6,1944
    [85] Cohen. H. and F. J. Bayley(1955), Heat Transfer Problem of Liquid Cooled GasTurbin Blades,Proc. Inst. Mech Eng.(London),l69,1063-1080.
    [86] Shiraishi M K Kiiuchi, Yamanishi T. Investigation of heat transfer characteristics ofA two-phase closed thermosyphon. Proc.4thIHPC.1981
    [87] Ma Tongze, Liu Xin and Wu Jipei. Flow Patterns and Operating Limits in Two-Phase Closed Thermosyphon. Proceedings of6thInt. Heat Pipe Conf. May25-29,1987Grenoble, France.
    [88] Andros, F.E. and L.W.Florschuctz, The Two-phase Closed Thermosyphon: AnExperimental Study with Flow Visualization. In T. N. Vezionroglu and S. KaKac(Ed.)Two-Phase Transfer and Ractor Safety.Vo1.4, Hemisphere Publishing Corporation,Washington,pp.1231-1267,1987.
    [89]陈岗,辛明道,陈远国.两相闭式热虹吸管内的流动和传热.工程热物理学报,82,(1987)
    [90] Nusselt, W.ZVDI,Vo1.60,1916,541
    [91]庄骏,张红.热管技术及其工程应用.北京:化学工业出版社.2000.
    [92]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001
    [93] The International Association for the Properties of Water and Steam.Germany.1997
    [94]刘志刚,刘咸定,赵冠春.工质热物理性质计算程序的编制及应用.北京:科学出版社,1992
    [95]许圣华.湿空气热物理性质计算方程[J].苏州大学学报.1999,(15):54~59.
    [96] J.R.威尔特,C.E.威克斯,R.E.威尔逊,G.L.罗勒,马紫峰,吴卫生等译.动量、热量和质量传递的原理(Fundamentals of Momentum,Heat,and Mass Transfer)[M].北京:化学工业出版社,2005.10.
    [97] E.R.G.埃克特.R.M.德雷克著,航青译.传热与传质分析[M].北京:科学出版社,1983.06
    [98](澳)伟纳姆等编,狄大卫等译.应用光伏学.上海:上海交通大学出版社.2008.
    [99] Kensuke Nishioka,Tatsuya Takamoto, et al. Annual output estimation ofconcentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Getriple-junction solar cells based on experimental solar cell's characteristics and field-testmeteorological data. Solar Energy Materials and Solar Cells.2006,90(1):57-67
    [100] H.Cotal,R.Sherif. Temperature dependence of the IV parameters from triplejunction GaInP/InGaAs/Ge concentrator solar cells. Proceedings of IEEE Fourth WorldConference on Photovoltaic Energy Conversion.2006.845–848.
    [101] Luque A.Solar cells and optics for photovoltaic concentration [M].England:Taylor&Francis.1989,103~111.
    [102] M.Yamaguchi,T.Takamoto,K.Arak.Super high-efficiency multi-junction andconcentrator solar cells[J].Solar Energy Materials&Solar Cells,2006,90(18-19):3068~3077.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700