用户名: 密码: 验证码:
基于面内弯纵复合模态的直线超声电机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声电动机是近三十多年来发展起来的一种全新概念的驱动装置。与传统电磁电机相比,超声电机具有结构简单、能量密度大、启停灵敏、位置分辨率高、断电自锁、低振动、低噪声、无电磁干扰等特点。所以它在航天器、微小型机械、精密仪器、小功率驱动等方面的应用具有明显的优越性。直线超声电机是超声电机的一个分支,它通过定子和滑块(或者动子)之间的摩擦耦合输出直线运动和推力。由于其结构简单,可以直接输出直线运动,不需要运动转换机构,所以除了具有旋转型超声电机的一般特点外,直线超声电机的定位精度和速度控制精度更高,可达纳米级精度。
     本文提出了一种新型面内弯纵型直线超声电机。该电机的定子由一块青铜矩形板和八片压电陶瓷片组成,电机利用矩形板的面内二阶弯曲振动和一阶纵向振动的复合模态来工作。由于矩形板的宽度远小于厚度,其面内弯曲振动难以被激发,所以,本研究中,在青铜矩形板的适当位置开设了若干长条形孔来解决这个问题,并利用瑞利-里兹法确定了长条形孔的最佳长度尺寸。在电压信号的激励下,压电陶瓷片产生超声频率的伸缩振动,并激发出矩形板定子的面内弯纵复合模态,使矩形金属板产生共振,并使矩形板上的驱动足产生椭圆运动。通过摩擦耦合将驱动足的椭圆运动变成电机滑块的直线运动,从而实现直线电机的动力输出。
     分析了压电材料的逆压电效应,从矩形板定子面内二阶弯曲振动和一阶纵向振动的振动方程出发,建立了矩形板定子的机电耦合动力学模型,计算了压电陶瓷片对定子所施加的面内二阶弯曲振动和一阶纵向振动的模态力,给出了若干压电陶瓷片的合理安装位置,解释了定子驱动足椭圆运动的形成机理。
     应用有限元分析软件建立了面内弯纵型直线电机定子的有限元模型,对电机定子进行全面的仿真分析,包括模态分析、谐响应分析、瞬态动力学分析和接触分析。通过仿真,得到了定子的振型,优化了电机的结构尺寸,计算了定子产生面内纵弯复合振动时的最佳频率,验证了定子驱动足的椭圆运动的形成机理,比较了矩形板开孔前后定子的振幅、频率等变化,并通过接触分析证明了这种直线超声电机设计方案的可行性。
     课题对弯纵型直线超声电机进行驱动和摩擦分析,从定子驱动足质点的椭圆运动研究入手,以新的视角分析了驱动足质点的椭圆运动对动子运动的驱动和阻碍机理,提出了定子质心位置和定子两端的作用力随着定子的振动而变化的观点。在此基础上,分析了定子和动子摩擦界面间的粘、滑摩擦机理,指出驱动足对动子的驱动方式为跳跃式驱动,且定子驱动足相对于动子适当的“跳跃”有利于电机的动力输出,还指出定子驱动足的“跳跃”高度取决于预压弹簧刚度、动子摩擦层的刚度、电机预压力、驱动足振幅等因素。
     为验证本课题所设计和制造的新型超声电机合理性和可行性,加工制作了直线超声电机的样机,搭建了实验平台并进行了相关的实验。在实验中,对定子矩形板是否开孔两种情况进行了比较实验,证明矩形板开孔后可以扩大定子的振幅,特别是面内弯曲振动的振动幅度,并且电机的输出速度和最大输出力明显加大。
The ultrasonic motor which has been developed rapidly in recent thirty years is a new-concept motor. Compared with the conventional electromagnetic motors, the ultrasonic motor has many advantages, such as simple structure, high energy density, high sensitivity during the start and stop of the motor, high resolution, self-locking when power-off occurs, low vibration and noise, no electromagnetic interference etc. As a result, the ultrasonic motors have significant superiority for the application in the spacecrafts, micro-machinery, precision instruments, low-power actuation etc. The linear ultrasonic motor is an important part of the ultrasonic motors, which can directly output linear motion and force through the friction between the stator and the mover. Besides the general character of the rotary ultrasonic motor, the linear ultrasonic motor has higher accuracy of positioning and speed control due to the fact that the linear ultrasonic motor has simple structure and the capability of directly outputting linear motion without switching mechanism, it can even achieve the accuracy of nanoscale.
     The stator of this motor is composed of one rectangular bronze plate and eight piezoceramics plates, and this motor works by making use of the composite mode of the second order bending (B2) vibration and first order longitudinal (L1) vibration in plane of the rectangular plate. Because the width of the rectangular plate is much less than the thickness, so the in-plane bending can be hardly excited. To solve this problem, many long rectangular apertures at proper positions on the bronze plate are designed in this study, and the optimal length of these apertures is determined by using the Rayleigh Ritz method. With the excitation of voltage signal, the piezoceramics plates vibrate with ultrasonic frequency, and the B2and L1composite mode of the rectangular plate will be excited, so that the rectangular plate will resonate and the driving-foot on the rectangular plate will move elliptically. The friction coupling will transform the elliptical motion of driving-foot into the linear motion of the slider of motor, and the power outputs of this linear motor can be consequently realized.
     The converse piezoelectric effect of the piezoceramics is analyzed, the electromechanical-coupled dynamic model is derived from the vibration equations of the B2and L1mode of the rectangular stator, the modal force of the B2vibration and L1vibration which are applied to the stator by the piezoceramicscs plate are calculated, the reasonable locations for installing the piezoceramicscs plates is determined, and the principle of the elliptical motion of driving-foot of the stator is proved.
     The finite element analysis software is used to establish the finite element model of the stator of the linear motor, and the comprehensive simulation analyses are conducted, including modal analysis, harmonic response analysis, transient dynamics analysis and contact analysis. Through the simulation, the mode of vibration of the stator is obtained, the structure size of the motor is optimized, the optimal frequency of the composite mode of the B2and L1of the stator is calculated, the mechanism of the elliptical motion of the driving-foot of stator is confirmed, the amplitude and the frequency of the rectangular plate without aperture are compared with that of the rectangular plate with aperture, and the feasibility of this linear ultrasonic motor is verified through the contact analysis.
     In this study, the principle of drive and friction of the linear ultrasonic motor with the composite mode of the B2and L1are analyzed. With the research on the elliptical motion of the particleof driving-foot of the stator, the mechanism that the particle of driving-foot can either drive the mover or oppose the motion of the mover is analyzed with a new perspective. The idea that the position of the stator’s barycenter, as well as the applied forces at both ends of the stator, changes with the vibration of the stator itself is proposed. Based on this idea, the stick-slip friction mechanism of the contact surface between the stator and mover is analyzed, the fact that the driving-foot leapingly drive the mover is pointed out, and the proper leaping of the driving-foot of stator relative to the mover can benefit the power outputs of the motor, the leaping height of the driving-foot of the stator depends on several factors, including the stiffness of the preloading spring, the stiffness of the mover’s friction layer, the preloading force of the motor and the amplitude of the driving-foot ect.
     To verify the reasonability and the feasibility of the novel ultrasonic motor proposed in this study, the prototype of this motor is fabricated, the experimental platform is set up, and several relevant experiments are conducted. Concretely, the comparison experiment between the conditions that the rectangular plate has and has not apertures is performed, which demonstrates that the amplitude of the rectangular plate is greatly enhanced, especially for the vibration amplitude of the in-plane bending vibration, and the maximum output speed and the maximum output force of the motor is greatly increased too.
引文
[1] Kaajakari V. Ultrasonic Surface Micromachine Actuation Applications toRelease Microstructure Assembly and Micromotors[D]. Umiversity ofWisconsin-madisonThesis,2002.
    [2]赵淳生.面向21世纪的超声电机技术[J].中国工程科学.2002,4(2).
    [3] Bauer M G. Design of Linear High Precsion Ultrasonic Piezoelectric Motor[D].North Carolina State UniversityThesis,2001.
    [4]刘辛国,周铁英,陈宇.超声电机在内镜驱动及控制技术方面的应用研究[J].中国医学影像技术.2003(11):1569-1570.
    [5]周铁英.用于内窥镜驱动器的超声电机[J].国际医疗器械.2004,10(1):10-13.
    [6]张勇陆敬予张飞虎.微机电系统的现状与展望[J].传感器与微系统.2008(2):1-3.
    [7]张凯,周铁英,王欢等.1mm压电柱式超声微电机的研制[J].声学学报.2004(3):258-261.
    [8] Willams W, Brown W. Piezoelectric Motor[P].1942.
    [9] Lavinenko V V, Nekrasov M. Piezoelectric Motor[P].1965.
    [10] Barth H V. Ultrasonic Drive Motor[J]. IBM Technical Disclosure Bulletin,1973,16(7):2263.
    [11] Vishnevsky V, Kavertsev V, Kartashev I, et al. Piezoelectric MotorStructures[P].1975.
    [12] Sashida T. Trial Construction and Operation of an Ultrasonic Vibration DrivenMotor[J]. Jpn. J. Appl Phy.,1982,51(6):713-718.
    [13] Sashida T. Motor Device Utilizing Ultrasonic Oscillation[P].1984-5-16.
    [14] Yousef Hojjat, Karafi M R, Tehrani. M D. a Novel Ultrasonic Motor withRoller Interface (RUSM)[C].2009IEEE/ASME International Conference onAdvanced Intelligent Mechatronics.2009.
    [15] Kanda T, Matsunaga Y, Suzumori. K. An In-Wheel Type Micro UltrasonicMotor utilizing Sector Shaped Piezoelectric Vibrators[J]. IEEE Xplore,2007(1):1264-4244.
    [16] Takashi ICHIHARA, Takefumi KANDA. Design and Evaluation ofLow-Profile Micro Ultrasonic Motors using Sector Shaped PiezoelectricVibrators.[C].2008IEEE/RSJ International Conference on Intelligent Robotsand Systems.2008.
    [17]朱华,赵淳生.微型旋转超声电机的发展和现状[J].压电与声光.2005,27(6):627-642.
    [18]许海,赵淳生.双足型直线超声电机的结构及实验[J].振动与冲击.2007(6):100-103.
    [19]赵向东,陈波,赵淳生.旋转行波超声电机非线性摩擦界面模型[J].南京航空航天大学学报.2003,35(6):630-633.
    [20]郑伟,赵淳生.旋转型行波超声电机寿命试验研究[J].2008:90-92.
    [21]赵淳生.超声电机技术与应用[M].北京:科学出版社,2007:314-334.
    [22]许海,赵淳生.一种新型直线超声波电动机的设计[J].微特电机.2007(1):21-23.
    [23]李朝东,赵淳生.直线型超声马达的研究和应用[J].东南大学学报.1997,27(5A):123-126.
    [24]胡伟,赵淳生.直线型行波超声马达的研究[J].振动、测试与诊断.1996,16(3):8-14.
    [25] Roh Y, Kwon J. Development of a New Standing Wave Type Ultrasonic LinearMotor[J]. Sensors and Actuators a,2004,112:196-202.
    [26] Suybangdum P, Smithmaitrie P, Laoratanakul P. Dual Piezoelectric Actuatorsfor the Traveling Wave Ultrasonic Linear Motor [C]. Fourth InternationalConference on Experimental Mechanics.2010.
    [27] Kondo S, Yamaura H, Koyamaa D, et al. Traveling Wave Type UltrasonicLinear Motor Using Twin Bending[J]. Physics Procedia,2010(3):1053-1058.
    [28] Vyshnevskyy O, Kovalev S, Wischnewskiy W. a Novel, Single-ModePiezoceramic Plate Actuator for Ultrasonic Linear Motors[J]. IeeeTransactions On Ultrasonics,2005(52):2047-2053.
    [29] Yamamoto R, Endoh N. a Rotary Linear Motor Driven by a Pair ofTwo-Dimensional Ultrasonic Actuators[J]. Electronics and Communications inJapan,1999(82):48-57.
    [30]王宏祥,王红静.直线超声电机的研究进展[J].机械工程师.2004(3):3-6.
    [31]指田年生,见诚尙志.超音波モータ入门[M].东京:总合电子出版社,1991:16-23.
    [32] Koyama O, Koyama D, Nakamura K, et al. Ultrasonic Linear Motor UsingTraveling Vibration On Fine Ceramic Twin Ridges[J]. Acoustical Science andTechnology,2008,29(1):95-98.
    [33] Sun D M, Wang S. A Piezoelectric Linear Ultrasonic Motorwith the Structureof a Circular Cylindrical Stator and Slider[J]. Smart Materials and Structures,2010(19):1-9.
    [34] Ko H P, Kimb S, Sergjus N, et al. A Novel Tiny Ultrasonic Linear Motor Usingthe Radial Mode of a Bimorph[J]. Sensors and Actuators a,2006,125:477-481.
    [35] Paik S D, Yoo H K, Kang Y C, et al. Multilayer Piezoelectric Linear UltrasonicMotor for Camera Module[J]. J Electroceram,2008(22):346-351.
    [36] Yoon Man-Soon, Khansur Neamul-Hayet, Lee Kyung-Sun, et al. Compact SizeUltrasonic Linear Motor Using a Dome Shaped Piezoelectric Actuator[J]. JElectroceram,2012(28):123-131.
    [37] Yoon Man-Soon, Heo Sung-Moo, Ur Soon-Chul. a Newly Designed Chopperfor Pyroelectric Infrared Sensor by Using a Dome-Shaped Piezoelectric LinearMotor (DSPLM)[J]. J Electroceram,2007.
    [38]金家楣.新型惯性式直线超声压电电机的运动机理及实验研究[J].光学、精密工程.2008(12):2371-2377.
    [39] Lim K C, He S, Chen, I. A Piezo-On-Slider Type Linear Ultrasonic Motor forthe Application of Positioning Stage[C]. International conference on AdvancedIntelligent Mechatronis. Altanta,USA:1999.
    [40] Markus Flueckiger, Jos E M. Fernandez, Manfred Giljum, et al. Optimizationof a Single Phase Ultrasonic Linear Motor[C]. IEEE Ultrasonics Symposium.2007.
    [41]姚志远.杆结构直线超声电机的结构设计和功率流分析[J].中国电机工程学报.2009(8):56-60.
    [42] Asumi K, Fukunaga R, Fujimura T, et al. High Speed, High ResolutionUltrasonic Linear Motor Using V-shape Two Bolt-Clamped Langevin-typeTransducers.,2009(3):180-186[J]. The Acoustical Society of Japan,2009(3):180-186.
    [43] HEMSEL T, Wallaschek J. Survey of the Present State of the Art ofPiezoelectric Linear Motor[J]. Ultrasonics,2000(38):37-40.
    [44]石胜君,陈维山.一种基于纵弯夹心式换能器的直线超声电机[J].中国电机工程学报.2007,27(18):30-34.
    [45]李朝东,姚华,裴仁清等.仿生步行小型直线超声电机[J].微特电机.2001(6):9-11.
    [46] Lee Won-Hee, Kang Chong-Yun, Paik Dong-Soo. Butterfly-Shaped Ultra SlimPiezoelectric Ultrasonic Linear Motor.[J]. Sensors and Actuators a,2011(168):127-130.
    [47] Sharp S L, Paine J S N, Blotter J D. Design of a Linear Ultrasonic PiezoelectricMotor[J]. Journal of Intelligent Material Systems and Structures,2010,21:961-973.
    [48] Lim K, Lee J, Kang. S. the Design and Characteristics of Ring Type LinearUltrasonic Motor for X-Y Stage[J]. J Electroceram,2006(17):557-560.
    [49] Zumeris J. Ceramic Motor, U.S. Patent[P].1995.
    [50]刘剑,赵淳生.基于矩形薄板面内振动的直线型超声波电动机的研究[J].声学学报.2003,28(1):86-90.
    [51] Masahiro Takano, Kenichi Hirosaki, Mikio Takimoto, et al. Improvements inControllability of Ultrasonic Linear Motors by Longitudinal-Bending[J].Japanese Journal of Applied Physics,2011(50):1-6.
    [52]郭吉丰,楼少敏,刘晓.微系统用超声微电机的研究现状和发展趋势[J].工程设计学报.2002,9(4):173-177.
    [53] Takano M, Hirosaki K, Takimoto M, et al. Improvements in Controllability ofUltrasonic Linear Motors by Longitudinal-Bending[J]. Japanese Journal ofApplied Physics,2011,07HE(50):251-256.
    [54] Nesbitt W. Hagood, Mcfarland. A J. Modeling of a PiezoelectricRotaryUltrasonic Motor.IEEE Transcaction On Ultrasonic[J]. Ferroelectricsand Frequency Control,1995,42(2):210-224.
    [55] Krome J W, Wallaschek J. Influence of the Piezoelectric Actuator On theVibrations of the Stator of Atraveling Wave Motor[J]. Ultrasonics Symposium,1995(1):413-416.
    [56] Guyomar D. High Torque/High Power Power Piezomotor-Influence of theRotor Vibration[C]. Proc.Actuator’96. Bremen:1996.
    [57] Yamamoto T. Vibration Transmission of an USM Rotor Observed byPhase-Shift Interferometery[C].2000International Symposium onMicromecha-tronics and Human Science.2000.
    [58] Hagedorn P, Speziari. T. the Importance of Rotor Flexibility in UltrosonicTraveling Wave Motors[J]. Smart Mater.Struct,1998(7):352-368.
    [59] Philippe H, Sadaune V E, Christian Druon, et al. A Mechanical Model forEnergy Transfer in Linear Ultrasonic Micromotors Using Lamb and RayleighWaves[J]. Ieee/Asme Transactions On Mechatronics,1998,3(1).
    [60] Tsai M S, Lee C H, Hwang S H. Dynamic Modeling and Analysis of a BimodalUltrasonic Motor[J]. IEEE Transaction On Ultrasonics. Ferroelectrics, andFrequency Control,2003,80(3):245-256.
    [61]赵增辉,王育平,袁义坤,等.基于能量法的超声电机压电振子的耦合动力学模型分析[J].动力学与控制学报.2006,4(2):145-150.
    [62]龚书娟,张长青,郭吉丰.纵扭复合型超声波电机纵振动数学模型[J].声学学报.2009,34(4):325-333.
    [63] Teichlera J, Chladnyb R, Schrollc C. Ultrasonic Motor Model and PowerAnalysis for Industrial Mobile Applications[C]. Proc. of SPIE.2009.
    [64] Wallaschek J. Contact Mechanics of Piezoelectric Ultrasonic Motors[J]. Smart,Mater. Struct,1998(7):369-381.
    [65]黑泽实,上羽贞行.进行波型超音波モタの效率[J].日本音响学会会志.1988,44(1):40-46.
    [66]上羽贞行,富川义郎.超声波马达理论与应用[M].上海:上海科学技术出版社,1998.
    [67] Fleischer M, Stein D, Meixner H. Ultrasonic Piezomotor with Longitudin-AllyOscillating Amplitude-Transforming Resonator[J]. IEEE Transactions OnUltrasonic, Ferroelectrics and Frequency Control,1989,36(6):607-613.
    [68] Nakamura K, Kurosawa M, S U. Characteristics of a Hybrid Transducer-TypeUltrasonic Motor[J]. IEEE Transactions On Ultrasonic,Ferroelectrics andFrequency Control,1991,38:188-193.
    [69] Maneo T, Tsukimoto T, Miyake. A. Finite Element Analysis of the Rotor/StatorContact in a Ring Type Ultrosonic Motor[J]. IEEE Transactions On Ultrasonic,Ferroelectrics and Frequency Control,1992,39(6):668-674.
    [70] Lu F, Lee H P, Lim S P. Contact Modeling of Viscoelastic Friction Layer ofTraveling Wave Ultrasonic Motors[J]. Smart Materials and Structures,2001(10):314-319.
    [71] Storck H, Littmann W, Wallaschek J, et al. The Effect of Friction Reduction inPresence of Ultrasonic Vibrations and its Relevance to Travelling WaveUltrasonic Motors[J]. Ultrasonics,2002(40):379-383.
    [72]常颖,彭太江,阚君武,等.超声振动对摩擦系数影响的试验研究[J].2003,25(6):511-513.
    [73]曲建俊,周铁英,张志谦.超声电机定子和转子接触状态的数值分析[J].机械工程学报.2002,38(3):74-78.
    [74]曲焱炎.超声驱动微摩擦机理分析及各向异性摩擦材料研究[D].哈尔滨工业大学学位论文,2009:16-33.
    [75]鹿存跃.一种双足驱动直线超声波电动机的设计[J].微特电机.2006(5):15-16.
    [76]赵增辉.超声电机压电振子的动力学特性研究[D].山东科技大学学位论文,2008:88-93.
    [77] Rao Singiresu S.机械振动(第4版)[M].北京:清华大学出版社,2009:425-467.
    [78] Giraud F, Sandulescu P, Amberg M. Modeling and Compensation of theInternal Friction Torque of a Travelling Wave Ultrasonic Motor[J]. IEEETransaction On Haptics,2011,4(4):11-12.
    [79] Nesbitt W., Hagood IV, Andrew J. Modeling of a Piezoelectric RotaryUltrasonic Motor[J]. IEEE Transactions On Ultrasonics, Ferroelectrics, andFrequency Control,1995,3(2):210-224.
    [80] Nishihara-Cho S, Okinawa N. Mathematical Model of Ultrasonic Motors forSpeed Control.[C].2006IEEE. University of the Ryukyus of Japan,2006.
    [81] Bekiroglu E. Ultrasonic Motors their Models, Drives, Controls andApplications[J]. J Electroceram,2008(20):277-286.
    [82] Kiimmel M, Goldschmidt S, Wallaschek J. Theoretical and ExperimentalStudies of a Piezoelectric Ultrasonic Linear Motor with Respect to Dampingand Nonlinear Material Behavior.[J]. Ultrasonics,1998,36:103-109.
    [83] Ho S. Modelling of the Linear Ultrasonic Motor using an Elliptical ShapeStator[C]. Mechatronics,2006IEEE International Conference on.2006.
    [84]李朝东,程凯,姚华.直线型驻波超声电机的建模与仿真研究[J].机电一体化.2002(2):21-24.
    [85]刘仁鑫.矩形复合层板面内弯曲模态直线超声电机研究[D].华南农业大学学位论文,2005.
    [86]曾亮,沈萌红,钱孝华. ANSYS在超声波电机设计中的应用[J].机电工程.2009,26(3):84-86.
    [87]陈强.圆柱定子直线超声波电机的设计、仿真与试验研究[D].东南大学学位论文,2008.
    [88] Storck H, Littmann W, Wallaschek J, et al. the Effect of Friction Reduction inPresence of Ultrasonicvibrations and its Relevance to Travelling WaveUltrasonic Motors[J]. Ultrasonics,2002(40):379-383.
    [89]施军丽.超声波电机摩擦驱动模型和摩擦材料研究[D].西南交通大学论文学位论文,2004:27-41.
    [90]曲建俊,田秀,孙凤艳.基于行波型超声马达的超声波振动减摩试验研究[J].摩擦学学报,2007.1(1):P73-77.2007,27(1):73-77.
    [91]周广睿.行波型超声波电机定转子摩擦模型及瞬态特性的研究[D].浙江大学学位论文,2006:8-22.
    [92] Mracek M, Hemsel T. Driving Concepts for Bundled Ultrasonic LinearMotors[J]. J Electroceram,2008(20):153-158.
    [93]姚志远,吴辛,赵淳生.行波超声电机定_转子接触状态试验分析[J].振动、测试与诊断.2009,29(4):387-474.
    [94]蒋春荣,胡敏强,金龙等.行波型超声波电机定转子接触粘滑分布特性[J].电工技术学报.2010,25(12):48-53.
    [95]刘锦波,陈永校.超声波电机定转子接触的摩擦传动模型及其实验研究[J].中国电机工程学报.2000,20(4):59-63.
    [96]曲焱炎.超声驱动微摩擦机理分析及各向异性摩擦材料研究[D].哈尔滨工业大学论文学位论文,2009:16-33.
    [97] Yamaguchi T, Adachi K, Ishimine Y. Wear Mode Control of Drive Tip ofUltrasonic Motor for Precision Positioning[J]. Wear,2004(256):145-152.
    [98]曲建俊,张凯,姜开利.超声马达转子摩擦材料磨损特性研究[J].摩擦学学报.2001(4):284-287.
    [99] Nakamura K, Ueha S. Potential Ability of Ultrasonic Motors: A DiscussionFocused on the Friction Control Mechanism[J]. Electronics andCommunications in Japan, Part2,1998,81(4):1637-1647.
    [100]Maeno T, Tsukimato T, Miyake A. Finite-Elment Analysis of theRotor/Stator Contact in a Ring Type Ultrasonic Motor[J]. IEEE TransactionOn Ultrasonics Ferroelectric,1992,39(6):668-674.
    [101]Bekiroglu E, Bal G. Experimental Investigation of Input–OutputCharacteristics of a Travelling-Wave Ultrasonic Motor[J]. J Electroceram,2008(20):2008,20-287.
    [102]鹿存跃,李洁,赵淳生等.纵扭型超声电机的实验研究[J].清华大学学报(自然科学版).2006(6):851-854.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700