用户名: 密码: 验证码:
污泥水富集硝化菌添加强化污水处理系统硝化的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市污水处理厂污泥(初沉污泥和剩余污泥)处理过程中产生的污泥水(厌氧消化池上清液、浓缩池上清液、脱水滤液)含有高浓度氨氮,其水量仅为污水处理厂进水的1~2%,但氮负荷占进水总氮负荷的15~25%。本文调查了西安市邓家村污水处理厂产生的污泥水的水质特性和西安市三个污水处理厂的硝化菌种群结构,并对污泥水的单独处理、采用污泥水富集硝化菌的效果、富集硝化菌的微生态结构与动力学参数、硝化菌添加及原生动物捕食对污水处理系统硝化性能与微生物群落结构的影响等进行了系统的研究。主要结论如下:
     (1)污泥水具有高氨氮、高磷酸盐、低C/N比的特点。其中TKN浓度为494~946mg/L,TP浓度为72.1~124.8 mg/L,SCOD/TKN比值为0.25~0.84。
     (2)污泥水单独处理时,氨氮平均去除率为99%,但是污泥水中的COD较难降解,脱氮效率较低,TCOD、SCOD和TN的平均去除率分别为66%、50%和29.9%。
     (3)采用污泥水富集的硝化菌中,Nitrosomonas europaea/Nitrosococcusmobilis为氨氧化菌优势菌属,Nitrobacter为亚硝酸盐氧化菌优势菌属。氨氧化速率在10~40℃之间的温度修正系数τ_N为1.092,亚硝酸盐氧化速率在15~30℃之间的温度修正系数τ_N为1.061。氨氧化菌和亚硝酸盐氧化菌在20℃的基质半饱和常数K_N分别为1.60 mgNH_4~+-N/L、2.78 mgNO_2~--N/L。温度影响因子与氨氧化菌的基质半饱和常数与常规污水处理厂接近,但亚硝酸盐氧化菌的基质半饱和常数偏高。
     (4)污泥水富集过程中,污泥龄越短、温度越低,硝化菌的表观产率系数越大,A/O比、水力负荷对其影响不明显。
     (5)硝化菌添加到污水处理系统后,污泥的硝化活性逐渐增加,氨氧化速率比亚硝酸氧化速率增加量高,因此硝化菌添加后会出现一定程度的亚硝酸盐积累。此外,添加初期,污水处理系统中原生动物数量会增加;污泥沉降指数SVI也出现一定的增加,并与出水亚硝酸盐浓度正相关。
     (6)生物添加能有效强化污水处理系统的硝化性能和群落结构。对模拟的城市污水处理系统进行硝化菌生物添加后,污泥中氨氧化菌和亚硝酸盐氧化菌的数量(前8天氨氧化菌增加约一个数量级,亚硝酸盐氧化菌增加近两个数量级)会迅速增加,但是氨氧化速率和亚硝酸盐氧化速率的增加相对缓慢。硝化菌的多样性增加,群落结构与添加的硝化菌群落结构逐渐接近,氨氧化菌的优势菌属在添加前后均为Nitrosomonas europaea/Nitrosococcus mobilis lineage,而亚硝酸盐氧化菌由添加前的Nitrospira转变Nitrobacter,结构相关系数由添加前的0.13增加至添加结束时的0.93。
     (7)原生动物捕食对硝化菌中慢速生长型的K-strategist影响较大,对快速生长型的r-strategist影响较小。经原生动物抑制的反应器中K-strategist(Nitrosospira与Nitrospira)数量与硝化菌种类多于原生动物未加以抑制的反应器,而r-strategist(Nitrosomonas europaea与Nitrobacter)数量与种类无明显差别,因此原生动物捕食对硝化性能无明显影响。
     (8)具有生物脱氮功能的城市污水处理厂污泥中硝化菌种类繁多,生物多样性丰富。所调查的三个污水处理厂(邓家村污水处理厂、北石桥污水处理厂和第三污水处理厂)污泥中,氨氧化菌均以Nitrosomonas europaea/nitrosococcus mobilislineage为主,同时存在Nitrososipra;亚硝酸氧化菌主要为Nitrospira和Nitrobacter,优势菌属为Nitrospira,同时存在少量的Nitrococcus,而Nitrospina很少检测到。
     总之,采用污泥水富集硝化菌并添加强化污水处理系统硝化可以在处理污泥水的同时有效强化污水处理系统的硝化性能和微生物群落结构。
Reject water produced from sludge treatment process in wastewater treatment plant (WWTP) is of high ammonium concentration,low readily biodegradable organics and C/N ratio.Eventhough its flow rate is small(less than 1%of the total influent flow),the nitrogen load accounts for 15~25%of the total influent load.This study investigated the quality of reject water and its separate treatment firstly,and then examined the nitrifying biomass accumulation with reject water and the effect of bioaugmentation and predation on the microbial community and nitrification performance of the sewage treatment system.Finally,the microbial communities of three WWTPs in Xi'an were investigated by fluorescence in situ hybridization(FISH).The main results and Conclusions are as follows.
     (1) The TKN and TP concentration of the reject water was 494~946 and 72.1~124.8 mg/L respectively,and the ratio of SCOD/TKN was 0.25~0.84.
     (2) Reject water can be treated separately.A high level of nitrification and 99%of the average removal efficiency of ammonia can be achieved.Since the low biodegradability of COD in the reject water,the average removal efficiency of TCOD, SCOD and TN during the experiment was 66%,50%and 29.9%respectively.
     (3) In the nitrifying biomass accumulated with reject water,Nitrosomonas europaea/Nitrosococcus mobilis was the dominant ammonia oxidizing bacteria(AOB), Nitrobacter spp.was the dominant nitrite oxidizing bacteria(NOB).The temperature correction factors of ammonium utilized rate(AUR) and nitrite utilized rate(NUR) were 1.092 and 1.061 respectively;the K_N of AOB and NOB was,1.60±0.29mgNH_3-N/L, 2.78±0.30mgNO_2~--N/L respectively.The values ofτ_N and K_N of AOB were similar with that of the nitrifiers in WWTP,but the K_N of NOB was relative high.
     (4) Low SRT and temperature may increase the observed yield coefficieny(Y_(obs)) of nitrifiers,but,the HRT and A/O ratio had no evident effect on Y_(obs).
     (5) Nitrification performance can be enhanced by the bioaugmentation.AUR increased more rapidly than NUR,so there was a nitrite accumulation after the bioaugmentation.
     (6) Bioaugmentation can increase the amount of nitrifiers quickly,and after the bioaugmentaion,the community structure was similar to the seed source,FISH analysis showed that Nitrosomonas europaea/Nitrosococcus mobilis lineage were the dominant AOB in all activated sludge samples,and the dominant NOB were Nitrospira spp.before the bioaugmentation,and then gradually transferred to Nitrobacter spp.(the dominant NOB in the seed source) after bioaugmentation.
     (7) The K-strategists(Nitrosospira,Nitrospira) were more vulnerable to predation pressure than the r-strategists(Nitrosomonas europaea,Nitrobacter),so the K-strategists were detected in the reactor without protozoa but not in the reactor with prozoa,and predation did not have a significant influence on nitrifiers performance.
     (8) Compared to reactors in lab-scale,a more diversified community of nitrifiers was observed in full scall WWTP.In the three WWTPs surveyed,Nitrosomonas europaea/Nitrosococcus mobilis was the dominant AOB,and there were quite amount of Nitrososipra coexisted;Nitrobacter spp.was the dominant nitrite oxidizing bacteria (NOB),Nitrososipra coexisted,and a few Nitrococcus,Nitrospina detected.
     In general,bioaugment with nitrifiers cultivated with reject water is an effective way to treat the reject water and to enhancing nitrifiers performance and microbial community in WWTP simultaneously.
引文
[1]国家环境保护总局,国家质量监督检验检疫总局.《城镇污水处理厂污染物排放标准》(GB18918-2002)[M].北京:中国环境出版社出版,2003.
    [2]郑兴灿等.污水除磷脱氮技术[M].中国建筑工业出版社,1998.
    [3]张忠祥,钱易编著.废水生物处理新技术[M].清华大学出版社,2002.
    [4]Jiang Q Q,Bakken L R.Comparison of Nitrosospira strains isolated from terrestrial environments[J].FEMS Microbiol Ecol,1999,30(2):171-186.
    [5]Bock E,Schmidt I,Stuven R.Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor[J].Arch Microbiol,1995,163:16-20.
    [6]Abeliovich A.Nitrifying bacteria in wastewater reservoirs[J].Appl Environ Microbiol,1987,53:754-760.
    [7]Abeliovich A,Vonshak A.Anaerobic metabolism of Nitrosomonas europaea[J].Arch Microbiol,1992,158:267-270.
    [8]Bock E,Sundermeyer-Klinger H,Stackebrandt E.New facultative lithoautotrophic nitrite-oxidizing bacteria[J].Arch Microbiol,1983,136(4):281-284.
    [9]Book E,Wagner M.Oxidation of inorganic nitrogen compounds as energy source [P].Springer-Verlag,New York,1991.
    [10]Focht D D,Verstraete W.Biochemical ecology of nitrification and denitrification [J].Adv Microb Ecol,1977,1(1):135-214.
    [11]Sakai K,Ikehata Y,Ikenaga Yet al.Nitrite oxidation by heterotrophic bacteria under various nutritional and aerobic conditions[J].J Fermen Bioengine,1996,82(6):613-617.
    [12]Lloyd D,Boddy L,Davies K J P;Persistence of bacterial denitfification capacity under aerobic conditions:the rule rather than the exception[J].FEMS Microbiol Ecol,1987,45(3):185-190.
    [13]Mulder A,van de Graaf A A,Robertson L A et al.Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J].FEMS Microbiol Ecol,1995,16(3):177-183.
    [14]van de Graaf A A,Mulder A,de Bruijn P et al.Anaerobic oxidation of ammonium is a biologically mediated process[J].Appl Environ Microbiol,1995,61(4):1246-1251.
    [15]Strous M,Fuerst J A,Kramer E H M et al.Missing lithotroph identified as new planctomycete[J].Nature,1999,400:446-449.
    [16]van de Graff A A,de Bruijn P,Jetten M S M et al.Metabolic pathway of anaerobic ammonium oxidation on the basis of ~(15)N studies in a fluidized bed reactor[J].Microbiology,1997,143:2415-2421.
    [17]Schalk J,Oustad H,Kuenen J G et al.The anaerobic oxidation of hydrazine a novel reaction in microbial nitrogen metabolism[J].FEMS Microbiology letters,1998,158:61-67.
    [18]Schalk J,de Vries S,Kuenen J G et al.Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation[J].Biochemistry,2000,39:5405-5412.
    [19]Lindsay M R,Webb R I,Strous M et al.Compartmentalization in planetomycetes:novel types of structural organization for the bacterial cell[J].Arch Microbiol,2001,175:413-429.
    [20]王建龙.强化内源反硝化生物脱氮除磷及污泥减量技术[D].北京工业大学.2008.
    [21]Hagopian D S,Riley J G.A closer look at the bacteriology of nitrification[J].Aquac Eng,1998,18:223-244.
    [22]郑平,徐向阳,胡宝兰编著.新型生物脱氮理论与技术.北京:科学出版社,2004.
    [23]Statey J T,Bryant M P,Pfenning N et al.Bergey's Manual of Systematic Bacteriology(Vol.3)[M].Williams & Wilkins,1989.1807-1835.
    [24]Holt J G,Krieg N R and Sneath P H A et al.Bergey's Manual of Systematic Bacteriology(9~(th) edition)[M].Williams & Wilkins,1984.427-455.
    [25]USA EPA.Nitrogen control.Technomic Publishing Company,Inc.,Lancaster,Pennsylvania 17604,USA 1991.
    [26]张小平.固体废物污染物控制工程[M].化学工业出版社,北京,2004,156-188.
    [27]杭世珺,陈吉宁,郑兴灿等.污泥处理处置的认识误区与控制对策[J].中国环保产业,2005,(3):11-14.
    [28]Metcalf & Eddy.Wastewater engineering treatment and reuse(Fourth Edition)废水工程处理与回用[M].北京:清华大学出版社,2003:1505-1510,1465-1467.
    [29]于莉芳,彭党聪.城市污水厂污泥水脱氮技术的应用及进展[J].中国给水排水,2007,23(8):9-13.
    [30]Pitman A.Management of biological nutrient removal plant sludges-Change the paradigms?[J].Wat Res,1999,33(5):1141-1146.
    [31]Ladiges G,Bertram N.Optimisation of Hamburg's wastewater treatment plants—three years of experience with the new concept[J].Wat Sci Technol,2004,50(7):45-48.
    [32]Ladiges G,Gunner C.Theoretical and practical results of the optimisation of Hamburg's WWTPs with dynamic simulation[J].Wat Sci Technol.2003;47(12):27-33.
    [33]Janus H,van der Roest H.Don't reject the idea of treating reject water[J].Wat Sci Tech,1997,35(10):27-34.
    [34]Ali M,Marquez C,Fillos J et al.Nitrification of centrate from dewatering of anaerobically digested sludge.International Journal of Environment and Pollution,1998,9(4):421-431.
    [35]Yutaka Y,Yasuhiro H,Hwang Y et al.Development of Reject Water Treatment System from Centralized Sludge Treatment Process(Return to a Wastewater Treatment Plant in the proximity).Proceedings of Environmental Engineering Research.1998,35:339-349.
    [36]Jeavons J,Stokes L,Upton J et al.Successful sidestream nitrification of digested sludge liquors[J].Wat Sci Tech,1998,38(3):111-118.
    [37]Laurich F,Gunner C.The Store and Treat process for sludge liquor management[J].Wat Sci Technol,2003,47(12):269-75.
    [38]Meyer S,Wilderer P.Reject Water:Treating of Process Water in Large Wastewater Treatment Plants in Germany—A Case Study[J].J Environ Sci Health,2004,39(7):1645-1654.
    [39]Arnold E,Boehm B,Wilderer P.Application of activated sludge and biofilm sequencing batch reactor technology to treat reject water from sludge dewatering systems:a comparison[J].Wat Sci Technol,2000,41(1):115-122.
    [40]Teichgraeber B.,Stein A.Nitrogen elimination from sludge.treatment reject water—comparison of the steam-stripping and denitrification processes[J].Water Sci Technol,1994,30(6):41-51
    [41]于莉芳,刘小英,王圣伟,彭党聪.SBR工艺处理城市污水处理厂污泥水的研究[J].中国给水排水,2007,23(17):6-10.
    [42]Fux C,Boehler M,Huber P et al.Biologieal treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant[J].J Biotechnol,2002,99(3):295-306.
    [43]Johansson P,Nyberg A,Beier M.Cost efficient sludge liquor treatment[C].Proceedings of a Polish-Swedish seminar,Nowy Targ,October 1-2,1998.
    [44]郝晓地,汪慧贞,钱易等.欧洲城市污水处理技术新概念-可持续生物除磷脱氮工艺(上)[J].给水排水,2002,28(6):6-12.
    [45]Hellinga C,Schellen A,Mulder J et al.The SHARON-process:an innovative method for nitrogen removal from ammonium rich wastewater[J].Wat Sci Tech,1998,37(9):135-142.
    [46]Mulder J,van Loosdrecht M,Hellinga C et al.Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering[J].Wat Sci Tech,2001,43(11):117-134.
    [47]Gil K,Choi E.Nitrogen removal by recycle water nitritation as an attractive alternative for retrofit technologies in municipal wastewater treatment plants[J].Wat Sci Tech,2004,49(5-6):39-46.
    [48]Jetten M,Cirpus I,Kartal B et aL 1994-2004:10 years of research on the anaerobic oxidation of ammonium[J].Biochem Soc Trans,2005,33(1):119-123.
    [49]Blum,D J W,Speece R E.A database of chemical toxicity to environmental bacteria and its use in interspecies comparisions and correlations.Research Journal of the Water Pollution Control Federation,1991.63(3):198-207.
    [50]Yuan Z,Bogaert H,Leten J et al.Reducing the size of a nitrogen removal activated sludge plant by shortening the retention time of inert solids via sludge storage[J].Wat Res,2000,34(2):539-549.
    [51]华光辉等.城市污水生物除磷脱氮工艺中的矛盾关系及对策[J].中国给水排水,2002,26(12):1-4.
    [52]Fillos J,Luis A,Luis A.Full-scale evaluation of biological nitrogen removal in the step-feed activated sludge process[J].Wat Environ Res,1996,68(3/4):132-142.
    [53]王军,刘宝章,杨瑞成.特种菌在序批式活性污泥法中的应用研究[J].工业水处理,2002,22(3):16-19.
    [54]全向春,刘佐才,范广裕等.生物强化技术及其在废水治理中的应用[J].环境科学研究,12(3):1999.
    [55]Abeysinghe D,De Silva D,Stahl D et al.The effectiveness of bioaugmentation in nitrifying systems stressed by a washout condition and cold temperature[J].Wat Environ Res,2002,74(2):187-99.
    [56]Finnson,A.Simulation of a strategy to start up nitrification at Bromma sewage plant using a model based on the IAWPRC model No.1[J].Wat Sci Tech,1993,28(11-12):185-195.
    [57]Lee C.Discussion of:How input active biomass affects sludge age and process stability[J].J Envir Engrg,ASCE,1997,123(1):101-103.
    [58]Rittmann B.How input active biomass affects sludge age and process stability[J].J Envir Engrg,ASCE,1996,122(1):4-8.
    [59]Rittmann B.Closure of:How input active biomass affects sludge age and process stability[J].J Envir Engrg,ASCE,1997,123(1):103.
    [60]Daigger G,Norton L,Watson R.Process and kinetic analysis of nitrification in coupled trickling filter/activated sludge processes[J].Wat Env Res,1993,65(6):750-758.
    [61]Rittmann B,Whiteman R.Bioaugmentation:A coming of age[J].Water Quality Int,1994,1:12-16.
    [62]Sinkj(?)r O,Thirsing C,Harremo(e|¨)s P et al.Running-in of the nitrification process with and without inoculation of adapted sludge[J].Wat Sci Tech,1996,34(1-2):261-268.
    [63]Kos P.Short SRT(solids retention time) nitrification process/flowsheet[J].Wat Sci Tech,1998,38(1):23-29.
    [64]Kos P.Method and system for improved biological nitrification of wastewater at low temperature[P].US Patent No.882607,1998-9-22.
    [65]Plaza E,Trela J,Hultman B.Impact of seeding with nitrifying bacteria on nitrification process effficiency[J].Wat Sci Tech,2001,43(1):155-164.
    [66]赵义,郝晓地,朱景义.侧流富集/主流强化硝化(BABE)升级工艺[J].中国给水排水,2006,22(2):5-8.
    [67]Berends D,Salem S,van der Roest H et al.Boosting nitrification with the BABE technology[J].Wat Sci Tech,2005,52(4):63-70.
    [68]Berends D,Janssen P,Salem S et al.Ready for business.Look at a new method for combining sludge liquor treatment and the augmentation of nitrifying organisms in the main treatment-stream[J].Water 21,2003,(4):32-34.
    [69]Salem S,Berends D,Heijnen J.Model-based evaluation of a new upgrading concept for N-removal[J].Wat Sci Tech,2002,45(6):169-176.
    [70]Salem S,Berends D,van der Roest H.Full-scale application of the BABE technology[J].Wat Sci Tech,2004,50(7):87-96.
    [71]Salem S,Berends D,Heijnen J.Bio-augmentation by nitrification with return sludge[J].Wat Res,2003,37(8):1794-1804.
    [72]Hommel B.,Van der Zandt E.,Bernds D et al.First application of the BABE process at 'S-Hertogenbosch WWYP.Proceeding of WEFTEC 2006[CD-ROM],WEF,Alexandria,Virginia.
    [73]Rosen S,Huijbregsen C.The ScanDeNi process could turn an existing under-performing activated sludge plant into an asset[J].Wat Sci Tech,2003,47(11):31-36.
    [74]Nov(?)k L.Havrl(?)kov(?)D.Performance intensification of Prague wastewater treatment plant[J].Wat Sci Tech,2004,50(7):139-146.
    [75]Novak L,Wanner J,Kos M.A method for nitrification capacity improvement in an activated sludge process for biological wastewater treatment[P].CZ patent No.291 489(in Czech),2003.
    [76]Krhutkovi O,Novak L,Pachmanova L et al.In situ bioaugmentation of nitrification in the regeneration zone:practical application and experiences at full-scale plants[J].Wat Sci Tech,2006,53(12):39-46.
    [77]Sova R,Neethling J,Kinnear D et al.Prenitrification and seeding for enhanced nitrification.Proceedings of WEFTEC 2004.[CD-ROM],WEF,Alexandria,Virginia.
    [78]Katehis,D,Stinson B,Anderson J.Enhancement of nitrogen removal thru innovative integration of centrate treatment.Proc,Water Environ.Fed.Technical Conf.,2002.Water Environment Federation,Chicago(CD ROM).
    [79]Salem S,Moussa M,van Loosdrecht M.Determination of the decay rate of nitrifying bacteria[J].Biotechnol Bioeng,2006,94(2):252 - 262.
    [80]Zimmerman R,Bradshaw A,Richard D.Acclimation of nitrifiers for activated sludge treatment:A bench scale evaluation[R].Report prepared for the Water Environment Research Foundation,00-CTS-16ET.
    [81]Katehis D,Fillos J,Carrio L.Comparison of bench scale testing methods for nitrifier growth rate measurement[J].Water Sci Technol,2002,46(1/2):289-295.
    [82]Fernandez A,Huang S,Seston S et al.How stable is stable? Function versus community composition[J].Appl Environ Microbiol,1999,65(8):3697-3704
    [83]Daims H,Purkhold U,Bjerrum L et al.Nitrification in sequencing biofilm batch reactors:lessons from molecular approaches[J].Wat Sci Tech,2001,43(3):9-18.
    [84]Thompson I,van der G,Christopher J et al.Bioaugmentation for bioremediation:the challenge of strain selection[J].Envir Microbiol,2005;7(7):909-915.
    [85]Parker D,Wanner J.Review of improving nitrification through bioaugmentation[J].Wat Prac,2007,1(11):1-16.
    [86]Head M,Oleszkiewicz J.Bioaugmentation for short-SRT nitrification at cold temperatures[J].Wat Res,2004,38(3):523-530.
    [87]Head M,Oleszkiewicz J,Kos P.Nitrification of high ammonia reject water for improved efficiency of the main stream treatment train[C].Proceedings of Water Environment Federation Technical Exhibition and Conference[CD-ROM],2000.
    [88]Head M,Oleszkiewicz J.Short SRT nitrification through seeding nitrifying bacteria into cold,non-nitrifying sequencing batch reactors[C].Proceedings of the Water Environment Federation 75th Annual Technical Exhibition & Conference,Chicago,Illinois,USA,September 28 - October 2,2002.
    [89]Head M,Oleszkiewicz J.Bioaugmentation with nitrifying bacteria acclimated to different temperatures[J].J Envir Engrg,2005,131(7):1046-1051.
    [90]Bouchez T,Patureau D,Dabert P et al.Ecological study of a bioaugmentation failure[J].Environ Microbiol,2000,2(2):179-190.
    [91]Bouchez T,Patureau D,Dabert P et al.Successful and unsuccessful bioaugmentation experiments monitored by fluorescent in situ hybridization[J].Water Sci Technol,2000,41(12):61-68.
    [92]Lee N,Welander T.Influence of predators on nitrification in oxic biofilm processes[J].Water Sci Technol,1994;29(7):355-363.
    [93]Lee Y,Oleszkiewicz J.Effects of predation and ORP conditions on the performance of nitrifiers in activated sludge systems[J].Water Res,2003,37(17):4202-4210.
    [94]Eisenmann H,Harms H,Meckenstock R.Grazing of a tetrahymena sp.on adhered bacteria in percolated columns monitored by in situ hybridization with fluorescent oligonucleotide Probes[J].Appl Environ Microbiol,1998,64(4):1264-1269.
    [95]Smith R.Oerther D.Microbial community development in a laboratory-scale nitrifying activated sludge system with input from a side-stream bioreactor treating digester supernatant[J].Wat Sci Tech,2006,54(1):209-216.
    [96]Manser R.Population dynamics and kinetics of nitrifying bacteria in membrane and conventional activated sludge plants[J].Doctoral Dissertation.Swiss Federal Institute of Technology Zurich.
    [97]Purkhold U,Pommerening-Roser A,Juretschko S.Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amo A sequence analysis[J].Appl Environ Microbiol,2000,66(12):5368-5382.
    [98]Blackburnea R,Vel Vadivelu M,Yuan Z et al.Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter[J].Wat Res,2007,41(14):3033-3042.
    [99]Nogueira,Melo L F.Competition between Nitrospira spp.and Nitrobacter spp.in nitrite oxidizing bioreactors[J].Biotechnol Bioeng,2006,95(1):169-175.
    [100]Kim D,Kim S.Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics[J].Wat Res,2006,40(3):887-894.
    [101]Daims H,Maixner F,Liicker S.Ecophysiology and niche differentiation of Nitrospira-like bacteria,the key nitrite oxidizers in wastewater treatment plants[J].Wat Sci Tech,2006;54(1):21-27.
    [102]Vadivelu V,Yuan Z,Fux C et al.Stoichiometric and kinetic characterisation of Nitrobacter in mixed culture by decoupling the growth and energy generation processes[J].Biotechnol Bioeng,2006;94(6):1176-1188.
    [103]Manser R,Gujer W,Siegrist H.Membrane bioreactor versus conventional activated sludge system:population dynamics of nitrifiers[J].Wat Sci Tech,2005;52(10/11):417-425.
    [104]Koops H P,Pommerening-Roser A.Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species[J].FEMS Microbiol Ecol,37(1):1-9.
    [1]杭世珺,陈吉宁,郑兴灿等.污泥处理处置的认识误区与控制对策[J].中国环保产业,2005,(3):11-14.
    [2]Metcalf & Eddy.Wastewater engineering treatment and reuse(Fourth Edition)废 水工程处理与回用[M].北京:清华大学出版社,2003:1505-1510,1465-1467.
    [3]赵义,郝晓地,朱景义.侧流富集/主流强化硝化(BABE)升级工艺[J].中国给水排水,2006,22(2):5-8.
    [4]Berends D,Salem S,van der Roest H,et al.Boosting nitrification with the BABE technology[J].Wat.Sci.Tech.,2005,52(4):63-70.
    [5]Hellinga,C,Schellen,A,Mulder J et al.The SHARON-process:an innovative method for nitrogen removal from ammonium rich wastewater[J].War.Sci.Tech.,1998,37(9):135-142.
    [6]于莉芳,彭党聪.城市污水厂污泥水脱氮技术的应用及进展[J].中国给水排水,2007,23(8):9-13
    [7]彭党聪,Bernet N.供氧模式对序批式活性污泥反应器硝化性能的影响[J].环境工程,1999,17(6):10-14.
    [8]高景峰,彭永臻,王淑莹等.以DO、ORP、pH控制SBR法的脱氮过程[J].中国给水排水,2001,17(4):6-11.
    [1]Statey J T,Bryant M P,Pfenning N et al.Bergey's Manual of Systematic Bacteriology(Vol.3)[M].Williams & Wilkins,1989.1807-1835.
    [2]Head I M,Hiorns W D,Emnley T M et al.The phylogeny of the autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequence.J Gener.Microbiol.1993,139:1147-1153.
    [3]Teske A,Aim E,Regan J M et al.Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria.J.bacterial.1994,176:6623-6630.
    [4]Stehr G,Bottcher B,Dittberner P et al.The ammonia-oxidizing nitrifying population of the river Elbe estuary.FEMS Microbiol.Ecol.1995,17:177-186.
    [5]Schramm A.,Beer D.,Heuvel J.C.et al.Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp.along a macroscale gradient in a nitrifying bioreactor:quantification by in situ hybridization and the use of microelectrode[J].Appl.Environ.Microbiol.1999,67(9):3690-3696.
    [6]Koops H P,Pommerening Roser A.Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species.FEMS Microb.Ecol.2001,37:1-9.
    [7]Suwa Y,Imanura Y,Suzuki T et al.Ammonium-oxidizing bacteria with different sensitivies to(NH_4)_2SO_4 in activated sludge.
    [8]Hiorns W D,Hastings R C,Head I M et al.Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of nitrosospiras in the environment.Microbiol.,1995,141:2793-2800.
    [9]Schramm A,de Beer D,Wagner M et al.Identification and activities in situ of Nitrosospira and Nitrospira spp.as,dominant populations in a nitrifying fludized bed reactor[J].Appl.Environ.Microbiol.1998,64:3480-3485.
    [10]Horz H P,Rotthauwe J H,Lukow T et at.Identificaton of major subgroups of ammonia-oxidzing bacteria in environmental smples by T-RFLP analysis of amoAPCR products.J.Microbiol.Meth.,2000,39:197-204.
    [11]You S J,Chuang S H,Ouyang C F.Nitrification efficiency and nitrifying bacteria abundance in comnined AS-RBC and A20 system.Wat.Res.2003,37:2281-2290.
    [12]Kowalchuk G A,Stephen J R,de Boer et al.Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class proteobacteia in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments.Appl.Environ.Microbiol.1997,63:1489-1497.
    [13]Stephen J R,McCaig,Smith Z et al.Molecular diversity of soil and marine 16S rRNA gene sequences related to B-subgroup ammonia-oxidizing bacteria.Appl.Environ.Microbiol.,1996,62(6):4147-4154.
    [14]Wagner M.,Rath G,Koops H.P.,et al.In situ analysis of nitrifying bacteria in sewage treatment plants[J].Wat.Sci.Tech.,1996,34(1):237-244.[15]Mobarry B.K.,Wagner M.Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria[J].Appl.Environ.Microbiol.,1996,62(6):2156-2162.
    [15]Schramm A,Larsen L H,Revsbech N P et al.Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes.Appl.Environ.Microbiol.1996,62:4641-4647
    [16]Juretschko S,Timmermann G,Schmid M et al.Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge:Nitrosococcus mobilis and Nitrosospira-like bactria as dominant populations.Appl.Environ.Microbiol.,1998,64:3024-3051.
    [17]Bock E,Koops H P.The genus Nitrobacter and related genera.The Procaryotes.2~(nd)Ed,Springer-Verlags,Berlin,1992:2302-2309,
    [18]Parker D,Wanner J.Review of improving nitrification through bioaugmentation[J].Wat Prac,2007,1(11):1-16.
    [19]Madigan M.T.,Martinko J.M.Parker J.Brock biology of microorganisms.Prentice Hall.Upper Saddle River,U.S.A.,2000.
    [20]Pommerening R A,Rath G and Koops H.P.Phylogenetic diversity within the genus Nitrosomonas[J].Syst.Appl.Microbiol.,1996,19(3),344-351.
    [21]Daims H.,Nielsen J.L.,Nielsen P.H.et al.In situ characterization of Nitrospira-like nitrite oxidizing bacteria active in wastewater treatment plants[J].Appl.Environ.Microbiol.,2001,67(11),5273-5284.
    [22]Juretschko,S.2000.Ph.D.thesis.Technische Universitat Miinchen.
    [23]Head M,Melanie A,Oleszkiewicz J.Nitrifying bacteria addition into reactors operating near washout conditions for nitrification[J].J.Environ.Eng.Sci.,2005,4(4):257 -264.
    [24]Abeysinghe D,De Silva D,Stahl D.The effectiveness of bioaugmentation in nitrifying systems stressed by a washout condition and cold temperature[J].Wat.Environ.Res.,2002,74(2):187-99.
    [25]Salem S,Berends D,Heijnen J.Model-based evaluation of a new upgrading concept for N-removal[J].Wat.Sci.Tech.,2002,45(6):169-176.
    [26]Blackburnea R.,Vel M.Vadivelu,Zhiguo Yuan,et al.Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter[J].Wat.Res.2007,41(14):3033-3042.
    [27]Kim D,Kim S.Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics[J].Wat.Res.,2006,40(3):887-894.
    [28]Manser R.,Gujer W.,Siegrist H.Membrane bioreactor versus conventional activated sludge system:population dynamics of nitrifiers[J].Water Sci.Technol.,2005;52(10/11):417-425
    [29]Schramm A.,De Beer D.,Gieseke A.et al.Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm[J].Environ.Microbiol.2000,2(6):680-686.
    [30]Coskuner G and Curtis T.P.,In situ characterization of nitrifiers in an activated sludge plant:detection of Nitrobacter spp.J.Appl.Microbiol.2002,93(3):431-437.
    [31]Harms G,Layton A.C.,Dionisi H.M.et al.Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant,Environ.Sci.Technol.2003,2003,37(2):343-351.
    [32]Downing,A.L and Hopwood,A.P.1964.Some observations on the kinetics of nitrifying activated-sludge plants.Schweizerixche zeitschrift fur hydrologie.26:271-288.
    [33]Grunditz C,Dalhammar G Development of nitrification inhibition assays using pure cultures of nitrosomonas and nitrobacter[J].Wat.Res.,2001,35(2):433-440.
    [34]Painter H.A.,Loveless J.E.Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated sludge process[J].Wat.Res.,1983, 17(3):237-248.
    [35]Metcalf and Eddy,Inc.1991.Wastewater engineering:Treatment,diposla and reuse.Revised by G.Tchobanoglous and F.L.Burton.Irwin/McGraw-Hill.U.S.A.
    [36]Taylor A.E.,Bottomley P.J.Nitrite production by Nitrosomonas europaea and Nitrosospira sp.AV in soils at different solution concentrations of ammonium[J].Soil Biol.Biochem.,2006,38(4):828-836.
    [1]Berends D,Salem S,van der Roest H,et al.Boosting nitrification with the BABE technology[J].Wat.Sci.Tech.,2005,52(4):63-70.
    [2]Rittmann B.How input active biomass affects sludge age and process stability[J].J.Envir.Engrg.,ASCE,1996,122(1):4-8.
    [3]赵义,郝晓地,朱景义.侧流富集/主流强化硝化(BABE)升级工艺[J].中国给水排水,2006,22(2):5-8.
    [4]Kos P.Short SRT(solids retention time) nitrification process/flowsheet[J].Wat.Sci.Tech.,1998,38(1):23-29.
    [5]Salem S,Berends D,Heijnen J.Model-based evaluation of a new upgrading concept for N-removal[J];Wat.Sci.Tech.,2002,45(6):169-176.
    [6]Salem S,Berends D,van der Roest H.Full-scale application of the BABE technology[J].Wat.Sci.Tech.,2004,50(7):87-96.
    [7]Salem S,Berends D,Heijnen J.Bio-augmentation by nitrification with return sludge[J].Wat.Res.,2003,37(8):1794-1804.
    [8]Janus H,van der Roest H.Don't reject the idea of treating reject water[J].Wat.Sci.Tech.,1997,35(10):27-34.
    [9]Plaza E,Trela J,Hultman B.Impact of seeding with nitrifying bacteria on nitrification process effficiency[J].Wat.Sci.Tech.,2001,43(1):155-164.
    [10]Ali M,Marquez C,Fillos J et al.,Nitrification of eentrate from dewatering of anaerobically digested sludge.International Journal of Environment And Pollution.1998,9(4),421-431.
    [11]Gil K.,Choi E.Nitrogen removal by recycle water nitritation as an attractive alternative for retrofit technologies in municipal wastewater treatment plants[J].Wat.Sci.Tech.,2004,49(5-6):39-46.
    [12]Head M,Melanie A,Oleszkiewicz J.Nitrifying bacteria addition into reactors operating near washout conditions for nitrification[J].J.Environ.Eng.Sci.,2005,4(4):257-264.
    [13]Abeysinghe D,De Silva D,Stahl D.The effectiveness of bioaugmentation in nitrifying systems stressed by a washout condition and cold temperature[J].Wat.Environ.Res.,2002,74(2):187-199.
    [14]Kim DJ,Kim SH.Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics[J].Wat.Res.2006,40(5):887-894.
    [15]Nogueira and L.F.Melo,Competition between Nitrospira spp.and Nitrobacter spp.in nitrite oxidising bioreactors[J],Biotechnol.Bioeng.95(2006),pp.169-175.
    [16]Richard Blackburnea,Vel M.Vadivelu,Zhiguo Yuan,et al.Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter[J].Wat.Res.2007,41(14):3033-3042.
    [17]于莉芳,刘小英,王圣伟,彭党聪.SBR工艺处理城市污水处理厂污泥水的研究[J].中国给水排水,2007,23(17):6-10.
    [18]张小玲,王志盈,彭党聪等.低溶解氧下活性污泥法的短程硝化研究[J].中国给水排水,2003,19(7):1-4.
    [19]马勇,王淑莹,曾薇等.A/O生物脱氮工艺处理生活污水中试(一) 短程硝化反硝化的研究[J].环境科学学报,2006,26(5):703-709.
    [1]Smith R.and Oerther D.Microbial community development in a laboratory-scale nitrifying activated sludge system with input from a side-stream bioreactor treating digester supernatant[J].Wat.Sci.Tech.,2006;54(1):209-216
    [2]Yoshiteru A.In situ identification of microorganisms in biofilm communities[J].J Biosci Bioeng,2002,94(6):552-556.
    [3]Juretschko S,Timmermann G,Schmid M et al.Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge:Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations[J].Appl.Microbiol.Biotechnol.1998,64(9):3480-3485.
    [4]Wagner M,Amann R,Lemmer H et al.Probing activated sludge with Proteobacteria-specific oligonucleotides:inadequacyof culture-dependent methods for describing microbial community structure[J].Appl.Microbiol.Biotechnol.1993,59:1520-1525.
    [5]Rittmann,B.E.and Metcalf & Eddy.Environmental biotechnology:Principles and applications[M].(Third Edition),McCarty-Hill:New York.2001.
    [6]杨清香,张昱,杨敏;污水处理系统中微生物生态群落分析技术进展[C],微生物生态学研究进展——第五届微生物生态学术研讨会论文集,2003.
    [7]Rowan A K,Snape J R and Fearnside D et al.Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater.FEMS Microbiol Ecol,2003,43:195-206.
    [8]Nath J,Johnson K L.A review of fluorescence in-situ hybridization(FISH):Current status and future prospects[J].Biotechnic & Histochemistry.2000,75:54-78.
    [9]Amann R I,Ludwig W and Schleifer K H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J].Microbiol.Rev.1995,59:143-169.
    [10]于莉芳,王圣伟,郭天赐等.污泥水富集硝化菌和强化城市污水低污泥龄硝化[J].环境科学.2008,29(2):332-337.
    [11]Salem S,Berends D,Heijnen J.Bio-augmentation by nitrification with return sludge[J].Wat.Res.,2003,37(8):1794-1804.
    [12]Abeysinghe D,De Silva D,Stahl D et al.The effectiveness of bioaugmentation in nitrifying systems stressed by a washout condition and cold temperature[J].Wat. Environ.Res.,2002,74(2):187-99.
    [13]Bouchez T.,Patureau D.,Dabert P.et al.Ecological study of a bioaugmentation failure[J].Environ.Microbiol.,2000;2(2):179-190
    [14]Lee N.,Welander T.Influence of predators on nitrification in oxic biofilm processes[J].Water Sci.Technol.1994;29(7):355-363
    [15]Lee Y.and Oleszkiewicz J.Effects of predation and ORP conditions on the performance of nitrifiers in activated sludge systems[J].Water Res.,2003;37(17):4202-4210
    [16]Verhagen F,Duyts H,Laanbroek H.Effects of grazing by flagellates on competition for ammonium between nitrifying and heterotrophic bacteria in soil columns[J].Appl.Environ.Microbiol,1993,59(7):2099-2106.
    [17]Kim D,Kim S.Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics[J].Wat Res,2006,40(3):887-894.
    [18]Blackburnea R.,Vel M.Vadivelu,Zhiguo Yuan,et al.Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter[J].Wat.Res.2007,41(14):3033-3042.
    [19]Schramm A.,De Beer D.,Gieseke A.et al.Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm[J].Environ.Microbiol.2000,2(6):680-686.
    [20]Head M,Oleszkiewicz J.Centrate treat,emt to produce nitrifying biomass for bioaugmentation.University of Manitoba Winipeg.Canada,2003.
    [1]Grunditz C,Dalhammar G.Development of nitrification inhibition assays using pure cultures of nitrosomonas and nitrobacter[J].Wat.Res.,2001,35(2):433-440.
    [2]Aoi Y,Miyoshi T,Okamoto T et al.Microbial ecology of nitrifying bacteria in wastewater treatment process examined by fluorescence in situ hybridization[J].J.Biosci.Bioeng.2000,90(3):234-240.
    [3]Coskuner G,Curtis T P.In situ characterization of nitrifiers in an activated sludge plant:detection of Nitrobacter spp.[J].J.Appl.Microbiol.2002,93(3):431-437.
    [4]Juretschko S,Timmermann G,Schmid M et al.Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge:Nitrosococcus mobilis and Nitrosospira-like bactria as dominant populations[J].Appl.Environ.Microbiol.,1998,64:3024-3051.
    [5]Burrell P,Keller J,Blackall L L.Characterisation of the bacterial consortium involved in nitrite oxidation in activated sludge[J].Water Sci.Technol.1999,39(6):45-52.
    [6]H.M.Dionisi,A.C.Layton,G.Harms,I.R.Gregory,K.G.Robinson and G.S.Sayler,Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp.from full-scale wastewater treatment plants by competitive PCR[J].Appl.Environ.Microbiol.2002,68(1):245-253.
    [7]G.Harms,A.C.Layton,H.M.Dionisi,I.R.Gregory,V.M.Garrett,S.A.Hawkins,K.G.Robinson and G.S.Sayler,Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant[J].Environ.Sci.Technol.2003,37(2):343-351.
    [8]郑琴、陈利平、卫东等.西安市第三污水处理厂工程可行性研究的思路.中国市政工程,2004,112(6).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700