用户名: 密码: 验证码:
三塘湖盆地牛东火山岩油藏水力压裂机理与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火山岩油藏压裂是国内外储层改造面临的新课题,没有成熟的模式。火山岩地层发育的天然裂缝和局部结构差异将导致压裂施工中高滤失、高停泵压力梯度及近井高摩阻、多裂缝等问题,使人工裂缝的扩展有别于均质地层。牛东油藏复杂的岩性、储集结构及物性、含油性和力学性质的强非均质性,决定了压裂改造机理不同于砂岩油藏,表现为高应力、高滤失、高缝内扭曲、难控缝等技术难题。
     全程加砂充填法压裂技术是结合牛东裂隙岩体压裂地质和工程特征创新的现场实用技术,是针对裂隙岩体的全新技术理念。其主要原理:引入岩体力学等观点,在水力造缝过程中,应用压裂液、支撑剂和施工参数的优化技术,张开低角度的天然结构面;通过全程加砂降滤和堵塞支缝形成水力主裂缝增压腔,依靠有序提高缝腔内净压力以增加近井和远井的结构面张开度和延伸距离,形成以井筒为中心、沟通近井或远井储集结构面、具有渗流通道作用的裂缝导流系统,同时增加充填厚度,减少隔层脆性断裂和支撑剂嵌入等作用。
     本文内容主要包括五个部分。第一部分是牛东油田地质和油藏特征研究,重点研究了成岩、成藏模式、储油模式和分区渗流模式。第二部分是应用岩体力学等理论,研究牛东火山岩裂隙岩体的工程特征。重点是结构面特征对水力造缝的特殊力学作用,如脆性断裂效应、嵌入效应、滤失效应、地应力屏蔽效应、敏感性伤害作用等。第三部分总结了国内火山岩油气藏压裂技术现状及牛东前期压裂技术应用情况,重点分析了牛东前期按照砂岩压裂模式压裂施工存在的高砂堵率等问题的机理。第四部分研究了裂隙岩体水力造缝增压压力腔机理,主要是分析了连续介质常规压裂理论的不适应性、增压腔造缝模式形成与延伸机理、多裂缝等效滤失的G函数导数诊断等内容;第五部分研究了全程加砂充填法现场应用技术研究,总结了火山岩压裂造缝和滤失的特殊机理及三种施工模式,分析论证了压裂设计与施工等配套技术及应用井例。经过牛东火山岩储层的规模应用,有效解决了高砂堵率、高用液量、低砂比和短有效期等火山岩压裂难题,压裂施工成功率、压裂液体效率、增产效果得到大幅度提高,并对提高同类油藏的水力压裂技术水平具有重要意义。
Hydraulic fracturing for well stimulation in the volcanic reservoir is a new problem of the world,having no grown-up mode.During fracturing in volcanic reservoir,the difference between volcanic reservoir and homogeneous reservoir is great,because natural fissures growed and regional structure variation cause high filtration in fractures,large pressure gradient of pump,nearwell high friction resistance and multi-factures.The mechanisms on volcanics fracture of Niudong volcanic oilfield,are very different from sandstone-formation fracture,exhibiting at technical puzzles such as high stress,high leakoff rate,high contortion in fracture and fissure's hard-controlling.This difference results from the complication of its lithological association and reservoir structure,the great heterogeneity of its osmose,oiliness and mechanical character.
     Fracture technology of full term gravel input compaction method combine fracture and geology of fractured rock in Niudong oilfield with engineering feature innovation, in view of brand new technology concept of fractured rock.The main principle is introduced rock mass mechanics view-point,in the course of hydralic created fracture, applied optimum technology of fracturing fluid,proppant and operation parameter, expanded low angle natural discontinuity,by means of decreasing filtration of full term gravel input and blocking up fracture,formed booster cavity of hudralic main fracture, improved net pressure of fracture cavity,increased structural surface expansion and extended distance in the near wellbore and far wellbore,formed wellbore,linked up near wellbore or far wellbore to accumulate structural surface,formed fracture diversion system with filtering flow channel function,at the same time,increased filling thickness, decreased barrier brittle fracture and proppand embedment.
     The paper mainly consists of five sections.The first section is Niudong oilfield geology and reservoir feature research,stressly research rock and reservoir mode,oil storage mode and partition filtering flow mode.The second section is applied rock martix mechanics theory,research engineering feature of Niudong volcanic fractured rock, mainly research structural surface feature cause effect on special mechanics of hydralic created fracture,such as brittle fracture effect,embedding effect,filtration effect,earth stress screening effect,sensitivity damage action.The third section sum up present stiuation of volcanic reservoir fracturing technology and earlier days fracturing technology application in the Niudong oilfield,according to sandstone fracturing mode, mainly analyze existing high sand bridge ration of fracturing operation in the earlier days of Niudong oilfield.The fourth section research hydralic created fracture supercharge pressure cavity mechanics of fractured rock mass,mainly analyze inadaptability of conventional fracturing theory for continuous medium,created fracture of booster cavity formation and extended mechnics,G functional derivative diagnosis multi-fracture equivalent filtration.The fifth section research field application technology of full term gravel input compaction method,sum up particular mechanics of created fracture and filtration of volcanic rock fracturing and three kinds of operation mode,demonstrate fracturing design and operation technology and application.
     Application in volcanic oil reservoirs of Niudong demonstrates that this technology has efficiently resolved conundrums of volcanics fracture such as high sanded-up ratio,high charge for using liquid,low sand ratio and brief effective period, shows that the success rate of fracturing and efficiency of hydraulic fracturing's liquid increases significantly with obvious production increment and large financial benefit, implying that the technology worth theoretically and realistically to promote the application of hydraulic fracture in naturally fractured reservoirs or improve the massive fracturing treatment and development of volcanic reservoir.
引文
Abbaszadeh M, Corbett C, Broetz R, et al. Development of an integrated reservoir model for a naturally fractured volcanic reservoir in China [R]. SPE. 2001, 4(5): 406-414.
    Aittmatov I T. State of stress in rock and rock-burst proneness in seismicative folded areas [R]. Proceedings of 6th ISRM, Canada, 1987.
    Babadagli T.Analysis of capillary imbibition recovery considering the simultaneous effects of gravity, low IFT, and boundary conditions [R]. SPE: 57321, 1999.
    Barton N R. Review of a new shear strength criterion for rock koints [J]. Engineering Geology 1982.
    Barton N,Choubey V. The sheavrstrength of rock joints intheory and practice[J]. Rock Mechanics, 1982.
    Barton N R. Review of a new shear strength criterion for rock koints [J]. Engineering Geology, 1982.
    Benelkadi S, et al. Reservoir Permeability Determination Using After-Closure Period Analysis of Calibration Tests [R]. SPE: 230-237, 2004,
    B.K.阿特金森.岩石断裂力学[M].北京:地震出版社,1992
    Blair S C, Thorper R K, Heuze F E, et al. Laboratory observations of the effect of geological discontinuitieson hydro fracture p ropagation[R]. Proceedings 30 th USSymposium on Rock Mechanics, Morgantown, WV, 19June, 1989: 433-450.
    Blanton T L. An experimental study of interaction between hydraulically induced and p reexisting fractures [R]. SPE 10847, 1982.
    Blanton T L. Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs [R]. SPE 15261, 1986.
    Bohloli B, Pater C J, Experimental study on hydraulic fracturing of soft rocks: influence of fluid rheology and confining stress [J]. Journal of petroleum science and engineering, 2006, 53:1-12.
    Bott M H P, Kuszir N J. Stress distributions associated with compensated plateau uplift structures with application to the continental mechanism [J]. Geophy J R Astron Soc, 1979.
    Bott M H P, Kuszir N J. The origin of tectonic stresses in the lithosphere [J]. Tectonophysics, 1984.
    Chatterjec R. Numerical Modelling of Stress Around a Wellbore [R]. SPE: 80489. prepared for presentation at the 2003 SPE Asia Pacific Oil and Gas Conference and Exhibition held in Jakarta,Indonesia,15-17,April,2003
    Daneshy A A. Hydraulic fracture propagation in thep resence of p lanes of weakness [R]. SPE 4852, 1974
    Eberhard M J, Surjaatmadja J B. Precise fracture initiation using dynamic fluid movement allows effective fracture development in deviated wellbores [R]. SPE: 62889, 2000.
    Fukui, Okubo, Jin F. Complete stress strain curves of rock in uniaxial tension test [J]. Journal of the Mining and Meterials Processing Institute of Japan, 1995.
    Garcia J G, Teufel L W. Numerical simulation of fully coupled fluid-flow/geomechanical deformation in hydraulically fractured reservoirs [R]. SPE: 94062, 2005
    Haimson B C. The Hydrofracturing stress measuring method and recement field results[J]. Int.J.Rock Mech.Min. 1978, 15.
    Hainey B W. Mitigation of multiple fractures from deviated wellbores [R]. SPE30482, 1995.
    Hossain M M. Reservoir Stimulation by Hydraulic Fracturing: Complexities and Remedies with Reference to Initiation and Propagation of Induced and Natural Fractures [R]. PhD Thesis, The University of New South Wales, Australia. 2001.
    Hudson J A, Priest S D. Discontinuty and Rock Mass Geometry [J]. IntJ.Rock Mech.Min.Sci., 1979, 16
    Hudson. Discontinuity frequency in rockmass[J]. Int. J. Rock Mech .Min. Sci. and Geomech Abstra, 1983
    #12
    Lacy L L, Rickards A R. Embedment and fracture conductivity in soft formation associated with HEC, borate and water. Based fracture designs [R]. SPE 38590: 255-268.
    Lamont N, Jessen F. The effects of existing fracturesin rocks on the extension of hydraulic fractures [R]. SPE: 419, 1961.
    Magara K. Volcanic reservoir rocks of northwestern Honshu island, Japan [M]. Geological Society, London, Special Publications, 2003, 214: 69-81
    Mohaghegh S D. Determining In-Situ Stress Profiles From Log [R]. SPE 90070, prepared for presentation at the SPE Annual Technical Conference in 26-29, September, 2004.
    Liu J Q, Meng F C, Cui Y, et al. Discussion on the formation mechanism of volcanic oil and gas reservoirs [J]. Acta petrologica sinica, 2010, 26(1): 1-13.
    Queipo N V, Verde A J, Canelon J, et al. Efficient global optimization for hydraulic fracturing treatment design [J]. Journal of petroleum science and engineering, 2002, 35: 151-166.
    Rahman M K, Joarder A H. Investigating production-induced stress change at fracture tips: implications for a novel hydraulic fracturing technique [J]. Journal of petroleum science and engineering, 2006, 51: 185-196.
    Rahman M K, Suarez Y A, Chen Z, et al. Unsuccessfully hydraulic fracturing cases in Australia: investigation into causes of failures and their remedies [J]. Journal of petroleum science and engineering, 2007, 57: 70-81.
    Rahman MM. Rahman MK, Rahman SS. An integrated model for multiobjective design optimization of hydraulic fracturing [J]. Journal of petroleum science and engineering, 2001, 31: 41-62
    Renshar C E and Pollard D D. An experimentally verified criterion for propagation across unbonded frictional interfaces in brittle, linear elastic materials[J]. International Journal of RockMechanicsMining Science and Geomechanics, 1995, 32 (3) : 237-249.
    Reugelsdijkl J L, Pater C J, Sato K. Experimental hydraulic fracture p ropagation in multifracturedmedium [R]. SPE 59419, 2000.
    
    Robert SS. 油井增产技术[M].北京:石油工业出版社, 2003: 45-83.
    Rodrigues V F,Eumann L F. First implementation of hydrajet fracture acidizing in deepwater offshore brazil fields [R]. SPE94706,2005.
    Rungamornrat J, Wheeler M F, Mear M E. A numerical technique for simulating nonplanar evolution of hydraulic fractures [R]. SPE: 96968, 2005
    Schutter S R. Hydrocarbon occurrence and exploration in and around igneous rocks [M]. Geological Society, London, Special Publications, 2003, 214: 7-33.
    Surjaatmadja J B, East L E. An effective hydrajet-fracturing implementation using coiled tubing and annular stimulation fluid delivery[R]. SPE 94098, 2005.
    Surjaatmadja J B, Grundmannsr. Hydrajet fracturing: an effective method for placing many fractures in openhole horizontal wells[R].SPE 48856, 1998 .
    Surjaatmadja J B, Mcdanifl B W. Unconventional multiple fracture treatments using dynamic diversion and downhole mixing[R]. SPE: 77905, 2002.
    Teufel L W and Clark J A. Hydraulic fracture propagation in layered rock: experimental studies of fracture containment[R]. SPE 9878, 1981.
    Tomohisa K. Distribution and alteration of the volcanic reservoir in the Minami-Nagaoka gas field [J]. 2000 JAPT Geology and Exploration Symposium, 2001, 66(1): 46-55
    Wang R J, Hou Q J, Cheng R H, et al. Methane-rich fluid inclusions and their hosting volcanic reservoir rocks of the Songliao Basin, NE China [J]. Journal of geoscientific research in northeast Asia, 2004, 7(2): 38-45
    Warpinskin R, Teufel L W. Influence of geologicdiscontinuities on hydraulic fracture propagation [J]. JPT.1987,21(3):209-220.
    Warpinski N R,Teufel L W.Influence of geologic discontinuities on hydraulic fracture propagation [R]. SPE: 13224, 1987
    Wejers L.The First Successful Fracture Treatment Campaign Conducted in Japan: Stimulation Challenges in a deep, Naturally Fractured Volcanic Rock [R]. SPE: 77678, 2002.
    Yamada T, Okano Y. A volcanic reservoir: Integrated facies-distribution modeling and history matching of a complex pressure system [R]. SPE, 10(1): 77-85, 2007
    Yamada T, Okano Y. Modeling and flow simulation of a volcanic reservoir: Application of multi-point geostatistics and probability perturbation theories to a real field [J]. Journal of the Japanese Association for Petroleum Technology, 2006, 71(1 ):85-93
    Zhang W H,Valliappan.Analysis of randorn anisotropic damage mechanics problem of rock mass[J].Rock Mechanics and Rock Engineering,1990,23(4).
    Zoback M D.Well Bore Breakouts and In-situ Stress[J].Geophys Res,1985.
    步玉环,吴晓东,史一华.周边脱砂压裂模型优化设计[J].石油大学学报:自然科学版,2008,31(2):65-67.
    蔡美峰.岩石力学与工程[M].北京:科学出版社,2002
    陈淦,宋志理.火烧山油田机质岩块渗吸特征[J].新疆石油地质,1994,15(3):268-275
    陈建文,王德发,张晓东.松辽盆地徐家围子断陷营城组火山岩相和火山机构分析[J].地学前缘,2000,7(4):371-379.
    陈勉,金衍,张广清.石油工程岩石力学[M].北京:科学出版社,2008.162-281.
    陈勉,庞飞,金衍.大尺寸真三轴水力压裂模拟与分析[J].岩石力学与工程学报,2000,19(增刊):868-872.
    陈永生.油藏流场[M].北京:石油工业出版社,1998.96-103
    崔彦立.劈裂法压裂技术在牛东火山岩油藏的应用[J].石油天然气学报,2009,31(3):294-296
    戴平生,杨东,谢朝阳,等.松辽盆地北部深层火山岩气藏压裂配套工艺技术[J].中国石油勘探,2004,4(3):55-60
    董平川.用岩心古地磁定向研究油藏水平主应力方向[J].岩石力学与工程学报,23(14),2004:2480-2483.
    冯程滨,张永平.多裂缝测试压裂在火山岩储气层大型压裂施工中的应用.见:张士诚主编.低渗透油气臧增产技术新进展.北京:石油工业出版社,2006.176-182.
    冯程滨,张玉广,王贤君.深部火山岩储层压裂改造主要技术对策[J].大庆石油地质与开发,2008,27(5):85-88.
    高延法.矿山岩体力学[M].徐州:中国矿业大学出版社,2005.3-76.
    郭怀志.岩体初始应力场的分析方法[J].岩土工程学报,1983,5(3):123-126.
    郭建春,卢聪,赵金洲,等.支撑剂嵌入程序的实验研究[J].煤炭学报,2008,33(6):661-664.
    韩立军,张茂林,贺永年.岩土加固技术[M].徐州:中国矿业大学出版社,2005.
    何琰,武友佳,吴念胜.火山岩油气藏研究[J].大庆石油地质与开发,1999,18(4):6-8.
    黄玉龙,王璞珺,门广田,等.松辽盆地营城组火山岩旋回和期次划分——以盆缘剖面和盆内钻井为例[J].吉林大学学报(地球科学版),2007,27(6):1183-1191.
    哈秋舲,李建林,张永光,等.节理岩体卸荷非线性岩体力学[M].北京:中国建筑工业出版社,1998.
    金丰年,钱七虎.岩石的单轴拉伸及其本构模型[J].岩土工程学报,1998.
    冀国盛,戴俊生,马欣本,等.金湖凹陷闵北地区阜一、二段火山岩地层划分与对比[J].石油大学学报(自然科学版),2002,26(4):5-9
    金城志,杨双玲,舒萍,等.升平开发区火山岩储层孔隙结构特征与产能关系综合研究[J].大庆石油地质与开发,2007,26(2):38-41.
    雷茂盛,张超谟,李军等.徐家围子断陷营城组火山岩宏观裂缝分布规律研究[J].江汉石油学院学报:自然科学版,2005,27(4):455-459.
    雷群,丁云宏,汪永利.低渗透油气藏水力压裂中存在的若干问题及对策.见:张士诚主编.低渗透油气藏增产技术新进展[M].北京:石油工业出版社,2006.1-22.
    李根生,刘丽,黄中伟,等.水力射孔时地层破裂压力的影响研究[J].石油大学学报,2006,30(5):42-45.
    李根生,牛继磊,刘泽凯,等.水力喷砂射孔机理实验研究[J].石油大学学报:自然科学版,2002,26(2):31-34.
    李根生,沈忠厚.高压水射流理论及其在石油工程中应用研究进展[J].石油勘探与开发,2005,32(1):96-99.
    李根生,宋剑,熊伟,等.高压水射流射孔渗流场模型及计算.石油勘探与开发[J],2005,32(6):79-100.
    李明,邹才能,刘晓.松辽盆地北部深层火山岩气藏识别与预测技术[J].石油地球物理与勘探.2002,3:478-484
    李先炜.岩体力学性质[M].北京:煤炭工业出版社,1990:111-130.
    李志明,张金珠.地应力与油气勘探开发[M].北京:石油工业出版社,1997.22-207.
    练章华.地应力与套管损坏机理[M].北京:石油工业出版社,2009.141-160.
    凌贤长,蔡德所.岩体力学[M].哈尔滨:哈尔滨工业大学出版社,2002.45-166.
    刘建中,孙庆友,徐国明,等.油气田储层裂缝研究[M].北京:石油工业出版社,2008.34-178.
    刘建中.油田应力测量[M].北京:地震出版社,1993.
    刘启,舒萍,李松光.松辽盆地北部深层火山岩气藏综合描述技术[J].大庆石油地质与开发,2005,24(3):21-23.
    刘伟,张子明.辽河油田火山岩油藏压裂技术研究与应用.见:张士诚主编.低渗透油气藏增产技术新进展[M].北京:石油工业出版社,2006.117-123.
    刘显太,戴俊生,徐建春,等.纯41断块沙四段现今地应力场有限元模拟[J].石油勘探与开发,2003,30(3):126-128
    刘佑荣,唐辉明.岩体力学[M].北京:化学工业出版社,2009,2-173.
    柳贡慧,庞飞,陈治喜.水力压裂模拟实验中的相似准则[J].石油大学学报:自然科学版,2000,24(5):45-48.
    卢聪,郭建春,王文耀,等.支撑剂嵌入对裂缝导流能力损害的实验[J].天然气工业,2008,28(2):98-101.
    路波,赵萍.火山岩的分布及其对油气藏的作用[J].特种油气藏.2004,11(4):80-82
    倪红坚,王瑞和.高压水射流射孔过程及机理研究[J].岩土力学,2004,25(增刊):29-32.
    潘保芝,薛林福.裂缝性火山岩储层测井方法与应用[M].北京:石油工业出版社,2003.10
    綦敦科,齐景顺,王革.徐家围子地区火山岩储层特征研究[J].特种油气藏.2002,4:30-32
    邱家骧.岩浆岩岩石学[M].北京:地质出版社,1990
    邵英梅,冯子辉.徐家围子断陷营城组火山岩岩石学及地球化学特征[J].大庆石油地质与开发,2007,26(4):73-76.
    沈崇棠,刘鹤年.非牛顿流体力学及其应用[M].北京:高等教育出版社,1989,31-97.
    沈明荣.岩体力学[M].上海:同济大学出版社,1999,12-76.
    舒萍,纪学雁,丁日新,等.徐深气田火山岩储层的裂缝特征研究[J].大庆石油地质与开发,2008,27(1):132-171.
    孙卫.风化店火山岩油藏开发效果分析研究[J].石油学报,1998,19(2):80-86.
    孙广忠.岩体结构力学[M].北京:科学出版社,1988.2-201.
    田守赠,李根生,黄中伟,等.水力喷射压裂机理与技术研究进展[J].石油钻采工艺,2008,30(1):58-62
    王贵文,惠山,付广.徐家围子断陷天然气分布规律及其主控因素[J].大庆石油地质与开发,2008,27(1):6291.
    王鸿勋,张士诚.水力压裂设计数值计算方法[M].北京:石油工业出版社,1998.231-268.
    王鸿勋.水力压裂原理[M].北京:石油工业出版社,1987.
    王建国,耿师江,庞彦明,等.火山岩岩性测井识别方法以及对储层物性的控制作用[J].大庆石油地质与开发,2008,27(2):136-139.
    王金安,谢和平.剪切过程中岩石节理粗糙度分析演化及力学特征[J].岩土工程学报,1997.
    王靖涛.水压致裂测量地应力的断裂力学方法[J].岩土力学,1982,3(1):234-239.
    王连捷.地应力测量及其在工程中的应用[M].北京:地质出版社,1991.
    王璞,郑常青,舒萍,等.松辽盆地白垩系火山岩岩性分类方案[J].大庆石油地质与开发,2007,26(2):17-22.
    王仁.构造应力场的反演[M].北京:北京大学出版社,1982
    王守刚,曹君.辽河坳陷火山岩油藏勘探压裂配套技术与应用[J].中国石油勘探,2005,(4):51-55
    王思敬,黄建安.含断续节理岩体的断裂力学数值分析[J].岩体工程学报,1983.
    王作棠,周华强,谢耀社.矿山岩体力学[M].徐州:中国矿业大学出版社,2007.2-180.
    夏才初,孙宗硕.工程岩体节理力学[M].上海:同济大学出版社,2004.6-155.
    肖树芳,杨淑碧.岩体力学[M].北京:地质出版社,1987.3-45.
    谢桂学,乐小明.裂缝周边脱砂带对裂缝扩展的控制作用[J].油气地质及采收率,2001,8(4):6-68.
    谢桂学,李爱山,罗峻,等.中高渗透油藏压裂作用机型探讨[J].油气采收率,1999,5(1):51-57.
    徐芝纶.弹性力学教程[M].北京:高等教育出版社,2007:69-84.
    闫林,周学锋,高涛,等.徐深气田兴城开发区火山岩储层发育控制因素分析[J].大庆石油地质与开发,2007,26(2):9-13.
    杨峰平,李占林,曹国银,等.松辽盆地杏山地区火山岩储层分布地震地质综合预测研究[J].特种油气藏,2003,10(1):95-98.
    杨丽娜,陈勉.水力压裂中多裂缝间相互干扰力学分析[J].石油大学学报:自然科学版,2003,27(3):43-45.
    杨太华,孙钧.岩体裂隙非规则几何力学特性研究[J].岩土工程学报,1997,19(4)
    杨友奎.不同地应力状态下水力压裂的破裂模式[J].重庆大学学报:自然科学版,1987,24(5):45-48.
    尤明庆.岩石的力学性质[M].北京:地质出版社,2007.65-68.249-271.
    喻高明,李金珍,刘德华.火山岩油气藏储层地质及开发特征[J].特种油气藏.1998,5(2):15-19
    张凤莲,曹国银,李玉清,等.地震属性分析技术在松辽北徐东地区火山岩裂缝中的应用[J].大庆石油学院学报,2007,31(2):12-15.
    张民庆 彭峰.地下工程注浆技术[M].北京:地质出版社,2008:18-129.
    张琪.采油工程原理与设计[M].北京:石油工业出版社,2002.
    张士诚,张心勇,马新仿.火山岩地层人工裂缝延伸机理研究[J].岩石力学与工程学报.2003,22(增1):2236-2240.
    张士诚.低渗透油气藏增产技术新进展[M].北京:石油工业出版社,2006.
    张晓东,霍岩,包波.松辽盆地北部地区火山岩特征及分布规律[J].大庆石油地质与开发.2000,4:10-12.
    张毅,李根生,熊伟,等.高压水射流深穿透射孔增产机理研究[J].石油大学学报,自然科学版,2004,28(2):38-41.
    张永平,张士诚,卫秀芬.裂缝性火山岩储气层测试压裂诊断特征参数研究与应用[J].大庆石油地质与开发,2008,27(2):91-93
    张永平,刘合.大庆火山岩储气层压裂诊断方法与控制技术.见:张士诚主编.低渗透油气藏增产技术新进展[M].北京:石油工业出版社,2006.23-34.
    张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005.
    张玉广,冯程滨,王贤君,等.大庆深部火山岩储集层压裂改造技术难点及对策.见:张士诚主编.低渗透油气藏增产技术新进展[M].北京:石油工业出版社,2006.52-58.
    赵海玲,刘振文,李剑,等.火成岩油气储层的岩石学特征及研究方向[J].石油与天然气地质,2004,25(6):609-613.
    赵金洲.中国复杂油气藏压裂酸化改造技术难点及对策.见:张士诚主编.低渗透油气藏增产技术新进展[M].北京:石油工业出版社,2006.42-51.
    赵泽辉.新疆东部三塘湖盆地构造演化及其石油地质意义[J].北京大学学报(自然科学版),2003,39(2):219-228.
    郑常青,王璞,刘杰,等.松辽盆地白垩系火山岩类型与鉴别特征[J].大庆石油地质与开发,2007,26(2):38-41.
    郑新权,戴平生.大庆探区深层特殊岩性储层压裂改造技术[J].油气井测试,2005,14(4).36-41.
    中国航空研究院.应力强度因子手册[M].北京:科学出版社,1993.
    中国石油油气藏改造重点实验室.低渗透油气藏压裂酸化技术新进展[M].北京:石油工业出版社,2008.58-63.
    钟俊义,贾曙光,丁艳红,等.地震属性参数在安棚深层系储层预测中的应用[J].石油物探,2003,42(1):82-85.
    周健,陈勉,金衍,等.多裂缝储层水力裂缝扩展机理试验[J].石油大学学报(自然科学版),2008,32(4):51-54.
    周健,陈勉,金衍,等.裂缝性储层水力裂缝扩展机理试验研究[J].石油学报,2007,28(5):206-210.
    周群力.岩石压剪断裂判据及其应用[J].岩体工程学报,1987,9(3):51-55.
    周维恒.高等岩石力学[M].北京:水利电力出版社,1990.20-112.
    周文,闫长辉,王世泽,等.油气藏现今地应力场评价方法及应用[M].北京:地质出版社,2007.6-154.
    周志芳.裂隙介质水动力学原理[M].北京:高等教育出版社,2007.
    朱维耀.低渗透裂缝性砂岩油藏多孔介质渗吸机理研究[J].石油学报,2002,23(6):56-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700