用户名: 密码: 验证码:
用氟化物和硅添加剂合成工业金刚石单晶
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以溶剂理论为指导,首次研究了Fe(Ni)基触媒-石墨体系中添加氟化物(氟化三铁、氟化锂)及硅粉,对合成金刚石的影响以及相关的物理机制。通过对比Fe(Ni)基触媒-石墨体系合成金刚石的实验,发现在4.5-6.0GPa,1300-1600℃的条件下,添加剂对Fe(Ni)基触媒-石墨体系合成金刚石的生长条件、成核、生长速度、形貌等具有较大的影响。
     首先,利用氟化物作为添加剂合成工业金刚石,可在一定程度上抑制金刚石的成核,降低了金刚石的生长速度。利用这个特性,成功地降低了纯铁触媒中金刚石的生长速度,提高了晶体品质,同时,增大了金刚石P-T相图中V型区的六-八体晶体生长区间,使优晶产率大幅度提高;并且,合成出表面粗糙、具有{311}的高指数晶面的晶体,这种晶体理论上有利于增加晶体与胎体的把持力。
     其次,利用硅粉添加剂合成工业金刚石,可以降低金刚石合成条件。如在Fe+C+Si系中,金刚石最低压力温度分别降低了0.3GPa和100℃左右,在相对高温区,可增加金刚石晶体的成核量。
     再次,利用Fe+C+FeF_3+Si系成功合成出高品级六-八面体金刚石,增大了金刚石P-T相图中V型区的六-八体晶体生长区间,使优晶产率大幅度提高。这一结果为开发价格低廉的纯铁触媒提供了重要的实验数据。
Diamond is a functional material with many excellent properties. Now, it has been applied in many fields such as industry, scientific research, national defense, medical treatment etc. It plays an important part in the development of industry.
     The diamond synthesis technique has been greatly improved due to its extensive application. In the late 1980s, the technique for the high-strength coarse grain diamond crystal synthesized by powder catalyst in a belt apparatus was successfully exploited by Winter Company, Germany, which made a great breakthrough in synthesis of high grade diamond using powder materials. This method had many merits such as increasing the output, decreasing the consumption of raw materials and improving the crystal quality. Therefore, almost all the famous diamond companies in the world employed the method to synthesize high-strength coarse grain diamond and cornered chronically the high grade diamond market since the end of 90’s.
     In the industrial production of diamond, the cost of catalyst and tungsten carbide anvil occupies very large proportion in the total production cost. So it is of great significance to develop cheap catalyst and reduce the cost of anvil in the synthesis of diamond.
     Strong indicated that the advantages of using metal alloy as catalyst were that the synthesis temperature and pressure were lower than pure metal. The synthesis pressure could be dropped to 5GPa from 7Gpa. The scientific researchers of our country have done a large amount of work on iron-base catalyst too, and have get some comparatively prominent achievement. Now, almost all the domestic producers are using iron-base catalyst to synthesize industrial diamond. However, compared with NiMnCo, the synthesis pressure and temperature of iron-base catalyst are still higher. This undoubtedly lead to the higher anvil consumption in industrialization and higher production cost. So it is necessary to develop new catalyst material to solve the problem described above. XiaoPeng Jia Professor has proposed to develop cheap pure iron catalyst for industrial diamond synthesis, only that it still has following problems: firstly, needing higher pressure and temperature; secondly, the growth region of {100}is narrow, and the crystal is mostly octahedral; thirdly, there is more inclusions in the crystal. So pure iron is unsuitable to be used for synthsizing high grade diamond. Even so, because of the low price of pure iron powder catalyst, numerous scientific research workers are still devoted to research and develop on this respect.
     In this paper, using china-made cubic high-pressure apparatus, the growth characteristic of industrial diamond in the five different powder systems (NiMnCo+C+FeF_3, Fe+C+FeF_3, FeNi+C+FeF_3, FeNi+C+LiF, Fe+C+Si+FeF_3) were investigated separately under high pressure and high temperature conditions. And the effect of additive FeF_3, Si on the synthesis was also studied. It is found that the introduction of FeF_3 has inhibited the nucleation of diamond to a certain extent, and reduced the growth rate, and expanded the growth region of cubo-octahedral diamond. On the other hand, the introduction of Si has largely reduced the synthesis conditions for pure iron catalyst. There are also some other obvious effects of additive FeF_3 and Si on synthesis, such as the surface morphology, crystal shape and growth rate of diamonds. In this paper, optical microscope, SEM, XRD, Raman, etc. have been used to carry on relevant test and characteristics.
     In this paper, the growth region of cubo-octahedral diamond crystal was expanded in Fe+C+FeF_3, FeNi+C+FeF_3 system, and the growth rate of diamond was reduced. So the operability of synthesis in the actual course was enhanced, and the quality of crystal could be improved. The crystal with coarse surface and high index crystal surface {311} was successfully synthesized, which probably has some advantage on preparing diamond tools by enhancing the holding ability of the carcass to diamond, lengthening the service life of diamond tools, etc. And the temperature ranges for the synthesis of this crystal in every system was investigated and confirmed under certain pressure conditions for the first time.
     It is reasonably explained that the effect of additive FeF_3 on catalyst characteristic and its inhibition function on the nucleation. On one hand, the iron in FeF_3 had entered into metal catalyst, changed the already existing catalyst matching, which should lead to the change of the catalyst characteristics, such as melting point, flow ability, surface tension of metal liquid, and dissolving carbon ability of catalyst, etc. That is to say, the catalyst was poisoned. On the other hand, there was CF_x compound in the metal catalyst, so the carbon in diamond must react with CF_x during diamond nucleation and growth. Only if CF_x was excessive, the nucleation will be destroyed, and diamond will be graphitized, forming other compound of fluorum or carbon. These have inhibited the nucleation of diamond in the synthesis using iron, nickel alloy as catalyst.
     In the Fe-C-Si system, the introduction of Si has reduced the minimum synthesis pressure and temperature. So the growth range of cubo-octahedral diamond was expanded, and then high-quality cubo-octahedral diamonds were synthesized successfully. This takes an important step to develop the cheap pure iron catalyst.
引文
[1] A.A. Altukhov, M.S. Afanas’ev, V.B. Kvaskov, V.E. Lyubchenko, A.Yu. Mityagin, E.N. Murav’ev, L.A. Pomortsev, V.A. Potapov, and B.V. Spitsyn,“Application of diamond in high technology”, Inorganic Materials, Vol.40, Suppl. 1 (2004) S50-S70
    [2] S. Koizumi, K. Watanabe, M. Hasegawa, H. Kanda,“Ultraviolet Emission from a Diamond pn Junction”, SCIENCE, Vol. 292, 8 JUNE (2001) 1899-1901
    [3] Eric J. Lerner,“Industrial diamonds gather strength”, The Industrial Physicist, August/September (2002) 8-11.
    [4] H Liander, 1955, ASEA J. 28 97-98.
    [5] H. Kanda and T. Ohsawa,“Effect of solvent metals upon the morphology of synthetic diamonds”, Journal of Crystal Growth, 94 (1989) 115-124
    [6] I. Sunagawa,“Growth and morphology of diamond crystals under stable and metastable conditions”, Journal of Crystal Growth, 99 (1990) 1156-1161
    [7] L.J. Giling and W.J.P. Van Enckevort,“On the influence of surface reconstruction on crystal growth processes”, Surface Science, 161(1985) 567-583
    [8] H. Kanda, T. Ohsawa, O. Fukunaga and I. Sunagawa, in: Morphology and Growth unit of Crystals, Ed. I. Sunagawa , Terra, Tokyo, 1984
    [9] M. Moore and A.R. Lang,“On the origin of the rounded dodecahedral habit of natural diamond”, J. Crystal Growth, 26(1974) 133-139
    [10] A.R. Lang,“Glimpses into the growth history of natural diamonds”, J. Crystal Growth, 24/25 (1974) 108-115
    [11] S.Yamaoka, H. Komatsu, H. Kanda and N. Setaka,“Growth of diamond with rhombic dodecahedral faces”, J. Crystal Growth, 37(1977) 349-352
    [12] K.E.Spear, J. Am. Ceram. Soc. 72 [2], 171-191(1989)
    [13] M.Kamo, Y.Sato, S.Matsumoto, N.Setaka, J. Cryst. Growth 62, 642(1983)
    [14] M. Wakatsuki, Diamond Handbook, 20-26, Japan(1988)
    [15] R.Roy, The four revolutions in Diamond Synthesis:The indication of Edisonian Chemistry, Chemical Aspects of Electronic Processing in MRS 1997
    [16] James C.Sung, Diamond Synthesis in Perspective In:Superhard Materials & Diamond Technology, Dr. James C.Sung edit, (2000)
    [17]王光祖,粉状触媒的技术特性及其对金刚石合成的影响,王光祖论文集,浙江大学出版社,1999,pp.150-154
    [18]韩勤,王治安,用粉末触媒和石墨合成锯片级金刚石的研究,工业金刚石,1999,第4-5期,21-24
    [19]王四清,喻国兵,用粉末触媒合成的金刚石特性分析,工业金刚石,1999,第4-5期,37-39
    [20]朱凤福等,用粉状技术合成高品级金刚石的研究,人工晶体学报,2002,Vol. 31, No. 2, pp.169-172
    [21]熊湘君,陈启武,粉末工艺金刚石合成及其动力学效应,二十一世纪中国超硬材料《会议论文集》119—129衡阳2001
    [22] C. M. Sung, A century of progress in the development of very high pressure apparatus for scientific research and diamond synthesis, High Temperature-High Pressure, 1997, Vol. 29, pp.253-293
    [23]李志宏,宜云雷,刘金昌,中国人造金刚石工业现状及发展展望
    [24] Bovenkerk H P, Bundy F P, Hall H T, et al. Preparation of diamond. Nature, 1959, 184: 1 094
    [25] Novirov N V, Shulzhenko A A. In: Saito S, Fukunaga O, Yoshikawa M, eds. Science and Technology of New Diamond. Tokyo Japan, 1990. 217~221
    [26] Kanda H, Akaishi M, Yamaoka S. New catalysts for diamond growth under high pressure and high temperature. Appl Phys Lett, 1994, 65(8): 784
    [27] Yamaoka S, Akaishi M, Kanda H, et al. Crystal growth of diamond in the system of carbon and water under very high pressure and temperature. J CrysGrowth, 1992, 125: 375~377
    [28] M.N.Yoder,in Diamond and Diamond-Like Films and Coatings, Edited by R.E.Clausing, L.L.Horton, J.C.Angus, and P.Koidl, Plenum Press, New York, 1991, Page 1-16
    [29] Williams A.W.S.,Lightowlers E.C.,Collins A.T.,Impurityconduction in synthetic semiconducting diamond,J.Phys.C3(1970)1727.
    [30] W. Tillmann,“Trends and market perspectives for diamond tools in the construction industry”, International Journal of Refractory Metals& Hard Materials, 8 (2000) 301-306
    [31] C.M. Sung,“Brazed diamond grid: a revolutionary design for diamond saws”, Diamond and Related Materials, 8 (1999)1540-1543
    [32] A.K. Freund, J. Hoszowska, J.P.F. Sellschop, R.C. Burns, M. Rebak,“Recent developments of high-quality synthetic diamond single crystals for synchrotron X-ray monochromators”, Nuclear Instruments and Methods in Physics Research A, 467-468 (2001) 384-387
    [33] R.J. Tapper,“Diamond detectors in particle physics”, Rep. Prog. Phys., 63 (2000) 1273
    [34] H. Sumiya,“Super-hard diamond indenter prepared from high- purity synthetic diamond crystal”, REVIEW OF SCIENTIFIC INSTRUMENTS, 76, 026112 (2005) 1-3
    [35] T. Tanaka, J. Kaneko, D. Takeuchi, H. Sumiya et al,“Diamond radiation detector made of an ultrahigh-purity type IIa diamond crystal grown by high-pressure and high-temperature synthesis”, REVIEW OF SCIENTIFIC INSTRUMENTS, Vol. 76, Num. 2 (2001) 1406-1410
    [36] P.W. May,“Diamond thin films: a 21st-century material”, Phil. Trans. R. Soc. Lond. A, 358 (2000) 473-495
    [37] M.N.Yoder,in Diamond and Diamond-Like Films and Coatings, Edited by R.E.Clausing, L.L.Horton, J.C.Angus, and P.Koidl, Plenum Press, New York, 1991, Page 1-16
    [38] R.H. Wentorf, Jr.,“Some studies of diamond growth rates”,J. Phys. Chem., 75(1971)1833
    [39] F.P.Bundy, H.T.Hall, H.M.Strong, R.H.Wentorf, 1955 Man Made Diamonds, Nature 51(1955)176.
    [40] H.T. Hall,“Diamond synthesis”, U.S. Patent, 2,947,608 (1960)
    [41] B.J.Alder, R.H.Christian, 1961,Phys. Rev. Lett. 7 367-369
    [42] P.S.DeCarli, J.C.Jamieson, 1961,Science 133 1821-1822
    [43] F.P. Bundy,“Direct conversion of graphite to diamond in static pressure apparatus”, J. Chem. Phys., 38 (1963) 631-643
    [44] H.M.Strong, R.H.Wentorf, The growth of large diamond crystals, 1972, Naturwissenschaften 59 1-7
    [45] J.E. Shigley, R. Abbaschian, C. Clarke,“Gemesis laboratory- created diamonds”, Gems & Gemology, Vol.38, No.2 (2002) 301-309
    [46] W.G.Eversole, 1962, US Patent No. 3,030,187; 3,030,188
    [47] H Liander, 1955, ASEA J. 28 97-98
    [48] B.V.Deryagin and D.V.Fedoseev, Russ. Chem. Rev. 39, 783(1970)
    [49] K.E.Spear, J. Am. Ceram. Soc. 72 [2], 171-191(1989)
    [50] M.Kamo, Y.Sato, S.Matsumoto, N.Setaka, J. Cryst. Growth 62, 642(1983)
    [51] F.P. Bundy, H.P. Bovenkerk, H.M. Strong, and R.H. Wentorf, Jr.,“Diamond-graphite equilibrium line from growth and graphitization of diamond”, J. Chem. Phys., 35 (1961) 383-391
    [52] Wakatsuki, Suppression of spontaneous nucleation and seeded growth of diamond, High-pressure Research in Mineral Physics, 1987, pp.203-207
    [53] Noronin,G.A.etal,Sverkhtver.Mater,1984(2):33-37
    [54] Yamaoka S, Akaishi M, Kanda H, et al. Crystal growth of diamond in the system of carbon and water under very high pressure and temperature. J Crys Growth, 1992, 125: 375~377
    [55] M.Akaishi, H.Kanda, S.Yamaoka, Science, 259 (1993) 1592
    [56] Akaishi M, Kanda H, Yamaoka S. J Crystal Growth1990;104:578±581
    [57] Kanda H, Akaishi M, Yamaoka S,Morphology of synthetic diamond growth from Na2CO3 solvent. J Crys Growth 106(1990)471-475
    [58]贾晓鹏金刚石合成的溶剂理论及当今行业热点问题的探讨中国超硬材料研讨会南京会议论文集,p. 1-11
    [59]陈启武,金刚石合成机制的研究,二十一世纪中国超硬材料《会议论文集》95—102衡阳2001
    [60]王光祖,粉状触媒的技术特性及其对金刚石合成的影响,王光祖论文集,浙江大学出版社,1999,pp.150-154
    [61]韩勤,王治安,用粉末触媒和石墨合成锯片级金刚石的研究,工业金刚石,1999,第4-5期,21-24
    [62]王四清,喻国兵,用粉末触媒合成的金刚石特性分析,工业金刚石,1999,第4-5期,37-39
    [63]朱凤福等,用粉状技术合成高品级金刚石的研究,人工晶体学报,2002,Vol. 31, No. 2, pp.169-172
    [64]熊湘君,陈启武,粉末工艺金刚石合成及其动力学效应,二十一世纪中国超硬材料《会议论文集》119—129衡阳2001
    [65]李志宏,宜云雷,刘金昌,中国人造金刚石工业现状及发展展望,2003
    [66] R.Kalish,The search for donors in diamond,Diam.Relat.Mater
    [67] S. Koizumi, M. Kamo, Y. Sato, H. Ozaki, T. Inuzuka, Appl. Phys. Lett. 71 (1997) 1065.
    [68] E. Gheeraert , N. Casanova , A. Tajani et al. Diam. Relat. Mater. 11 (2002) 289—295
    [69] I. Sakaguchi, M. Nishitani-Gamo, Y. Kikuchi, et al., Phys.Rev. B, 60 (1999) R2139.
    [70] R. Kalish, A. Reznik, C. Uzan-Saguy, C. Cytermann, Appl. Phys. Lett. 76 (2000) 757.
    [71] K. Horiuchi, A. Kawamura, T. Ide, T. Ishikura, K. Nakamura, S. Yamashita, Presented at the Surface and Bulk Defects in CVD diamond, VI, February 28th March 2nd 2001, Hasselt, Belgium.
    [72] T. Miyazaki, H. Okushi, Diam. Relat. Mater. 10 (2001) 449.
    [73] E. A. Ekimov, V. A. Sidorov1,et al,Superconductivity in diamond, Nature Publishing Group,2004,428:542-545
    [74] Stronghm,etal,J,Chern hys,1967,46:3668
    [75]秦杰明,Fe100-xNix,粉末触媒合成工业金刚石的研究,吉林大学博士论文,2006,77-88
    [76]日本精细化学词典编辑委员会编,精细化学词典,北京,化学工业出版社,1991,257-261.
    [77]周瑞涛,陈世霖等编,建筑材料手册,北京,中国建筑工业出版社,1978.
    [78] M.Horie,T.Tsmura,M.Ohgaki,et al.J.APPI.Phys.77(1995)865.
    [79] Grill A.Material Research Soeiaty,Pittsburgh,PA,USA,1997,xv1+608pp.
    [80] Grill A.Eleetrolic,Soc,Pennington,NJ,USA,1998,x+366pp.
    [81] Ang S S,Screemves G,Brown W D,et al.J Electr Mater,1993,22(4):347
    [82] Chang J P,Krautter H W,Zhu W,et al,J Vac Sci Technol A,1999,17(5):2969.
    [83] Butter R S,Walterman D R,et al.Thin Solid Films,1997,311(1-2):107
    [84]万永中,刘志杰,张卫王等,碳氢氟体系低压生长金刚石的相图,微细加工技术,1997,4:43-47.
    [85]闫翠霞,金刚石半导体电子性质研究,博士论文,2009,7:52-55.
    [86] Wentorf RH Advances Jn High-Pressure Researcn, Academic Press,1974,4:257-266
    [87] J.Isoya,H.Kanda and Y.Uchida, Phys.Rev.B.42(1990)9843
    [88] R Kalish,Doping of diamond,Carbon,37(1999)781-785.
    [89] X. Jia, S. H. Kagi, S. Hayakawa, W. Li, Y. Gohshi and M. Wakatsuki, Proc. Joint 15th Int. Conf. on High Pressure Science and Technology and 33rd EHPRG Conf. on High Pressure Reseach, Warsaw, 1995, 565.
    [90] X. Jia, S. Hayakawa, K. Ugajin, N. Wakatsuki, E.Sugiyama, T. Takahashi, A. Ohnishi, Y.Gohshi and M. Wakatsuki, Review of High Pressure Science and Technology, Vol. 7(1998) 998.
    [91] V alent ini L , B raca E, Kenny J M , et al. Relat ionsh ip betw een the op t ical and mechanical p ropert ies of fluo ri-nated amo rphous carbon th in film s[J ]. Journal of Non-Crystalline So lids. 2001 (291) : 153-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700