用户名: 密码: 验证码:
矿物质微量元素舔块压制成型工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前矿物质微量元素舔块(以下简称矿物舔块)成型主要采用压制生产工艺,有关生产工艺的研究,无论是在理论方面还是在试验方面,研究成果都比较少。而矿物舔块由于它特有的营养作用和产品特点,是适合我国养殖方式和畜牧业发展的新型节粮饲料,受到许多大型牧场和广大牧民的欢迎。国内,矿物舔块生产规模最大的工厂坐落在我区,其产品与国外产品比较,一些品种在营养方面超过了国外产品,但是产品品质不好,生产成本高,致使产品价位低,企业利润不高。为了提高国内产品的竞争力,本论文着眼于矿物舔块单向压制成型的生产工艺,主要做了以下工作:
     1.基于颗粒体最紧密堆积理论的颗粒级配试验研究。针对我区矿物舔块生产的实际情况,经过筛分把原料分成三个级别:粒径在2mm-4.75mm称为大颗粒;粒径在0.05mm-2mm称为中颗粒;粒径小于0.05mm的称为小颗粒。然后以压缩比、压坯密度、抗压强度为试验指标分别在60MPa、70MPa、80MPa、90MPa下压制成型,通过方差分析得到最佳颗粒级配为大颗粒含量20%-25%,中颗粒含量40%-60%,其余为小颗粒含量,同时分析了颗粒级配对压缩比、压坯密度和抗压强度的影响规律。
     2.颗粒级配的相关性分析。包括颗粒级配与压缩比的相关性、颗粒级配与抗压强度的相关性和颗粒级配与各试验指标之间的相关性。
     3.颗粒级配与压坯密度多元回归分析。压坯密度的多元线性回归方程为:y=1.631+0.003x1+0.083x2-0.051x4(压力x1、大颗粒含量x2、小颗粒含量x4、压坯密度y)。
     4.矿物舔块压制成型的正交试验研究。通过方差分析和趋势图分析得到:以压坯密度和抗压强度为主要试验指标选定最优工艺条件为填充量150g,颗粒级配大颗粒、中颗粒和小颗粒的比例为20%/50%/30%,压力100MPa。
     5.矿物舔块压制成型过程中含水率与1%粘结剂的关系。综合考虑耐水性、压坯密度和抗压强度,添加1%-1.5%水分合适,高压成型时含水率宜取高一些,低压成型时含水率宜取低一些。
     6.工程应用试验研究。分别对不添加粘结剂未进行颗粒级配、添加1%粘结剂未进行颗粒级配、添加1%粘结剂进行颗粒级配的三种矿物舔块生产方案进行对比试验,结果表明添加粘结剂并进行颗粒级配的矿物舔块其耐水性、压坯密度和抗压强度等性能显著提高。最优工艺参数为颗粒级配按大颗粒含量、中颗粒含量、小颗粒含量为20%-25%/40%-60%/15%-40%;含水率为1%-1.5%;压力根据现有设备选择高压压制成型,填充量根据反刍动物舔食量和生产效率综合考虑选择低填充量(目前广泛应用5kg)。
     7.矿物质舔块压制成型过程的数值模拟。以非线性大变形弹塑性有限元理论为基础,借助有限元软件Msc.Marc 2007,对圆柱形矿物舔块的单向压制成型过程进行有限元模拟,重点分析矿物舔块在压制过程中的密度分布、位移及应变分布,并研究颗粒体材料压制成型过程中的变形和致密规律;颗粒体与模壁之间的摩擦对密度分布的影响;数值模拟可以预测成型件成型后的尺寸,并与试验结果进行对比,一致性较好。此外,保压可提高压坯密度,改善密度分布不均匀性,保压时间30s为宜。
The mineral microelement licking block (to hereinafter referred to as mineral licking block) to formed mainly uses the press forming at present. Whether in theory or in the test, the research results about production process are quite few relatively. Moreover, the mineral licking block as a result of its unique nutrition function and the product characteristic, becomes a new thrifty feed which suits the development of our country’s feeding culture and livestock, and receives many large-scale pastures and general herdsman's welcome. The largest plant of the production of mineral licking block is located in my district at home. Some varieties of its products are more nutritious than foreign products, but high production costs, poor product quality, low prices and small profits. In order to improve the competitiveness of domestic products, this paper focuses on one-way compaction production process, mainly to do the following:
     1. Based on the closest packing theory of granular materials, grain composition test of the mineral licking block was done according to the actual situation of production. First of all, the material was divided into three levels: diameter of 2mm-4.75mm as large particles; diameter of 0.05mm-2mm as middle particles; particle size less than 0.05mm as small particles according to the results of the screening material. Then, took the compressed ratio, the compacted density and the compressive strength as test index; Took them press forming under pressure 60MPa、70MPa、80MPa、90MPa respectively, and the optimal grain composition was the large particle content of 20%-25%, the middle particle content of 40% -60%, the rest of the small particle content through the analysis of variance. At the same time, the rule of the grain composition to compression, coMPacted density and compressive strength were investigated.
     2. The correlation of the grain composition, include between grain composition and compressed ratio, between grain composition and compression strength and between grain composition and the entire test index was investigated.
     3. The regression between grain composition and the compacted density was investigated. The multivariate linear regression equation of the compact density is y=1.631+0.003x1+0.083x2-0.051x4( the pressure x1, the large particle content x2, the small particle content x4 and the compacted density y).
     4. The press forming of the mineral licking block was investigated with orthogonal test method. Through variance analysis and trends diagram analysis, the optimal technological parameters were filling quantity 150g, grain composition 20%/50%/30% and pressure 100MPa.
     5. The relationship between water content and 1% of the binder on press forming of the mineral microelement licking block was studied. Water content 1%-1.5% is right considering water resistance, compacted density and compressive strength comprehensively. Moreover, press forming with high pressure takes higher water content and pressing forming with low pressure takes lower water content.
     6. Engineering application test, three kinds of mineral licking block production scheme comparison test was taken, the material without any binder, the material with 1% binder without grain composition and the material with 1% binder for grain composition. The results showed that water resistance, compact density and compressive strength performance had improved significantly with the material adding binder for particle composition. The optimal parameters was grain composition by large particle content, the middle particle content and the small particle content 20-25% / 40% - 60% / 15% - 40%, water content 1%-1.5%, the higher pressure according to the existing equipment, and the lower filling quantity based on ruminant lick appetite and production efficiency (now widely 5kg).
     7. The press forming process of mineral licking block was simulated with nonlinear large deformation elastoplastic finite element method (FEM). The unidirectional press forming process of the cylindrical mineral licking block was visualized with FEM software Msc.Marc 2007. The density distribution, the displacement and strain distribution, particles deformation and dense rule and the influence to density distribution from the friction between particles and die wall, upper punch and bottom punch was studied primarily. The simulation resultst can forecast the size of the green compact, and had good consistency with the experimental results. In addition, pressure upkeep can improve the compacted density and the density distribution non-uniform, and the advisable pressure upkeep time is 30s.
引文
1邹霞青.块状复合添加剂的研究进展[J].福建畜牧兽医,1999,21(6):10-11
    2郭庭双,郭军.我国舔块饲料的开发和应用[J],饲料广角,2002(4):20-21
    3胡民强.我国牛羊复合营养舔砖的研究进展[J].广东畜牧兽医科技,2004,29(6):8-9
    4陈岩锋,谢喜平,孙世坤.我国牛羊舔砖的研究进展[J].养殖与饲料,2008(10):44-46
    5高巍,孟庆翔.近十年来我国牛羊舔块的研制和应用概况[J].中国草食动物,2002,22(1):32-35
    6 D.G. McBeath, N.K. Preston and F. Thompson, Studies in sheep on the efficacy of fenbendazole administered via a feed block carrier[J]. Br. Vet. 1979(135):271–278.
    7 Eggington, A.R., McCosker, T.H. and Graham, C.A.. Intake of lick block supplements by cattle grazing native monsoonal tallgrass pastures in the Northern Territory[J]. Aust. Rangeland 1990(12): 7–13
    8 J.A. Manners, G.D. Mineral salt supplementation of cattle grazing tall larkspur-infested rangeland during drought[J]. Journal of range management. Mar 1991. 44(2):105-111.
    9 Ajito T; Tunoda M.; Hatakeyama N.etal. Effect of salt block with biotin content on serum biotin concentrations and incidence of hoof diseases in dairy cows.[J]. Journal of the Japan Veterinary Medical Association (Japan),2007,60(1):37-42
    10 H. Valk, J. Kogut. Salt block consumption by high yielding dairy cows fed rations with different amounts of NaCl[J]. Livestock Production Science, 1998, 56(1): 35-42
    11 Lee R. McDowell.Feed Supplements: Mineral Salts[J]. Encyclopedia of Animal Science,2004,29
    12郭钢,葛昌富,李进忠.成年母羊全年补饲矿物质饲料盐砖的试验报告[J].中国养羊,1989:22-23
    13尹长安,孙占鹏,田晓梅.滩羊饲喂矿物质添加剂盐砖的瘤胃消化生理试验[J],宁夏农学院学报,1990,11(2):64-67
    14高纯一,黄秀英,高琰.用矿物质饲料盐砖舐食法防治绒山羊腐蹄病[J].中国兽医科技,1991,21(8):19-20
    15高纯一,黄秀英,高琰.用矿物质饲料盐砖防治绒山羊腐蹄病试验[J].中国兽医杂志,1992,18(7):16-18
    16高纯一,陈俊山,卢尚勤等.饲喂矿物质饲料盐砖防制牛羊异食塑料、尼龙制品的试验效果[J].河北畜牧兽医,2003,19(10):15-18
    17高纯一,陈俊山,卢尚勤等.饲喂矿物质饲料盐砖防治牛羊异食塑料及尼龙制品的试验效果[J].中国畜牧杂志,2004,40(9):47-48
    18高纯一,陈俊山,卢尚勤等.饲喂矿物质饲料盐砖防制牛异食塑料、尼龙制品的试验效果[J].中国奶牛,2005(1):36-38
    19程园,张明忠.矿物质复合添加剂舔砖对山羊的应用效果比较[J].贵州畜牧兽医,2000,24(6):33
    20刘晖,胡明,张彪,等.“红洛奇”矿物营养舔砖育肥肉牛效果试验[J].黄牛杂志, 2001,27(6):33-35
    21杨玉福,宋志强,代蓉等.牛羊鹿饲料舔食砖的研究与应用[J].新疆农垦科技,2001(6):15-17
    22李红光,张建春,张利琴等.奶牛应用“矿物质洛奇营养盐块”的试验[J].内蒙古畜牧科学,2002(3):25-26
    23冯家保,马奔源,马建成,等.“红洛奇”矿物舔砖饲喂泌乳牛效果试验[J].甘肃畜牧兽医, 2002,163(2):261
    24孟庆翔,张晓明,肖训军等.牛羊复合营养舔块饲料适宜配方筛选的研究[J].饲料工业.2002,23 (1):19-21
    25吐日根白乙拉.三种盐砖对奶牛饲养效果的比较[J].畜牧与饲料科学,2004(4):8-11
    26穆晓峰,申晓蓉.三种配方舔块饲喂肉牛效果试验[J].西北民族大学学报(自然科学版),2006,27(62):56-58
    27杨秋凤.舍饲辽宁绒山羊公羊词喂盐砖降低尿结石发病率的试验[C].《2009中国羊业进展》论文集
    28刘福元,杨玉福,陈玉林等.放牧绵羊微量元素舔砖研制与饲用效果研究[J].安徽农业科学,2009,37(15):7004-7007
    29白晓琴,孙之南.粉盐压制成型机理研究[J].海湖盐与化工,2001,31(2)10-13
    30谢全安,唐晓微,杨佳等.利用粉洗盐沫生产高盐舔块及模型研究[J].盐业与化工,2008,37(5):4-6
    31谢全安,李少杰,唐晓微.利用废弃粉盐沫生产舔块型盐研究[J].2008,39(4):11-13
    32张长森.粉体技术及设备[M].华东理工大学出版社,2007
    33 Young-Soo Han, Jong-Man Park, Ki-Hwan Kim, etc.An investigation on the green properties of U-10wt.%Mo/Al and U3Si2/Al powder coMPacts[J].Nuclear Engineering and Design, 2000,202(1): 1-9
    34 Frauke Fichtner, ?ke Rasmuson, G?ran Alderborn. Particle size distribution and evolution in tablet structure during and after coMPaction[J].International Journal of Pharmaceutics, 2005,292(1-2): 211-225
    35 Robert E. Stanford, Burton R. Patterson. Controlled particle size distributions using Linear Programming [J]. Powder Technology, 2007,176(2-3): 114-122
    36 G.A. Georgalli, M.A. Reuter. A particle packing algorithm for pellet design with a predetermined size distribution[J].Powder Technology, 2007,173(3): 189-199
    37姜振泉,赵道辉,隋旺华等.煤矸石固结压密性与颗粒级配缺陷关系研究[J].中国矿业大学学报,1999,28(3):212-216
    38刘翼洲,高春珍.冷压成型压力和粒度级配对型煤强度的影响[J].煤炭加工与综合利用,1996(4):68-69
    39高加成,姚文花.填料颗粒组成与压密关系的探讨[J].岳阳师范学院学报(自然科学版),2001,14(1):5-8
    40周新建.水煤浆颗粒级配的研究[J].煤炭学报,2001,26(5):557-560
    41何芳,李宗果,李永军.陶瓷颗粒和小麦秸秆粉混合物堆密度的研究[J].淄博学院学报(自然科学与工程版),2002,4(2):29-31
    42吉登高,王祖讷,张丽娟等.粉煤成型原料粒度组成的试验研究[J].煤炭学报,2005,30(1):100-103
    43冯奇,刘光明,巴恒静.颗粒级配对水泥基材料有害空隙率的影响[J].同济大学学报(自然科学版) ,2004,32(9):1168-1172
    44王淑云,鲁晓兵,时忠民.颗粒级配和结构对粉砂力学性质的影响[J].岩土力学,2005,26(7):1029-1032
    45陈忠达,袁万杰,高春海.多级嵌挤密实级配设计方法研究[J].中国公路学报2006,19(1):32-37
    46李九苏,肖汉宁,龚建清.再生骨料水泥混凝土的级配优化试验研究[J].建筑材料学报,208,11(1):105-110
    47杨昕,元英进,王春龙.片剂生产中颗粒粉体学性质对压片质量影响的初步探讨[J].天津理工大学学报,2008,6月,24卷,3期
    48陈志波,朱俊高,王强.宽级配砾质土压坯特性试验研究[J].岩土工程学报,2008,30(3):446-449
    49 Fuh-Shan Shiau, Tsang-Tse Fang, Tsung-Hsing Leu .Effects of milling and particle size distribution on the sintering behavior and the evolution of the microstructure in sintering powder coMPacts[J].Materials Chemistry and Physics, 1998,57(1): 33-40
    50 H.M. Lee, C.Y. Huang, C.J. Wang. Forming and sintering behaviors of commercial -Al2O3 powders with different particle size distribution and agglomeration [J]. Journal of Materials Processing Technology, 2009,209(2):714-722
    51 V. K. Sorokin.Compressibility of Kh18N15 stainless-steel powders [J].Powder Metallurgy and Metal Ceramics, 1968,7:22-26
    52 Li Shujie, Khosrovabadi P B, Kolster B H. New coMPaction equation for powder materials[J]. International Journal of Powder Metallurgy, 1994,30(1):47-57
    53苏文比,郭玉忠,陈敬超等. Si-Al2O3系陶瓷粉末压制性能及其规律性的研究[J].昆明理工大学学报,1997,22(1):40-46
    37姜振泉,赵道辉,隋旺华等.煤矸石固结压密性与颗粒级配缺陷关系研究[J].中国矿业大学学报,1999,28(3):212-216
    38刘翼洲,高春珍.冷压成型压力和粒度级配对型煤强度的影响[J].煤炭加工与综合利用,1996(4):68-69
    39高加成,姚文花.填料颗粒组成与压密关系的探讨[J].岳阳师范学院学报(自然科学版),2001,14(1):5-8
    40周新建.水煤浆颗粒级配的研究[J].煤炭学报,2001,26(5):557-560
    41何芳,李宗果,李永军.陶瓷颗粒和小麦秸秆粉混合物堆密度的研究[J].淄博学院学报(自然科学与工程版),2002,4(2):29-31
    42吉登高,王祖讷,张丽娟等.粉煤成型原料粒度组成的试验研究[J].煤炭学报,2005,30(1):100-103
    43冯奇,刘光明,巴恒静.颗粒级配对水泥基材料有害空隙率的影响[J].同济大学学报(自然科学版) ,2004,32(9):1168-1172
    44王淑云,鲁晓兵,时忠民.颗粒级配和结构对粉砂力学性质的影响[J].岩土力学,2005,26(7):1029-1032
    45陈忠达,袁万杰,高春海.多级嵌挤密实级配设计方法研究[J].中国公路学报2006,19(1):32-37
    46李九苏,肖汉宁,龚建清.再生骨料水泥混凝土的级配优化试验研究[J].建筑材料学报,208,11(1):105-110
    47杨昕,元英进,王春龙.片剂生产中颗粒粉体学性质对压片质量影响的初步探讨[J].天津理工大学学报,2008,6月,24卷,3期
    48陈志波,朱俊高,王强.宽级配砾质土压坯特性试验研究[J].岩土工程学报,2008,30(3):446-449
    49 Fuh-Shan Shiau, Tsang-Tse Fang, Tsung-Hsing Leu .Effects of milling and particle size distribution on the sintering behavior and the evolution of the microstructure in sintering powder coMPacts[J].Materials Chemistry and Physics, 1998,57(1): 33-40
    50 H.M. Lee, C.Y. Huang, C.J. Wang. Forming and sintering behaviors of commercial -Al2O3 powders with different particle size distribution and agglomeration [J]. Journal of Materials Processing Technology, 2009,209(2):714-722
    51 V. K. Sorokin.Compressibility of Kh18N15 stainless-steel powders [J].Powder Metallurgy and Metal Ceramics, 1968,7:22-26
    52 Li Shujie, Khosrovabadi P B, Kolster B H. New coMPaction equation for powder materials[J]. International Journal of Powder Metallurgy, 1994,30(1):47-57
    53苏文比,郭玉忠,陈敬超等. Si-Al2O3系陶瓷粉末压制性能及其规律性的研究[J].昆明理工大学学报,1997,22(1):40-46
    71 Amir R.Khoei. Adaptive finite element remeshing in a large deformation analysis of metal powder forming [J]. International Journal for Numerical Methods in Engineering, 1999, 45:801-820
    72 Amir R. Khoei. Numerical simulation of powder coMPaction processes using an inelastic finite element analysis [J]. Materials & Design, 2002, 23, (6): 523-529
    73 A.R. Khoei, S.O.R. Biabanaki, A.R. Vafa, S.M. A new computational algorithm for
    3D contact modeling of large plastic deformation in powder forming processes[J] Computational Materials Science, 2009,46(1): 203-220
    74 Hwang BB, Kobayashi S. Deformation characterization of powdered metals in coMPaction[J]. Inter J.Mech. Tools Manufact, 1990,30(2):309-323
    75 Hwang BB,Kobayashi S. Application of the finite element method to powdered metal coMPaction processed[J]. Inter J.Mech. Tools Manufact, 1991,31(1):123-137
    76 Hwang BB,Kobayashi S. Application of the finite element method to powdered metal coMPaction processed of multilevel flanged parts[J]. Inter J.Mech. Tools Manufact, 1994,34(3):423-438
    77 K. T. Kim, S. C. Lee, H. S. Ryu. Densification behavior of aluminum alloy powder mixed with zirconia powder inclusion under cold coMPaction [J]. Materials Science and Engineering A, 2003,340(1-2):41-48
    78 M.S. Kadiri, A. Michrafy, J.A. Dodds. Pharmaceutical powders coMPaction: Experimental and numerical analysis of the density distribution [J]. Powder Technology, 2005,157(1-3 29):176-182
    79 K. Biswas. CoMParison of various plasticity models for metal powder coMPaction processes [J].Journal of Materials Processing Technology, 2005,166(1):107-115
    80 R. Rossi, M.K. Alves, H.A. Al-Qureshi A model for the simulation of powder coMPaction processes[J].Journal of Materials Processing Technology,2007 ,182(1-3): 286-296
    81刘心宇,张继忠,占美燕.粉末体成型的有限元数值模拟[J].中南工业大学学报,1999,30(3):279-282
    82汪俊.金属粉末体压制过程的计算机模拟[D].武汉:华中理工大学,1996.
    83汪俊,罗思东,李从心.金属粉末零件压制过程有限元模拟的研究[J].中国机械工程,1997,8(4):40-43
    84汪俊,李从心,阮雪榆.基于实验参数修正的粉末金属压制过程数学模型[J].上海交通大学学报,2000,34(3):322-325
    85高小平,史庆南,左孝青.有限元法在粉末成型中的应用[J].材料导报,2003,17(4):78-80
    86崔小朝,常红,侯丽丽等.ZrO2粉体压制轴对称块体过程有限元数值模拟[J].太原重型机械学院学报,2005,26(1):1-4]
    87 Denon, D.A.. Salt appetite. Nur. Absr. Rev. 1969, 39:1043-1049
    88 Bell, F.R. and Sly, J.. The effect of salt appetite of sodium-deficient cattle on replacing the depleted ions directly into the rument[J]. Physiol. 1981,320: 67
    89 Cunha, T.J.. Salt and Trace Minerals[M]. Salt Institute, Alexandria VA.,1987
    90 Eggington, A.R., McCosker, T.H. and Graham, C.A.. Intake of lick block supplements by cattle grazing native monsoonal tallgrass pastures in the Northern Territory[J]. Aust. Rangeland 1990(12): 7-13
    91 J.A. Manners, G.D. Mineral salt supplementation of cattle grazing tall larkspur-infested rangeland during drought[J]. Journal of range management. Mar 1991. 44(2):105-111.
    92 D.W. Weber, T.O. Dill, J.E. Oldfield, etal. Daily intake of free-choice salt and protein blocks by beef cows was highly variable[J].Prof.Anim.Sci.1992,(8):15-20.
    93 A. K. Verma, U. R. Mehra, R. S. Dass, A. Singh. Nutrient utilization by Murrah buffaloes (Bubalus bubalis) from compressed complete feed blocks[J].Animal Feed Science and Technology, 1996, 59( 4): 255-263
    94 Taute A. Licks as supplementary feeding essential to livestock in winter[J]. [Afrikaans] SA Co op. 2004,21(6):4-5.
    95高桥皓.舔砖的特点及其在饲养管理过程中的应用[J].中国畜禽种业,2008(2):45-46
    96佐藤薰.舔砖(矿盐)对牛的生理或疾病的预防和治疗作用[].中国奶牛,2007增刊: 165
    97卢寿慈等.粉体加工技术[M].中国轻工出版社,1999
    98廖寄乔.粉体材料科学与工程实验技术原理及应用[M].中南大学出版社,2001
    99韩凤麟.粉末冶金基础教程基本原理与应用[M].冶金工业出版社,2006,6
    100黄辉.颗粒级配技术及其在含能材料中的应用[J].含能材料,2001,9(4):161-164
    101张文彤.世界优秀统计工具SPSS11.0统计分析教程(高级篇)[M].北京希望电子出版社,2002,6
    102宋志刚,谢蕾蕾,何旭洪.SPSS16实用教程[M].人民邮电出版社.2008,10
    103吴成义,张丽英.粉体成型力学原理[M].冶金工业出版社,2003
    104黄培云.粉末冶金原理[M].冶金工业出版社,1997
    105陈魁.试验设计与分析(第二版)[M]. -北京:清华大学出版社,2005,7
    106任学平,康永林.粉体塑性加工原理及其应用[M]-北京:冶金工业出版社,1998,12:125
    107刘相华.刚塑性有限元及其在轧制中的应用[M]. -北京:冶金工业出版社,1994,7
    108陈火红,杨剑,薛小香等.新编Marc有限元实例教程[M]. -北京:机械工业出版社,2007,8
    109严祖同.高压下碱卤晶体的三参量等温状态方程[J].高压物理学报,2006,20(1):51-55
    110吴文.盐岩的静、动力学特性实验研究与理论分析——盐岩中能源储存或废弃物处置的相关力学问题研究[D].武汉:中国科学院武汉岩土力学研究所,2003
    111刘利国,葛世荣,王庆良.陶瓷粉填充尼龙1010的摩擦磨损性能研究[J].摩擦学学报,2005,25(6):540-544
    112任学平.粉末金属屈服准则和流动应力研究[D].哈尔滨工业大学,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700