用户名: 密码: 验证码:
微尺度下非线性流动特征及降低流动阻力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从固-液界面及其分子间作用力的角度入手,研究微管中流体与固体壁面之间的流体边界层对微流动的影响,探索微尺度下的流动特征,在此基础上阐明低渗透油藏低速非线性渗流机理,并揭示低渗透渗流中启动压力现象的本质。
     微尺度下的低速流动具有非线性特征。实验研究了去离子水在半径2.5μm-10μm微管中的流动,发现低速低压下的流动出现非线性特征且非线性程度随着管径的降低而增加;分析得出微尺度非线性流动的流速是二次的边界层影响项、一次的流体粘滞力项以及启动压力因素项的叠加。微尺度流动的实验流量大多比理论值小,且有随着微管半径的降低而增大的趋势;同一管径,流速和压力梯度越小,二者之间的偏差越大。流动呈现非线性特征的原因在于固液界面作用力形成了边界流体,而有效流体边界层的厚度随着压力梯度的增加而降低致使流通半径随压力梯度变化;实验给出了描述有效边界层厚度的方程,证实了有效边界层厚度与管径和压力梯度有关。
     雷诺数为非线性流动的判据。微流动实验获得的最小雷诺数Re达到10-5数量级,流动阻力系数与理论值的偏离程度有随着雷诺数Re和管径的降低而大幅度增大的趋势。通过研究阻力系数与雷诺数的关系发现,雷诺数可作为非线性流动的判据,非线性流动上限的临界Re数为1.0×10-3,当雷诺数小于该临界值时,流动开始出现非线性特征。
     微流动实验得到了非线性流动方程各项系数与微管半径的函数关系,并通过回归拟合的方法给出启动压力梯度与管径的关系,该函数的解析解与实验数值解非常相近。通过微管半径与启动压力梯度的关系,能够预测某一管径尺寸下微流动的启动压力梯度。
     另外,从减小固-液界面作用力和作用范围的角度出发,研究影响非线性流动的因素并寻求降低微尺度流动阻力的方法。实验发现:去离子水流量随着温度的升高而增大;相同管径,流动介质的粘度越大,流动的非线性程度越高,且启动压力梯度随粘度的增大呈指数型增加;壁面润湿性的改变也会影响微尺度流动特征。对微流动来讲,升高体系温度,改变壁面性质,降低流体粘度,加入表面活性物质等方法都可能在一定程度上减薄流体边界层厚度,从而降低流动阻力。
Microscale flow mechanism was studied in this dissertation based on the theory of intermolecular force between solid and liquid interface. From microflow experiment results and theoretical analysis, influence of boundary layer on microflow characteristics were carried out. The low velocity nonlinear flow mechanism of low permeability reservoir was clarified and the intrinsic reason of threshold pressure gradient phenomena can be revealed by this research.
     Nonlinear flow characteristic was found under low velocity microscale flow. Deionized water flow through microtubes with radius from 2.5μm to 10μm was investigated. Nonlinearity characteristic was appeared under low pressure and velocity; the smaller the tube's radius, the more obvious of the nonlinearity. Quadratic function fit the nonlinear flow well which showed that velocity was composed of three parts, boundary layer impact part(second order), fluid viscosity part and the threshold pressure gradient part. Generally, experimental flux is smaller than theoretical flux and is getting greater with the decreasing of the tube radius. The thickness of the boundary layer which intensively influenced by solid and liquid molecular force is altered as pressure changes. Thus, the changeable flow cross section induces microflow shows nonlinear characteristics. Function between thickness of effective boundary layer and pressure gradient was brought out. The thickness is related to the microtube radius and the pressure gradient.
     Reynolds number (Re) is the criterion of nonlinear flow. The lowest Re achieved from microflow experiments is near 10-5, and it is found that the departure of the resistance coefficient (f) from experimental value to theoretical value is significantly increased with the decreasing of Re and the radius. Analyze on relationship between f and Re reveal that Re can be the criterion of nonlinear flow. Critical Re is 1*10-3, and nonlinear characteristic began when Re is smaller than critical value.
     Microflow experiments obtained the flow equation and found the relation of flow parameters and the flow radius. Afterwards, regression method was used to establish the relationship between threshold pressure gradient and the microtube radius. It was testified that the results have high accuracy. Numerical solutions are very close to analytical solutions. The relationship between threshold pressure gradient and the radius can easily predict the threshold pressure gradient under microflow with a certain radius.
     For reducing microflow resistance force, methods to decrease solid and liquid interface molecular force were considered. Experiments results show that the resistance force was decreased as the temperature increases and the flux was increased at the same time. The greater the fluid viscosity is, the more significant the nonlinear characteristics show. Moreover, the threshold pressure gradient exponentially increased with the viscosity increasing. Wettability alteration of the solid wall can change the flow characteristics as well. Therefore, increasing temperature, altering wall feature, decreasing fluid viscosity and adding some surfactant may reduce the thickness of the fluid boundary layer to some extent. As a result, the flow resistance force can be decreased.
引文
[1]李道品.低渗透油田开发[M].北京:石油工业出版社,1994:1-107
    [2]黄延章.低渗透油层渗流机理[M].北京:石油工业出版社,1998
    [3]罗蛰谭,王允诚.油气储集层的孔隙结构[M].科学出版社,1986:21-137
    [4]Von Englehardt, W. and W. L. M. Tunn. The flow of fluids through sandstones [J].Circ.I11. State Geol.Surv.1955,194:1-17
    [5]Lutz, J.F. and W. D. Kemper. Intrinsic permeability of clay as affected byclay-water interaction [J]. Soil Sci.1959,88 (2):83-90
    [6]Hansbo, S. Consolidation of clay, eith special reference to influence of vertical sand drains [J]. Swedish Geotech. Inst. Proc.,1960,18:41-159
    [7]Mitchell, J.K. and J.S. Younger. Abnormalities in hydraulic flow through fine-grained soils [J]. ASTM Spech.,1967,417:106-141
    [8]X. Wang, F. Thauvin, K.K.Mohanty. Non-Darcy flow through anisotropy porous media [J]. Chemical Engineering Science,1999.54:1859-1869
    [9]A.E.薛定谔著,王鸿勋译.多孔介质中的渗流物理[M].北京:石油工业出版社,1984
    [10]阎庆来,何秋轩,尉立岗等.低渗透油层中单相液体渗流液体特征的实验研究[J].西安石油学院学报,1990,5(2):1-6
    [11]黄延章.低渗透袖层非线性渗流特征[J].特种油气藏,1997,4(1):9-14
    [12]吴景春,袁满,张继成等.大庆东部低渗透油藏单相流体低速非达西渗流特征[J].大庆石油学院学报,1999,23(2):82-84
    [13]李中锋,何顺利.低渗透储层非达西渗流机理研讨[J].特种油气藏,2005,12(2),35-38
    [14]孙黎娟,吴凡,赵卫华等.油藏启动压力的规律研究与应用[J].断块油气田,1998,5(5):30-33
    [15]宋付权,刘慈群.启动压力梯度的不稳定快速测量方法[J].石油学报,2001,22(3):67-77
    [16]吕成远,王建,孙志刚.低渗透砂岩油藏渗流启动压力梯度实验研究[J].石油勘探与开发,2002,29(2):86-89
    [17]邓玉珍,刘慧卿.低渗透岩心中油水两相渗流启动压力梯度试验[J].石油钻采工艺,2006,28(3):36-40
    [18]姚约东,葛家理.低渗透油层非达西渗流规律的研究[J].新疆石油地质,2000,21(3):213-217
    [19]阮敏,何秋轩.低渗透非达西渗流综合判据初探[J].西安石油学院学报,1999,14(4):46-49
    [20]宋付权,刘慈群.低渗透多孔介质中新型渗流模型[J].新疆石油地质,2001,22(1):56-59
    [21]肖鲁川,甄力,郑岩.特低渗透储层非达西渗流特征研究[J].大庆石油地质与开发,2000,19(5):27-31
    [22]冯文光.非达西低速渗流的研究现状与展望问题[J].石油勘探与开发,1986,13(4):76-80
    [23]阮敏,何秋轩.低渗透非达西渗流临界点及临界参数判别法[J].西安石油学院学报,1999,14(3):9-11
    [24]姚约东,葛家理.石油渗流新的运动形态及其规律[J].重庆大学学报(自然科学版),2000,23(增):150-153
    [25]刘建军,刘先贵等.低渗透岩石非线性渗流规律研究[J].岩石力学与工程学报,2003,22(4):556-561
    [26]葛家理,刘月田,姚约东编.现代油藏渗流力学原理(下册)[M].北京:石油工业出版社,2003
    [27]J. F Lutz and W. D. Kemper. Intrinsic permeability of clay as affected by clay-water interaction[J]. Soil Science,1959,88(2):83-90
    [28]Raymond J. Miller, Philip F. Low. Threshold gradient for water flow in clay systems[J]. Soil Science Society of America Proceeding,1963,27(6):605-609
    [29]Raymond J. Miller, Allen R. Overman, John H Peverly. The absence of threshold gradients in clay-water systems [J]. Soil Science Society of America Proceedings,1969, 33(2):183-187
    [30]Harold W. Olsen. Derivations from Darcy's law in saturated clays[J]. Soil Science Society of America Proceedings,1965,29(2):135-140
    [31]Harold W. Olsen. Liquid movement through kaolinite under hydraulic, electric and osmotic gradients [J]. The American Association of Petroleum Geologist Bulletin,1972, 56(10):2022-2028
    [32]Remy J. P. The measurement of small permeabilities in the laboratory[J]. Geotechnique,1973,23(3):454-458
    [33]J. S. Younger, C. I. Lim. An investigation into the flow behavior through compacted saturated fine-grained soils with regard to fines content and over a range of applied hydraulic gradients. In: International Association for Hydraulic Research, eds. Fundamentals of transport phenomena in porous media-Developments in soil science 2. New York: Elsevier Publishing Company Amsterdam,1972:312-326
    [34]Dale Swartzendruber. Modification of Darcy's law for the flow of water in soils[J]. Soil Science,1962,93:22-29
    [35]Dale Swartzendruber. Non-Darcy behavior and the flow of water in unsaturated soils[J]. Soil Science Society of America Proceedings,1963,27(5):491-495
    [36]Alvaro Prada, Faruk Civan. Modification of Darcy's law for the threshold pressure gradien[J]. Journal of Petroleum Science and Engineering,1999,22(4):237-240
    [37]陈永敏,周娟,刘文香等.低速非达西渗流现象的实验论证[J].重庆大学学报(自然科学版),2000,23(增):59-61
    [38]Kutilek M. Non-Darcian flow of water in soils-Laminar region. In: International Association for Hydraulic Research, eds. Fundamentals of transport phenomena in porous media. Developments in soil science. New York: Elsevier Publishing Company Amsterdam, 1972:327-339
    [39]H. W. Olsen, R. W. Nichols. Low gradient permeability measurements in a triaxial system[J]. Geotechnique,1985,35(2):145-157
    [40]罗蛰谭.油层物理[M].北京:地质出版社,1985:24-48,130-187
    [41]何更生.油层物理[M].北京:石油工业出版社,1994:10-48,164-248
    [42]Li Seungping. Measuring extremely low flow velocity of water in clays[J]. Soil Science,1963,95(6):410-413
    [43]Allen Young, Philip F. Low, Mclatchie A. S. Permeability studies of argillaceous rocks[J]. Journal of Geophysical research,1964,69(20):4237-4245
    [44]Zhang Ming, Manabu Takahashi, Tetsuro Esaki. Laboratory measurement of low-permeability rocks with a new flow pump system. Material Research Society Symposium-Proceedings,1998,506:889-896
    [45]张铭.低渗透岩石实验理论及装置[J].岩石力学与工程学报,2003,22(6):919-925
    [46]韩小妹,王恩志,刘庆杰.低渗透岩石的单相水非Darcy渗流实验[J].清华大 学学报(自然科学版),2004,44(6):804-807
    [47]Brace W. F., Walsh J.B., Frangos W T. Permeability of granite under high pressure[J]. Journal of Geophysical Research,1968,73(6):2225-2236
    [48]Hsieh P A, Tracy J V, Neuzil C E, et al. A transient laboratory method for determining the hydraulic properties of right rocks-(I) Theory[J]. International journal of rock mechanics and mining sciences & geomechanics abstracts,1981,18(3):245-252
    [49]Neuzil C E, Cooley C, Silliman S E, et al. A transient laboratory method for determining the hydraulic properties of right rocks-(II) Application[J]. International journal of rock mechanics and mining sciences & geomechanics abstracts,1981,18(3):253-258
    [50]Thierry Bourbie, Joel Walls. Pulse decay permeability:analytical solution and experimental test[J]. SPEJ,1982,22(5):719-721
    [51]Walder, J., Nur A. Permeability measurement by the pulse-decay method: effects of pore elastic phenomena and nonlinear pore pressure diffuse[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1986,23 (3):225-232
    [52]Ahmed Usman, Kuchuk Fikri, Ayestaran Luis. Short-term transient-rate and pressure-buildup analysis of low-permeability reserviors. SPE Formation Evaluation,1987, 2(4):611-617
    [53]Wang H. F, Hart D. J. Experimental error for permeability and specific storage from pulse decay measurements. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993,30(7):1173-1179
    [54]E. M. Zeynaly-Andabily, S.S.Rahman. Measurement of permeability of tight rocks[J]. Measurement Science & Technology,1995,6(10):1519-1527
    [55]Jones S. C. A technique for faster pulse-decay permeability measurement in tight rocks. SPE Formation Evaluation,1997,12(1):19-25
    [56]G. Gubelin et al. Total Porosity and Bound-Fluid Measurement from an NMR Tool[J]. Journal of Petroleum Technology,1997,49(7):718
    [57]马尔哈辛И Л.油层物理化学机理[M].李殿文(译).北京:石油工业出版社,1987
    [58]苑莲菊,李振栓,武胜忠等.工程渗流力学及应用[M].北京:中国建材工业出版社,2001.17-18
    [59]Gupta, R.J. and D.Swartzendruber. Flow-associated reduction in the hydraulic conductivity of quartz sand [J]. Soil Sci. Soc. Am. Proc.,1962,26(1):6-10
    [60]Neuzil, C.E., etc. A transient laboratory method for determining the hydraulic properties of tight rocks [J]. Int.J.Rock Mech.Min.Sci.,1981,18(3):253-258
    [61]Miller, R.J. and P. F. Low. Threshold gradient for water flow in clay systems [J]. Soil Sci. Soc. Am. Proc.1963,27(6):605-609
    [62]Olsen, H. W. Hydraulic flow through saturated clays [J]. Clay Miner.1962,9:131-161
    [63]Smiles, D. E. and M. J. Rosenthal. The movement of water in swelling materials[J]. Aust.J. Soil Res.,1968,6:237-248
    [64]刘德新,岳湘安,燕松等.吸附水层对低渗透油藏渗流的影响机理[J].油气地质与采收率,2005,12(6):40-42
    [65]徐绍良,岳湘安,侯吉瑞等.边界层流体对低渗透油藏渗流特性的影响[J].西安石油大学学报(自然科学版),2007,22(2):26-28
    [66]宋付权.低渗透多孔介质和微管液体流动尺度效应[J].自然杂志,2004,26(4):128-131
    [67]陶然,权晓波,徐建中.微尺度流动研究中的几个问题[J].工程热物理学报.2001,22(5):575-577
    [68]李战华,周兴贝,朱善农.非极性小分子有机液体在微流道中的流量特性[J].力学学报,2002;34(3):432-438
    [69]Pfahler J., Harley J., Bau H., et al. Gas and liquid flow in small channels. DSC,1991; 32:49-59
    [70]Peiyi Wu, Little W A. Measurement of friction factors for the flow of gases in very fine channels used for microminature Joule-Thomson refrigerators [J]. Cryogenics, v23 n5 May 1983:73-77
    [71]Pfahler J, Harley J, Bau H H, et al. Liquid and gas transport in small channels [J]. ASME,1990, DSC-19:149-157
    [72]Pfahler J, Harley J, Bau H H, et al. Gas and liquid flow in small channels [J]. ASME, 1991,DSC-32:49-60
    [73]Mara G. M., Li Dongqing. Flow Characteristics of water in microtubes. Int. J. of Heat and Fluid Flow [J].1999,20:142-148
    [74]刘静.微米/纳米尺度传热学[M].北京:科学出版社,2001
    [75]Feynman R. There's Plenty Room at the Bottom[J]. Journal of Micro electro mechanical System.1992,1:60-66
    [76]朱静.纳米材料和器件[M].清华大学出版社.2003
    [77]苑伟政,马炳和.微机械与微细加工技术[M].西北工业大学出版社,2000
    [78]Ho Chih-Ming, Tai Yu-Chong. Micro-electro-mechanical-systems (MEMS) and Fluid Flows [J]. Annual Review of Fluid Mechanism.1998, Vol.30:579-612
    [79]Gad-el-Hak. The Fluid Mechanics of Microdevices-The Freeman Scholar Lecture [J]. Journal of Fluids Engineering,1999, Vol.121:5-33
    [80]N Giodano, J. Cheng. Microfluid Mechanics:Progress and Opportunities [J]. J. Phy: Condens. Matter,2001, Vol.13:271-295
    [81]温诗铸.纳米摩擦学[M].清华大学出版社,1982
    [82]Mitchell J K, Younger J S. Abnormalities in hydraulic flow through fine-grained soils[J]. ASTM Spech.,1967,417:106-141
    [83]Keenan J P, Neumann E P. Measurement of Friction in a Pipe for Subsonic and Supersonic Flow of Air [J]. J. Appl. Mech.,1946,13(2):91-100
    [84]Yu, D., Warringtion, R.et al. T. An experimental and theoretical investigation of fluid flow and heat transfer in microtubes [J]. ASME/JSME Thermal Engineering Conference, 1995, vol.1:523-630
    [85]Choi, S. B., Barron, R. F., and Warrington, R. O. Fluid flow and heat transfer in microtubes [J]. Micromechanical Sensors, Actuators, and Systems,1991, vol.32:123-134
    [86]Harley, J. C., Huang, Y, Bau, H. H. and Zemel, J. N. Gas flow in micro-channels [J]. J. Fluid Mech. vol.284:257-274,1995
    [87]李志信,杜东兴,过增元.微细光滑圆管内气体流动阻力特性的研究[J].工程热物理学报,1998,19(4):459-463
    [88]Zeng-Yuan Guo, Zhi-Xin Li. Size effect on microscale single-phase flow and heat transfer[J]. International Journal of Heat and Mass Transfer. 2003,46:149-159
    [89]Mohamad-Nabil Sabry. Scale effects on fluid flow and heat transfer in Microchannels. IEEE Transactions on Components and Packaging Technologies,2000, Vol.23(3)
    [90]P Tabeling. Some basic problems of microfluidics. 14th Australasian Fluid Mechanics Conference, December,2001
    [91]G.E. Karniadakis and A. Beskok. Micro Flows:Fundamentals and Simulation. Springer,2002
    [92]杜东兴,李志信,过增元.微细光滑管内的气体流动阻力特性[J].中国科学(E辑),2000,30(2):173-178
    [93]吴望一.流体力学[M].北京大学出版社,1980
    [94]Landau & Lifshitz. Fluid Mechanics[M]. Pergamon Press,1987
    [95]Gian Luca Morini. Single-phase convective heat transfer in microchannels:a review of experimental results[J]. International Journal of Thermal Sciences,2004,43(7):631-651
    [96]刘静.微米/纳米尺度热科学与工程学中的若干重要问题及进展[J].物理,2001,30(7):398-406
    [97]Mark E. Steinke et al. Single-phase liquid friction factors in microchannels. Proceedings of ICMM2005 3rd International Conference on Microchannels and Minichannels June 13-15,2005, Toronto, Ontario, Canada
    [98]Ian Papautsky, John Brazzle. Timothy Ameel, A. Bruno Frazier. Laminar fluid behavior in microchannels using micropolar fluid theory. Sensors and Actuators,1999, (73), 101-108
    [99]J. Harley, H.H. Bau. Fluid flow in micron and sub-micron size channels. Proceedings of IEEE, MEMS,1989
    [100]W. Urbanek, J.N. Zemel, H.H. Bau. An investigation of the temperature dependence of Poiseuille numbers in microchannel flow, J. Micromech. Microengrg,3,1993
    [101]Z.X. Li, D.X. Du, Z.Y. Guo. Experimental study on flow characteristics of liquid in circular microtubes, Microscale Thermophys. Engrg,7,2003
    [102]X.F. Peng, G.P. Peterson, B.X. Wang. Frictional flow characteristics of waterflowing through rectangular microchannels, J. Exp. Heat Transfer,1995,7:249-264
    [103]X.N. Jiang, Z.Y. Zhou, X.Y. Huang, C.Y. Liu. Laminar flow through microchannels used for microscale cooling systems. Proceedings of 97 IEEE/CPMT Electronic Packaging Technology Conference,1997
    [104]D.A. Pfund, A. Shekarriz, A. Popescu, J.R. Welty. Pressure drops measurements in microchannels. Proceedings of MEMS, ASME DSC, vol.66,1998
    [105]C.D. Meinhart, S.T. Wereley, J.G. Santiago. PIV measurements of a microchannel flow. Experiments Fluids 27:414-419,1999
    [106]B. Xu, K.T. Ooi, N.T. Wong, W.K. Choi. Experimental investigation of flow friction for liquid flow in microchannels, Internat. Comm. Heat Mass Transfer 27:1165-1176,2000
    [107]D. Pfund, D. Rector, A. Shekarriz, A. Popescu, J.Welty. Pressure drop measurements in a microchannel. AIChE J.46:1496-1507,2000
    [108]W. Qu, M. Mala, D. Li. Pressure-driven water flows in trapezoidal silicon microchannels. Int. J. Heat Mass Transfer 43:353-364,2000
    [109]P.X. Jiang, M.H. Fan, G.S. Si, Z.P. Ren. Thermal-hydraulic performance of small scale micro-channel and porous-media heatexchangers. Int. J. Heat Mass Transfer 44: 1039-1051,2001
    [110]L. Ren, W. Qu, D. Li. Interfacial electrokinetic effects on liquid flow in microchannels. Int. J. Heat Mass Transfer 44:3125-3134,2001
    [111]P. Gao, S. Le Person, M. Favre-Marinet. Scale effects on hydrodynamics and heat transfer in two-dimensional mini and microchannels. Int. J. Thermal Sci,41:1017-1027, 2002
    [112]H.Y. Wu, P. Cheng. Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios. Int. J. Heat Mass Transfer,46:2519-2525,2003
    [113]W. Qu, I. Mudawar, Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int. J. Heat Mass Transfer 45: 2549-2565,2002
    [114]A. Bucci, G.P. Celata, M. Cumo, E. Serra, G. Zummo. Fluid flow and single-phase flow heat transfer of water in capillary tubes. Proceedings of the Int.Conference on Minichannels and Microchannels, Rochester, USA,2003
    [115]Satish G. Kandlikar, Shailesh Joshi, Shurong Tian. Effect of channel roughness on heat transfer and fluid flow characteristics at low Reynolds numbers in small diameter tubes.35th National Heat Transfer Conference, June 10-12, Anaheim, California,2001
    [116]J. Judy, D. Maynes, B.W. Webb. Characterization of frictional pressure drop for liquid flows through microchannels. International J. Heat and Mass transfer,45.3477-3489, 2002
    [117]J.Koo, C. Kleinstrruer. Viscous dissipation effects in microtubes and microchannels. Int. J. of heat and mass transfer,47:3159-3169,2004
    [118]Junemo Koo and Clement Kleinstreuer. Liquid flow in microchannels:experimental observations and computational analyses of microfluidics effects. J.Micromech. Microeng, 13:568-579,2003
    [119]Dongqing Li. Electro-viscous effects on pressure-driven liquid flow in microchannels. Colloids and Surfaces A: Physicochemical and Engineering Aspects,195: 35-57,2001
    [120]Jiang X.N., Zhou Z.Y., Yao J., Li Y, and Ye X.Y. Micro-Fluid Flow in Microchannel. Transducers'95, EurosensorsIX, Sweden, June,317,1995
    [121]Flockhart S.M. and Dhariwal R.S. Experimental and Numerical investigation into the Flow characteristics of channels etched in<100> silicon. Transactions of the ASME, J. of Fluids Engineering, Vol.120, P291,1998
    [122]Makihara M., Sasakura K. and Nagayama A. Flow of liquids in micro-capillary tube consideration to application of the Navier-Stokes equations. J. of the Japan society of Precision Engineering/Seimitsu Kogaku Kaishi,59,1993
    [123]P.Wilding, J. Pfalher, J.N. Zemel, H.H. Bau, L.J. Kricka. Manipulation and flow of biological fluids in straight channels micromachined in silicon. Clin. Chem,40:43-47, 1994
    [124]Sharp, K.V., Adrian, R. J. Transition from laminar to turbulent flow in liquid filled microtubes. Experiments in fluids, Vol.36,741-747,2004
    [125]D. Yu, R.O. Warrington, R. Barron, T. Ameel. An experimental and theoretical investigation of fluid flow and heat transfer in microtubes. Proceedings of ASME/JSME Thermal Engineering Joint Conf., Maui, HI,1995
    [126]X.N. Jiang, Z.Y. Zhou, X.Y. Huang, C.Y. Liu. Laminar flow through microchannels used for microscale cooling systems. Proceedings of 97IEEE/CPMT Electronic Packaging Technology Conference,1997
    [127]Israelachvili, J. N. Measurement of the viscosity of liquids in very thin films. J.Colloid Interface Sci.110:263-271,1986
    [128]Hasegawa T, Suganuma M, Watanabe H. Anomaly of excess pressure drops of the flow through very small orifices. Phys. Fluids 9:1-3,1997
    [129]尤学一,郑湘君,郑敬茹.微尺度流道内液体表观粘度系数的分子理论[J].物理学报,2007,56(4):2323-2329
    [130]R. Eisenschitz. Transport processes in liquids. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol.215, No.1120 (Nov.6,1952): 29-36
    [131]Billington, E. W. Tate, A. Williams, W. O. The Physics of deformation and flow[J]. Physics Today, vol.35,4:63
    [132]Gale, B. K. Scaling effects in a microfabricated electric field flow fractionation system with integrated detector. Ph.D. thesis, University of Utah, Salt Lake City,2000
    [133]Wilding, P., Shoffner, M. A., and Kircka, L. J. Manipulation and flow of biological fluids in straight channels micromachined in silicon[J]. Clin. Chem, vol.40:1815-1818, 1994
    [134]Stanley, R. S. Two-phase flow in microchannels. Ph.D. thesis, Louisiana Tech University, Ruston, LA.1997
    [135]Wu, S., Mai, J. Zohar, Y, Tai, Y. C. et al. A suspended microchannel with integrated temperature sensors for high-pressure flow studies. Proc, IEEE Workshop on Micro Electro Mechanical Systems:87-92,1998
    [136]凌智勇,丁建宁,杨继昌等.微流动的研究现状及影响因素[J].江苏大学学报(自然科学版).2002,23(6):1-5
    [137]江小宁.微量流体测量与控制系统实验研究[博士学位论文].清华大学,1996
    [138]过增元,国际传热研究前沿—微细尺度传热[J].力学进展,2000,30(1):1-6
    [139]钟映春,谭湘强,杨宜民.微流体力学几个问题的探讨[J].广东工业大学学报,2001,18(2):46-48
    [140]崔海航.简单液体在微米尺度管道中流动特性的实验研究[博士学位论文].中国科学院力学研究所,2005
    [141]蒋仁杰.液体在微管中流动特性的研究[博士学位论文].浙江师范大学,2006
    [142]文书明.微流边界层理论及其应用[M].北京:冶金工业出版社,2002
    [143]Fuji M et al. Wettabilty glass-bead surface modified by trimethyl chlorosilane[J]. J of phsical chem. B 1998,102(51):10498-10504
    [144]黄延章,于大森.微观渗流实验力学及其应用[M].北京:石油工业出版社,2001
    [145]Combes R. Visualigation of imbibition in porous media by environmental scanning electron microscopy(ESEM):Application to reservoir rocks. J. Pet. Sci Eng 1998.20(3/4) 133-139
    [146]Harreld G. et al. Wettability changes in trichloroethylene-contamineted sandstone. Environmental Sci. and Technology Vol 35, No 7,2001, Apr.:1504-1510
    [147]鄢捷年,王富华.表面活性剂吸附引起的硅石润湿性改变[J].油田化学,1993,10(3):195-20
    [148]毕只初,史彦等.十六烷基三甲基溴化铵在二氧化硅表面吸附的研究[J].化学试剂,1997,19(6):331-33
    [149]黄远智.低渗透岩石非线性渗流机理与变渗透率数值方法研究[博士学位论文].清华大学,2006
    [150]王瑞飞.低渗透砂岩储层微观特征及物性演化研究[博士学位论文].西北大学,2007
    [151]杨琼.低渗透砂岩渗流特性试验研究[硕士学位论文].清华大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700