用户名: 密码: 验证码:
CFRP约束混凝土轴心受压柱力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合现行《碳纤维片材加固修复混凝土结构技术规程》(CECS146-2003)、《混凝土结构加固设计规范》(GB50367-2006)和《美国FRP加固混凝土结构设计指南》(ACI Committee 440)研究后发现,CFRP布约束混凝土柱现有研究成果多集中于普通混凝土轴压短柱方面,对CFRP布约束高强混凝土短柱和CFRP布约束混凝土配筋中长柱方面的研究工作开展的极少,至今鲜有报道。
     论文针对上述问题开展相应试验研究和理论分析工作,研究成果如下:
     1、在收集和分析国内外大量圆形截面CFRP布约束普通混凝土轴心受压短柱试验数据的基础上,以未约束混凝土强度f c/o和约束刚度比βj为主要变量研究了本构方程中主要参数的取值问题,提出以CFRP布环向有效拉断应变εru来确定约束混凝土极限强度f c/c和极限应变εc/c的计算方法。
     2、通过19根CFRP布约束高强混凝土短柱轴心受压试验,研究了截面形状和不同约束比对包裹后的高强混凝土柱强度和变形的影响。试验结果表明:采用CFRP布包裹高强混凝土柱在提高承载力和变形方面仍然有效;依据试验结果确定了CFRP布约束高强混凝土短柱极限强度f c/c和极限应变εc/c的计算方法。
     3、通过22根CFRP布约束混凝土配筋中长柱轴心受压试验,研究了长细比、截面形状和约束比等因素对约束混凝土配筋中长柱稳定性能的影响。试验结果表明:我国《混凝土结构加固设计规范》(GB50367-2006)中对于圆柱l / D≤12和矩形柱l / b≤14以内不需要考虑稳定影响的规定在该类柱中不再适用。在试验的基础上,利用有限元软件ANSYS对该类柱的稳定性能进行了扩大参数分析,确定了CFRP布约束混凝土配筋中长柱的稳定承载力计算公式。
     4、在试验研究的基础上,针对CFRP布约束混凝土轴心受压柱给出合理化设计建议,可供工程设计人员参考。
In recent years, concrete structure strengthened by carbon fiber reinforced polymer (CFRP) is becoming hot spots in engineering circles, experimental study on this method has been developed by many scholars. The design codes for concrete structures reinforced by CFRP cloth was published in 2003 and 2006, including "Strengthening Design Codes of Concrete Structures" (GB50367-2006) and "Technical specification for strengthening concrete structures with carbon fiber reinforced polymer laminate" (CECS146-2003),All this has laid a good foundation for the application and development of concrete confined with CFRP in China.
     On the basis of many collection and analysis of reports and articles at home and abroad which related to concrete columns confined with CFRP cloth, combined with CECS146-2003 ,GB50367-2006 and ACI Committee 440, We believe that there are several problems still need to be further research about concrete columns confined with CFRP cloth:
     1.A large number of experimental study on concrete columns confined with CFRP cloth has been carried out, there are a lot of test data available in the literatures at home and abroad, the analysis indicated that there were some obvious differences between scholars, both are based on the model of concrete cylinder strength confined with stirrup or empirical model which based on test results, the predicted strength of concrete cylinders confined with CFRP cloth has not been solved with unified understanding. Therefore, based on systematic analysis of existing results, we hope that the strength model and the constitutive model were given more reasonable.
     2.Available data are more concentrated on the mechanical properties study of reinforced concrete column confined with CFRP cloth, the research work rarely reported about the mechanical properties of high-strength concrete column confined with CFRP cloth.
     3.Most investigations have mainly concentrated on short columns. In contrast to the vast available database on short reinforced concrete columns, literature on slender columns is infrequent and limited. Whether the code in GB50367-2006 (the stability coefficient of RC concrete whose cylindrical column that slenderness ratio under 12 and rectangular column that slenderness ratio under 14 is not taken into account) is suitable to the reinforced concrete column wrapped with CFRP cloth, need further testing .Therefore, it is very important to study the stable bearing capacity of RC slender columns sufficiently confined by CFRP cloth in order to know mechanics character of them with great slenderness ratio.
     The corresponding theoretical analysis and experimental research work were carried out in the issues paper and main results are as follows:
     1. Based on collection and analysis of large amounts of experimental data about circular-section concrete columns confined by CFRP cloth in domestic and abroad,according to the understanding of the loading process of concrete column confined with CFRP well, to Core Strength f c/and the ratio of confinement stiffnessβj as the main variables ,we studied the values of the main parameters of problem of stress - strain equations.
     2.By the axial compression tests on a total of 19 high-strength concrete columns wrapped with CFRP cloth, the influence of shape section and different confinement ratio on the axial compressive strength and ductility is studied. The experimental results indicate: high-strength concrete columns wrapped with CFRP in increasing the bearing capacity and ductility of concrete columns is still valid, its effect on the improvement of ductility is much greater than its capacity, but still with a great deal of brittleness at failure.Based on collection and analysis of large amounts of experimental data about concrete columns confined by CFRP cloth in domestic and abroad,the calculation model of strength and ultimate strain are obtained by the regressive analysis of results. The model can be used to forecast the limit strength and deformation of high- strength concrete column confined with CFRP. This filled the design blank of high-strength concrete columns wrapped with CFRP cloth (GB50367-2006 is not given the limit deformation formula ).
     3.Axial compression tests on a total of 22 reinforced concrete slender columns wrapped with CFRP show that slenderness has more effect on the stable bearing capacity of CFRP-wrapped concrete column than that of reinforced concrete (RC) column. we discusses some factors including slenderness ratio, cross section and confinement ratio that affect stability coefficient.The test results show that slenderness ratio has more effect on the stable bearing capacity of CFRP-wrapped concrete column than that of reinforced concrete (RC) column. When slenderness ratio is less than 17.5, the stable bearing capacity of CFRP-wrapped concrete column is still 20% higher than that of RC column(confinement ratioξ=0.188). Axial compression tests on reinforced concrete slender columns wrapped with CFRP have shown that when the slenderness ratio is increased, the effect of retrofitting decline. For slender columns with same slenderness ratio, shape of cross section and confinement ratio of columns are main parameters which affect stability coefficient. In the case of same slenderness ratio, the stability coefficient of the reinforced concrete column wrapped with CFRP is much lower than RC column, the stronger CFRP wrapped concrete, the smaller stability coefficient. The code in GB50367-2006 (the stability coefficient of RC concrete whose cylindrical column that slenderness ratio under 12 and rectangular column that slenderness ratio under 12 is not taken into account) is not suitable to the reinforced concrete column wrapped with CFRP cloth, because CFRP cloth can only increase strength of concrete, not stiffness. The simplified formula for stability coefficient was summarized.
     4. In terms of the tangent modulus theory , the capacity-slenderness ratio curve in theory was calculated and compared with the experimental curve.
     5. This paper proposes the model that concrete and CFRP are seen as a composite material to analyze the specimens.Column specimens were successfully analyzed by ANSYS program, taking into account constitutive relationship of CFRP sufficiently confined concrete, failure criterion and initial imperfections. A parametric study was carried out to examine the main parameters affecting the stability coefficient of the reinforced concrete column wrapped with CFRP. For slender columns with same slenderness ratio, shape of cross section and confinement ratio of columns are main parameters which affect stability coefficient, the steel ratio of longitudinal reinforcement has little effect on it. The simplified formula was summarized for stability coefficient of the reinforced concrete column wrapped with CFRP.
     6. Based on "Strengthening Design Codes of Concrete Structures" (GB50367: 2006) and "Technical specification for strengthening concrete structures with carbon fiber reinforced polymer laminate" (CECS146: 2003), the design advice was proposed for axial compression concrete columns confined with CFRP, which can provide a reference for engineering designers.
引文
1. Richart F.E.,Brandtzaeg A., and Brown R.L. A study of Failure of Concrete under Combined Compressive Stresses[R].Engineering Experiment Station Bull.No. 185,University of Illinois,Urbana,Illinois,1928
    2. Balmer G.G..Shearing Strength of Concrete under High Triaxial Stress-computation of Mohrs Envelope as a Curve[R]. Structural Reaserch Laboratory Report, SP-23, U.S. Bureau of Reclamation, Denver, 1949
    3. S.R.Iyengar, P.Desayi, and K.N.Reddy. Stress-Strain Characteristics of Concrete Confined in Steel Blinders[J]. Magazine of Concrete Research,1970, 22(72): 173~184
    4. K.Newman, and J.B.Newman. Failure Theories and Design Criteria for Plain Concrete[A]. Proc. Int. Engineering Materials Conference on Structure, Solid Mechanics and Engineering Design, Southampton, Wiley Interscience, New York, Part2,1969,963~995
    5. M.Saatcioglu, and S.R.Razvi. Strength ang Ductility of Confined Concrete[J]. Journal of Structural Engineering,1992,118(6):1590~1607
    6. J.B.Mander, M.J.N.Priestley, and R.Park. Theoretical Stress-strain Model for Confined Concrete[J]. Journal of Structural Engineering,1998,114(8):1804~1826
    7. G.Monti, and M.R.Spoelstr. Fiber-section Anslysis of RC Bridge Piers Retrofitted with FRP Jackets[A]. ASCE Structures Congress, ASCE ,New York, 1997
    8. M,N.Fradis, and H.Khalili. FRP-Encased Concrete as a Structure Material[A]. Magazine of Concrete Research,1982, 34(121): 191~202
    9. A.Mirmiran, and M.Shahawy. Behavior of Concrete Columns Confined by Fiber Composites [J]. Journal of Structural Engineering,1997,123(5):583~590
    10. K.Miyauchi, S.Inoue, T.Kuroda, and A.Kobayashi. Strengthening Effects of Concrete Columns with Carbon Fiber Sheet [J]. Transactions of the Japan Concrete Institute,1999, 21, 143~150
    11. V.M.Karbhari, and Y.Gao. Composite Jacketed Concrete under Uniaxial Compression Verification of Simple Design Equations[J]. Journal of Materials Engineering, 1997, 9(4):185~192
    12. M.Samaan, A.Mirmiran, and M.Shahawy. Model of Concrete confined by Fiber Composites[J]. Journal of Structural Engineering,1998,124(9):1025~1031
    13. M.R.Spoelstra, and G.Monti. FRP–Confined Concrete model [J]. Journal ofComposites for Construction,1999,3(3):143~150
    14. K.Miyauchi, S.Inoue, T.Kuroda, and A.Kobayashi. Strengthening Effects of Concrete Columns with Carbon Fiber Sheet [J]. Transactions of the Janpan Concrete Institute,1999, 21,143~150
    15. S.Kono, M.Inazumi, and T.Kaku. Evaluation of Confining Effects of CFRP Sheets on Reinforced Concrete Members [C]. Proceedings of ICCI, Tucson, Arizona, 1998:343~355
    16. H.Toutanji. Stress-Strain Characteristics of Concrete Columns Externally Confined with Advanced Fiber Composites Sheets [J]. ACI Materials Journal,1999,96(3):397~404
    17.赵彤,谢剑,戴自强.碳纤维布约束混凝土的应力—应变关系研究[J].工业建筑,2001,31(4):15 ~ 21
    18.于清,轴心受压FRP约束混凝土的应力—应变关系的研究[J].工业建筑.2001,31(4):5 ~ 8
    19.肖岩,吴徽,陈宝春等.碳纤维套箍约束混凝土的应力—应变关系[J].工程力学,2002,19(2):154 ~ 159
    20.金熙男.轴对称约束混凝土力学性能试验研究[D].哈尔滨工业大学博士学位论文.2002,12
    21.来文汇. FRP约束混凝土应力—应变关系的试验研究[D].哈尔滨工业大学工学硕士学位论文. 2003,10
    22.李静,钱稼茹等. CFRP约束混凝土应力—应变关系全曲线研究.第二届全国土木工程纤维增强复合材料FRP的应用技术学术交流会论文集[J].昆明2000: 157 ~ 162
    23. L.Lam ,J.G..Teng . Design-oriented stress-strain model for FRP-confined concrete[J]. Construction and Building Material ,2003,17(6/7):471~489.
    24.吴刚,吕志涛. FRP约束混凝土圆柱无软化段时的应力-应变关系研究[J].建筑结构学报. 2003,24(5):1~9.
    25.細谷学.炭素繊維シートで横拘束したコンクリート柱の応力度―ひずみ関係に及ぼす既存帯鉄筋の影響とその定式化.土木学会論文集第620号[J].1999,(5):25~42
    26.肖岩,吴徽,陈宝春等.碳纤维套箍约束混凝土的应力—应变关系[J].工程力学,2002,19(2):154 ~ 159
    27. Xiao, Y. and Wu, H., Compressive Behavior of Concrete Cylinders Confined by Carbon Fiber Composite Jackets[J], Journal of Materials In Civil Engineering,2000, 118(5):139 ~146
    28. Michel Samaan, Amir Mirmiran . Model of Concrete Confined by Fiber Composites[J]. Journal of Structural Engineering , September,1998:1025 ~1031.
    29. Antonio Nanni, N.M.Bradford. FRP jacketed concrete under uniaxial compression[J]. Construction and Building Materials,1995, 9(2), 115~124.
    30. Pierre Rochette, Pierre Labossiere. Axial Testing of Rectangular Column Models Confined with Composites [M]. Journal of Composites for Construction, 2000, 4(3), 129~136.
    31. Huei-Jeng Lin, Chin-I Liao. Compressive strength of reinforced con-crete column confined by composite material[J] . Journal of composite structures,2003, 65,:239~250.
    32.A.Mukherjee. T.E.Boothby.Mechanical Behavior of Fiber-reinforced Polymer- Wrapped Concrete[J].Journal of composite for Construction, 2004, 8(2):97~103.
    33.周长东.玻璃纤维聚合物加固混凝土柱的力学性能研究[D],大连理工大学博士论文,2003.
    34.Michael N.Fardis and Homayoun H.Khalili FRP-encased conctete as a structural material.Magazine of Concrete Research:Vol.34,No.121:December 1982
    35.李明,陆洲导,王李果.玻璃钢围覆加固钢筋混凝土偏心受压短柱的试验研究.土木工程学报,2000,33(3):37-41.
    36. Omar Chaallal and Mohsen Shahawy. Performance of Fbier-Reinforced Polymer-Wrapped Reinforced Concrete Column under Combined Axial Flexural Loading.ACI Structural Journal,2000,97(4):659~668.
    37.王威.增强纤维约束混凝土偏压短柱基本力学性能试验研究.哈尔滨工业大学工学硕士学位论文. 2002,12
    38.丁洪涛,易伟建.碳纤维布(CFRP)加固压弯构件全过程分.湖南大学学报.2003.6:139~141.
    39.曹双寅,碳纤维布约束混凝土的应力—应变关系研究.工业建筑,2001,31(4):15 ~ 21
    40.中华人民共和国国家标准.《混凝土结构设计规范》(GB50010-2002).中国建筑工业出版社.2002
    41.李少华.钢管混凝土轴心受压构件受力性能的试验研究.西安建筑科技大学硕士论文.2003.3
    42. B.Knowles and Park,Axial Load Design for Concrete Filled Steel Tubes. Journal of theStructual Division; bct:I970,No.ST10.
    43. Helmut Bode.钢管混凝土柱钢管混凝土结构译文集.哈尔滨建筑工程学院1981.10
    44.汤关诈,招炳泉.钢管混凝土受压构件承载力计算工业建筑.1985 (2)
    45.钟善桐,苗若愚.钢管混凝土轴心受压构件承载力的研究建筑结构学报1984 (6)
    46.蔡绍怀,邸小坛.钢管混凝土偏压柱的性能和强度计算的研究钢管混凝土结构的强度.计算中国建筑科学院结构所.1984.4
    47. Mirmiran, A., Shahawy, M., and Beitleman, T. (2001).“Slenderness Limit For Hybrid FRP-Concrete Columns.”Journal of Composites for Construction, ASCE, 5(1), 26-34
    48.于清.FRP约束混凝土柱的试验研究.哈尔滨工业大学工学硕士学位论文. 2002,10
    49. Concrete Society( 2000) Design Guidance for Strengthening Concrete Structures using Fiber Composite Materials,Concrete Society Technical Report No.55,Crowthorne,Berkshire,UK.
    50. ACI 440.1R-01. Guide for the Design and Construction of ConcreteReinforced with FRP Bars. American Concrete Institute. USA. 2001.
    51. ACI 440.2R-02. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. American ConcreteInstitute. USA. 2002.
    52. Japan Society of Civil Engineers. Recommendation for Design and singContinuous Fiber Reinforcing Materials. Concrete Engineering Series 23.Tokyo,1997.
    53.中国工程建设标准化协会标准.碳纤维片材加固混凝土结构技术规程(CECS 146:2003).北京:中国计划出版社,2003.
    54.中国工程建设标准化协会标准.混凝土结构加固设计规范(GB50367-2006).北京:中国计划出版社,2006.
    55. Y.Xiao , H.Wu . Behavior of concrete confined by carbon fiber composite jackes. Journal of material in civil engineering. May 2000/139.
    56. M.Shahawy , A.Mrimrian , T.Beiteman. Test and modeling of carbon-wrapped concrete column. Composites: part B31(2000):471~480
    57 Michel Samaan, Amir mirmiran, and Mohsen Shahawy. Model of concrete confined by fiber composites,ASCE,Journal of Structural Engineering. Semtember,1998/1025
    58.贾凤英,陈小兵等.不同FRP约束混凝土圆柱轴心受压性能试验研究.工业建筑.2002年第5期.
    59. Pessiki, S., Harries, K.A., Kestner, J.T., Sause, R. and Ricles, J.M. Axial behavior ofreinforced concrete columns confined with FRP jackets. Journal of Composites for Construction, ASCE, 2001, 5(4): 237-245
    60. Lam, L. and Teng, J.G. Ultimate condition of fiber reinforced polymer-confined concrete.Journal of composites for construction, ASCE, 2004,vol.8,No.6:539-548
    61. Matthys, S., Toutanji, H., Audenaert, K. and Taerwe, L. Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites. ACI structural journal, 2005,V.102,No.2:258-267
    62.刘涛.碳纤维布加固混凝土矩形柱的性能研究[D].上海大学工学博士学位论文.2006,3.岳清瑞.我国碳纤维增强塑料加固修复土木建筑结构技术研究应用现状与展望,建筑物鉴定与加固改造第五届全国学术讨论会论文集。汕头·2000:84 ~ 91
    63.刘锡礼,王秉权.复合材料力学基础,中国建筑工业出版社:1984年2月
    64.冯鹏,叶列平. FRP结构和FRP组合结构在结构工程中的应用与发展第二届全国土木工程纤维增强复合材料FRP的应用技术学术交流会论文集。中国·昆明2000: 51 ~ 61
    65.李宏男,赵颖华等.纤维增强复合材料在土木工程中的研究与应用,第二届全国土木工程纤维增强复合材料FRP的应用技术学术交流会论文集。中国·昆明2000: 43 ~ 48
    66. Zhishen Wu.用FRP板(片)翻新和混凝土结构补强的研究趋势.特希达补强新材料、新技术研讨会。1998:1 ~10
    67.陈小兵,李荣等.FRP加固混凝土结构的设计原则及国外设计标准.工业建筑. 2001,31(4):17 ~ 18
    68.韩小雷, X.W.ZOU,季静纤维增强塑料(FRP)在混凝土结构中的应用——FRP材料性能与发展华南理工大学学报(自然科学版)2002年2月:69 ~ 72
    69.过镇海.混凝土的强度和变形实验基础和本构关系.清华大学学术专著清华大学出版社1997年12月
    70.王雨光.纤维环向缠绕加固混凝土轴心受压短柱实验研究.工学硕士学位论文哈尔滨工业大学:2000年12月
    71.赵彤,谢剑,戴自强.碳纤维布约束混凝土的应力—应变关系研究工业建筑,2001,31(4):15 ~ 21
    72.李静,钱稼茹等.CFRP约束混凝土应力—应变关系全曲线研究.第二届全国土木工程纤维增强复合材料FRP的应用技术学术交流会论文集。中国·昆明2000: 157
    73.张月弦,薛元德. FRP约束混凝土的基本力学性能.玻璃钢/复合材料. 1999年6月
    74. M.Maalej, S.Tanwongsval, P.Paramasivam .Modelling of rectangular RC columns strengthened with FRP Cement & Concrete Composites 25 (2003):263 ~276
    75. Michel Samaan, Amir Mirmiran . MODEL OF CONCRETE CONFINED BY FIBER COMPOSITES. JOURNAL OF STRUCTURAL ENGINEERING SEPTEMBER 1998:1025 ~1031
    76. Whitney CS . Disscussion on Jensen VP’s paper. Journal of ACI,proceeding V.39 Nov.1943
    77.过镇海.钢筋混凝土原理.清华大学出版社1999年3月
    78. J.G.Teng and L.Lam. Compressive Behavior of Carbon Fiber Reinforced Polymer-confined concrete in Elliptical Columns. JOURNAL OF STRUCTURAL ENGINEERING DECEMBER 2002:1535 ~ 1543
    79. Michael N.Fardis and Homayoun H.Khalili FRP-encased conctete as a structural material.Magazine of Concrete Research:Vol.34,No.121:December 1982
    80. H. Saadatmanesh, M.R.Ehsani, and M.W.Li. Strength and Ductility of Concrete Columns Externally Reinforced with Fiber Composite Straps ACI STRUCTURAL JOURNAL
    81. M.Shahawy, A.Mirmiran, T.Beitelman. Tests and modeling of carbon_wrapped concrete columns.Composites:Part B 31(2000)471-480
    82. A. I.Karabinis,T.C.Rousakis. Concrete confined by FRP material: a plasticity approach. Egineering structures 24(2002):923 ~ 932
    83.陈世欣钱春香.纤维包裹素混凝土柱试验研究.混凝土与水泥制品.2001年第6月期:36 ~39
    84. Pierre Rochette and Pierre Labossiere. AXIAL TESTING OF RECTANGULAR COLUMN MODELS CONFINED WITH COMPOSITES. JOURNAL OF COMPOSITES FOR CONSTRUCTION AUGUST 2000:129 ~ 135
    85. S.H.Ahmad, A.R.Khaloo and A.Irshaid Behavour of concrete sprially confined by fiberglass.Magazine of Concrete Research 1991,43,No.156,Sept.,143-148
    86. Shuaib H. Ahmad and Melchor P.Mallare A comparative study of models for confinement of concrete by circular spirals. Magazine of Concrete Research,1994,46,No.166,Mar.,49 - 56
    87. C. Allen Ross, David M.Jerome, Joseph W.Tedesco and Mary L.Hughes. Strengthening of Reinforced Concrete Beams with Externally Bonded Composite Laminates. ACI STRUCTURAL JOURNAL
    88. M.A.Mansur, Member, ASCE, M.S.Chin,and T.H.Wee STRESS-STRAIN RELATIONSHIP OF HIGH-STRENGTH FIBER CONCRETE IN COMPRESSION JOURNAL OF MATERIALS IN CIVIL ENGINEERING /FEBRUARY 1999:21–29
    89.钟善桐.高层钢管混凝土结构.黑龙江科学技术出版社. 1999年1月
    90.韩林海,钟善桐.钢管混凝土力学.大连理工大学出版社. 1995年10月
    91. J.B.唐纳特, R.C.班萨尔著.李仍元等译.碳纤维科学出版社. 1989年11月
    92.王震鸣.复合材料力学和复合材料结构力学.机械工业出版社. 1991年3月
    93.张东兴,黄龙男等.玻璃钢管混凝土柱力学性能的试验研究.哈尔滨建筑大学学报.2000,33(1):73~76
    94.姜浩等.复合纤维加固混凝土柱的抗压试验研究.建筑物鉴定与加固改造第五届全国学术讨论会文集(上册).汕头,2000:197~201
    95.潘景龙.全过程试验对试验装置的刚度要求.哈尔滨建筑工程学院学报.1984,(1):37~42
    96. M. D. Kotsovos, J. B. Newman. Generalized Stress-Strain Relations for Concrete.ASCE. 1978,104(EM4):845~855
    97. Pu-Woei Chen and D.D.L.Chung. A Comparative Study of Concretes Reinforced with Carbon,Polyethylene,and Steel Fibers and Their Improvement by Latex Addition. ACI MATERIALS JOURNAL. March-April 1996:129 ~133
    98. Mosalam, Khalid M.;Mosallam, Ayman S. Nonlinear transient analysis of reinforced concrete slabs subjectd to blast loading and retrofitted with CFRP composites.Composites Part B:Engineering Volume:32, Issue:8, December, 2001, pp.623 -636
    99. Okabe,T.; Takeda. N. Size effect on tensile strength of unidirectional CFRP composites—experiment and simulation. Composites Science and Technology. Volume:62, Issue:15, November, 2002, pp.2053–2064
    100. P. Launay, H.Gachon. Strain and Ultimate Strength of Concrete under Triaxial Stresses, Concrete for Nuclear Reactors. ACI SP34-63. 1972,I:269~282
    101. K. H. Gerstle, et al. Bchavior of Concrete under Multiaxial Stress States. Journal of ASCE.1980,106 (EM6):1383~1403
    102.过镇海,张秀琴.单调荷载下混凝土的应力-应变全曲线的试验研究.清华大学抗震抗爆工程研究室科学研究报告集(第3集).清华大学出版社,1981:1~8
    103.过镇海,张秀琴.反复荷载下混凝土的应力-应变曲线的试验研究.清华大学抗震抗爆工程研究室科学研究报告集(第3集).清华大学出版社,1981:38~53
    104.揽生瑞,过镇海.不同应力途径下混凝土多轴受压强度的试验研究究.清华大学抗震抗爆工程研究室科学研究报告集(第6集).清华大学出版社,1996:52~64
    105.揽生瑞,过镇海.重复荷载作用下混凝土二轴受压性能的试验研究.清华大学抗震抗爆工程研究室科学研究报告集(第6集).清华大学出版社,1996:65~84
    106. L. Cedolin, Y. R. J. Crutzen, S. Dei Poli. Triaxial Stress-Strain Relationship for Concrete. ASCE. 1977,103(EM3):423~469
    107. J. B. Mander, M. J. N. Priestley, R. Park, Theoretical Stress-Strain Model for Confined Concrete. Journal of Structural Engineering, 1988,114(8):1804~1826
    108. H. Toutanji, Stress-Strain Characteristics of Concrete Columns ExtemallyConfined with Advanced Fiber Composite Sheets. ACI Materials Journal. 1999,96(3):397~404
    109.钟善桐,苗若愚.钢管混凝土轴心受压构件承载力计算的研究.建筑结构学报.1984,(6):38~48
    110.陈惠发著,余天庆王勋文刘再华译,刘西拉韩大建校译.土木工程材料的本构方程.华中科技大学出版社. 2001年5月
    111.徐秉业刘信声.应用弹塑性力学.清华大学出版社. 1999年9月
    112. A. C. T. Chen, U. F. Chen. Constitutive Relations for Concrete. ASCE. 1975,101(EM4):456~481
    113. N. S. Ottosen, Constitutive Model for Short-time Loading of Concrete. ASCE. 1979,105(EM1):127~141
    114.尹双增.一种混凝土四参数强度准则的研究.约束与普通混凝土强度理论及应用.烟台,1987:244~248
    115.余永遐.三参数强度理论.约束与普通混凝土强度理论及应用.烟台,1987:228~236
    116.过镇海,王传志.多轴应力下混凝土破坏准则的试验研究.土木工程学报.1991,24(3):1~14
    117.徐清风,蒋永生纤维增强塑料在混凝土结构中的应用新型建筑材料2001年4月:36 ~ 37、
    118.王引富,徐克宾.切线模量理论在钢筋混凝土柱稳定计算中的应用.北方交通大学学报.1996,10(5):573~576
    119.梁炳文,胡世光.弹朔性稳定理论.1983 11出版
    120.陆新征,冯鹏,叶列平.FRP布约束混凝土方柱轴心受压性能的有限元分析.土木工程学报.2003.2
    121.刘浩.CFRP增强钢筋混凝土柱承载力有限元分析.沈阳建筑工程学院学报.2003.7 13~31
    122.钟善桐.钢管混凝土结构.黑龙江科学技术出版社.1994
    123.易日编著.使用ANSYS6.0进行静力学分析.北京大学出版社
    124.叶先磊,史亚杰编著.ANSYS工程分析软件应用实例.清华大学出版社.
    125.江见鲸,陆新征.ANSYS solid65单元分析混凝土,清华大学土木工程系

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700