用户名: 密码: 验证码:
输配电网潮流与优化的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境恶化、不可再生能源枯竭,驱使节能减排、能源洁净迫在眉睫。电能转换在能源利用中占主导地位,电力系统在电源构成上必将发生巨大变化。在这一背景下,输电、配电逐渐向不清晰、分散化、分布式方向发展。由此,电力系统潮流、优化潮流的理论面临新问题,对其进行深入研究有重要的理论意义和工程价值。
     对此,在前人研究成果的基础上,本文从输配电网的潮流、优化潮流必须以全局理念进行分析的思想出发,深入研究了这一复杂问题,以潮流为核心,就各子问题、以及子问题间的分解与协调,展开理论与实践的探索,取得预期的成效,其主要创新性成果如下:
     (1)针对交流电网潮流算法中不同稀疏存储格式下元素检索或注入元插入操作繁琐的问题,提出了极坐标下牛顿潮流数值计算过程、节点编号及稀疏处理相关联的封闭格式潮流算法。该算法以交流输电支路为基元,支路潮流微增模型直接关联雅克比矩阵,支路节点号定位待更新元素位置,避开了导纳阵的形成;利用节点编号与前代回代计算的关联,以拓扑形式显现消元过程中因子表结构变动,预测注入元并准确定位,使注入元插入操作简捷;采用三角检索存储格式,前代自动定位,回代自动释放,降低了信息检索的消耗。
     (2)针对直流输电支路对交流电网潮流算法格式及收敛性的影响,提出直流输电支路等效为基元的交直流电网潮流算法。引入直流输电支路等效基元的概念,依据直流输电支路不同运行模式在数学上的相通性,将不同运行模式转化为一种等效模式,实现对直流输电支路基元模型的统一表达。在潮流计算中考虑直流输电支路时,仅需在交流网络修正方程基础上,追加其等效基元微增模型即可,对稀疏存储结构和计算格式无影响,从而使算法统一且有固定规律,交流输电支路为基元的潮流算法得以继续沿用。
     (3)针对含大量分布式电源的输配电网潮流计算问题。首先分析其输、配电网间相互渗透的特点,表现在:有功方面,配电要么显现受端特性,要么显现电源特性;无功方面,要么输电依然支撑配电,要么配电也可能有其电压支撑的主动性;有功与无功间,要么依然处于弱耦合状态,要么出现紧密耦合状态。对上述表现的后者,体现出实施输配电网统一分析的必要性。在此基础上,在有功、无功平衡允许的约束条件下,以输电网为主问题和若干配电网为子问题,建立反映配电网与输电网间关联的潮流计算模型,提出以输配分界点电压为协变量的输配电网潮流的分解协调算法,同时计及相关信息的协调。实践表明,该算法简捷有效,在可行条件下有良好的收敛性,可满足输配电网联合计算的要求。
     (4)就含分布式电源(风、光、储)的配电网,由于显现其主动行为,提出动态优化的模型,并予以机理分析。由于风、光、储共存的配电网中,不仅体现有功、无功及电压间的相互关联和耦合,而且因储能使一定周期内存在显著的时间关联,使配网潮流必须以动态优化方可挖掘其效能。在此基础上,详细阐述各类分布式电源特性及约束条件,从而建立相应的动态优化数学模型,并给出相应的求解方法。分析表明,该模型能有效发挥各类分布式电源的调节能力,实现资源的优化配置。
     (5)针对分布式电源占相当比例的输配电网优化问题,提出必须实施输、配统筹的全网优化,并对输、配电间的作用机理予以分析。首先通过输、配电网边界节点变量复制,对输、配电网的变量、约束、目标函数进行分解,针对边界节点变量等式约束导致的优化问题不可分性,借助辅助问题原理,将其对应的增广拉格朗日函数转化为一系列可并行处理的辅助问题,从而以输、配电网优化子问题为基础,建立了二者相协调的输配电网优化潮流模型。该协调机制下,输、配电网只需关注其各自的优化子问题,通过交换少量边界信息对其边界节点上虚拟机组的成本参数进行修正,即可实现分区间的协调,达到输电、配电间资源的优化配置。实践表明,该算法实施便捷,收敛性好,对未来输配电网协调优化有理论储备和指导意义。
With the environment deterioration and non-renewable energy exhaustion, applying the energy conservation policy and making good use of clean energy are becoming extremely urgent. Electrical energy conversion is dominant in the use of energy, while the energy source composition in the power system will surely be significantly changed. In this context, electrical power transmission and distribution is about to develop gradually in an indeterminate, decentralized and distributed way. As a result, the theory of power flow and optimal power flow are facing new problems. It is theoretically significant and practically valuable to do its intensive study.
     Based on the results of previous studies, the author of this thesis has done some depth-study of the complex issues mentioned above with the idea that the power flow in the transmission and distribution network and its optimization must employ the global analysis concept. Moreover, with the power flow as the core issue, this thesis expands the exploration of the theory and practice in the decomposition and coordination between each sub-problem and as well as each sub-problem itself and the expected results has been achieved. The main innovative results are as following:
     1. To reduce the trouble in coping with newly added elements and element retrievals in different sparse storage format during the calculation of AC power flow correction equations, a closed format power flow algorithm is proposed, utilizing the incidence among the factorization process, the numbering of nodes and the sparse storage during Newton power flow calculation in polar coordinates. The proposed algorithm is expressed by correction equations of branch increment models and directly related to Jacobian matrix in additional form, so the element to be updated is located by branch node number and admittance matrix is not needed. According to the incidence between node numbers and forward-backward substitution operation, changes of factorization table structure in elimination process are described with the network topology changes, so that the newly added elements could be predicted and their operation would be easier to be made. Besides that, this algorithm uses triangle retrieve storage format and make automatic location of forward substitution operation and automatic releasing of backward operation, so that the consumption of retrieval information in the process of calculation is smart redued.
     2. In allusion to the influence of DC transmission lines on the format and convergence of AC power flow calculation, a power flow algorithm for AC-DC power grid based on the equivalence elements of DC transmission line is proposed. According to the communication among different operation modes of DC transmission lines in mathematics, this algorithm translates various modes into one equivalent mode by introducing the concept of the equivalence modes of DC transmission line, in order to realize the unification of DC transmission line models. When considering DC transmission line in power flow calculation, this algorithm only need to add the incremental model of its equivalent model, so that sparse storage structure and computational format are not changed which means that the algorithm has unified and fixed rules and AC power flow algorithm based on AC transmission line modes can be continue used.
     3. For the power flow calculation problem of power transmission-distribution network containing numerous distributed generations. Analysis about the interpenetration characteristics between transmission and distribution network is given. The characteristics are:in the active power aspect, the distribution network shows either the characteristics of receiving end or the power source part; in the reactive power aspect, either transmission grid will support the distribution network or the distribution network may show its voltage support initiative; in between, the active and the reactive power may be either weakly coupled or in strongly coupled state. Each of the latter part of the characteristics mentioned above demonstrates the necessity of the implementation of a unified analysis of the transmission and distribution network. On this basis, under the active and reactive power balance constraints, taking the transmission grid as the main problem and some distribution network as the sub-problem, power flow calculation model which displays the correlation between distribution grid and transmission grid is created. And at the same time, transmission and distribution network power flow decomposition and coordination algorithm with cut-off point voltage as covariant is proposed. In practice, it shows that the algorithm is simple and effective. Besides, under feasible conditions, the algorithm is with great convergence, which could satisfy the requirements of the computation of the transmission and distribution network.
     4. For distribution networks including wind power, solar power and energy storage, the dynamic optimal power flow model is proposed and its mechanism is analyzed in order to describe the active behavior of distributed generations. Due to the coupling between real and reactive power and the connection in time, distribution network power flow need to be dynamicly optimized so that its efficiency can be fully expressed. On this basis, this thesis describes in detail the characteristics and constraints of different kinds of distributed generations, and proposes the corresponding dynamic optimal power flow model and its solution strategy. Numerical examples show that this model can fully utilize the regulation capability of distributed generations and realize the optimal configuration of power sources.
     5. In allusion to the transmission-distribution network optimization problem with extensive distributed generations, this thesis proposes a whole network optimal power flow model and studies the effect rule between transmission and distribution network. Firstly, objective function, constraints and variables of transmission and distribution networks are decomposed with the replication of boundary variables. In allusion to the inseparability caused by equality constraints of boundary variables, auxiliary problem principle is applied and the augmented Lagrangian function is transformed into a series of auxiliary problems that can be solved in parallel, so that the coordinated transmission-distribution network optimal power flow model is proposed on the basis of transmission and distribution optimization sub-problems. Under that coordination mechanism, the two networks only need to treat with its own sub-problem and virtual generators costing parameters can be corrected with a little amount of boundary information exchange in order to realize the coordination of different areas and the optimal configuration of power sources. Numerical examples show that this algorithm is simple in computer implementation and has good convergence; therefore, it can be very useful theoretical reserve and of great guiding significance for coordinated transmission-distribution network optimal problems in the future.
引文
[1]EPRI U, D E. Profiling and mapping of intelligent grid R&D programs[M]. Palo Alto, CA:US EPRI.2006.
    [2]DOE U. Grid 2030:A National Vision For Electricity's Second 100 Years[M].2003.
    [3]Commission E. European technology platform smart grids:vision and strategy for Europe's electricity networks of the future[M]. Office for Official Publications of the European Communities.2006.
    [4]刘振亚.特高压电网[M].中国经济出版社,2005.
    [5]韩学山,张文.电力系统工程基础[M].机械工业出版社,2008.
    [6]张伯明,陈寿孙,严正.高等电力网络分析[M].清华大学出版社,2007.
    [7]Ward J B, Hale H W. Digital Computer Solution of Power-Flow Problems[J]. Power Apparatus and Systems, Part Ⅲ Transactions of the American Institute of Electrical Engineers,1956,75(3):398-404.
    [8]Glimn A, Stagg G. Automatic calculation of load flows[J]. Power Apparatus and Systems, Part Ⅲ Transactions of the American Institute of Electrical Engineers,1957,76(3):817-825.
    [9]Brameller A, Denmead J. Some improved methods for digital network analysis[J]. Proceedings of the IEE-Part A:Power Engineering,1962,109(43): 109-116.
    [10]Brown H E, Carter G K, Happ H H, et al. Power Flow Solution by Impedance Matrix Iterative Method[J]. Power Apparatus and Systems, IEEE Transactions on,1963,82(65):1-10.
    [11]Tinney W F, Walker J W. Direct solutions of sparse network equations by optimally ordered triangular factorization[J]. Proceedings of the IEEE,1967, 55(11):1801-1809.
    [12]Tinney WF, Hart C E. Power Flow Solution by Newton's Method[J]. Power Apparatus and Systems, IEEE Transactions on,1967, PAS-86(11):1449-1460.
    [13]Stott B, Alsac O. Fast Decoupled Load Flow[J]. Power Apparatus and Systems, IEEE Transactions on,1974, PAS-93(3):859-869.
    [14]Monticelli A J, Garcia A, Saavedra O R. Fast decoupled load flow:hypothesis, derivations, and testing[J]. Power Systems, IEEE Transactions on,1990, 5(4):1425-1431.
    [15]Rajicic D, Bose A. A modification to the fast decoupled power flow for networks with high R/X ratios[J]. Power Systems, IEEE Transactions on,1988, 3(2):743-746.
    [16]Van Amerongen R A. A general-purpose version of the fast decoupled load flow[J]. Power Systems, IEEE Transactions on,1989,4(2):760-770.
    [17]Wang L, Xiang P, Wang S, et al. Novel decoupled power flow[C]. Generation, Transmission and Distribution, IEE Proceedings C.1990. IET.
    [18]Tinney W F, Brandwajn V, Chan S M. Sparse Vector Methods[J]. Power Apparatus and Systems, IEEE Transactions on,1985, PAS-104(2):295-301.
    [19]Chan S M, Brandwajn V. Partial Matrix Refactorization[J]. Power Systems, IEEE Transactions on,1986,1(1):193-199.
    [20]Bacher R, Tinney W F. Faster local power flow solutions:the zero mismatch approach[J]. Power Systems, IEEE Transactions on,1989,4(4):1345-1354.
    [21]邱家驹,罗国麟.电力系统并行算法研究一一基于稀疏向量技术的大树枝法及比较[J].电网技术,1995,19(7):22-25.
    [22]Lau K, Tylavsky D J, Bose A. Coarse grain scheduling in parallel triangular factorization and solution of power system matrices[J]. Power Systems, IEEE Transactions on,1991,6(2):708-714.
    [23]Gomez A, Franquelo L G. An efficient ordering algorithm to improve sparse vector methods[J]. Power Systems, IEEE Transactions on,1988,3(4): 1538-1544.
    [24]Betancourt R. An efficient heuristic ordering algorithm, for partial matrix refactorization[J]. Power Systems, IEEE Transactions on,1988,3(3): 1181-1187.
    [25]Semlyen A, de Leon F. Quasi-Newton power flow using partial Jacobian updates[J]. Power Systems, IEEE Transactions on,2001,16(3):332-339.
    [26]张维国,韩学山.计及相角变化对支路无功影响的潮流算法[J].中国电机工程学报,1992,12(1):62-66.
    [27]于继来,王江.电力系统潮流算法的几点改进[J].中国电机工程学报,2001,21(9): 88-93.
    [28]李敏,陈金富,段献忠,等.潮流计算收敛性问题研究综述[J].继电器,2006,34(4):74-79.
    [29]王孟夏,韩学山,蒋哲,等.计及电热耦合的潮流数学模型与算法[J].电力系统自动化,2009,32(14):30-34.
    [30]刘爱国,胡华寅.应用稀疏矩阵技术的潮流计算[J].南昌大学学报:工科版,1998,20(2):19-23.
    [31]颜伟,黄正波,余娟.潮流计算中的二层链表与有序节点关联信息生成法[J].电网技术,2010,34(11):87-92.
    [32]毛安家,郭志忠.电力系统计算中的二维稀疏结构技术[J].继电器,2001,29(1):19-21.
    [33]朱凌志,安宁.基于二维链表的稀疏矩阵在潮流计算中的应用[J].电网技术,2005,29(8):51-55.
    [34]尤钟晓,金勇.十字链表在电力系统潮流计算中的应用[J].电力自动化设备,1999,19(6):31-33.
    [35]高毅,王成山,李继平.改进十字链表的稀疏矩阵技术及其在电力系统仿真中的应用[J].电网技术,2011,35(5):33-39.
    [36]中国科学技术协会.动力与电气工程学科发展报告[M].中国科学出版社,2010.
    [37]吴敬儒,邱言文.确保国内生产总值翻两番的2001~2020年电力工业发展研究[J].电网技术,2003,27(4):1-6.
    [38]陈佐沂.交、直流联合系统数字模拟方法的探讨[J].电力系统自动化,1985,27-36.
    [39]王宪荣,柳焯,张伯明.交直流系统潮流新算法[J].中国电机工程学报,1991,11(s1):99-106.
    [40]王宪荣,张伯明.一种交直流潮流PQ解耦算法[J].电力系统自动化,1992,16(1):40-47.
    [41]薛振宇,房大中.基于双向迭代的交直流互联电力系统潮流计算[J].电力系统自动化,2013,37(5):61-67.
    [42]Tylavsky D J. A Simple Approach to the Solution of the ac-dc Power Flow Problem[J]. Education, IEEE Transactions on,1984,27(1):31-40.
    [43]邱革非,束洪春,于继来.一种交直流电力系统潮流计算实用新算法[J].中国电机工程学报,2008,28(13):53-57.
    [44]Smed T, Andersson G, Sheble G, et al. A new approach to AC/DC power flow[J]. Power Systems, IEEE Transactions on,1991,6(3):1238-1244.
    [45]徐政.交流等值法交直流电力系统潮流计算[J].中国电机工程学报,1994,14(3): 1-6.
    [46]李华东,韩学山,卢艺,等.配电网潮流计算的实用算法[J].东北电力学院学报,1997,17(1):60-66.
    [47]张尧,王琴,宋文南,等.树状网的潮流算法[J].中国电机工程学报,1998,18(3):217-220.
    [48]颜伟,刘方,王官洁,等.辐射型网络潮流的分层前推回代算法[J].中国电机工程学报,2003,23(8):76-80.
    [49]Chen T-H, Chen M-S, Hwang K-J, et al. Distribution system power flow analysis-a rigid approach[J]. Power Delivery, IEEE Transactions on,1991, 6(3):1146-1152.
    [50]Sun D, Abe S, Shoults R, et al. Calculation of energy losses in a distribution system[J]. Power Apparatus and Systems, IEEE Transactions on,1980, PAS-99(4):1347-1356.
    [51]Goswami S, Basu S. Direct solution of distribution systems[C]. Generation, Transmission and Distribution, IEE Proceedings C.1991. IET.
    [52]Teng J-H. A direct approach for distribution system load flow solutions[J]. Power Delivery, IEEE Transactions on,2003,18(3):882-887.
    [53]彭彬,刘宁,吴迪.配电网潮流计算中的分布式电源建模[J].电力系统及其自动化学报,2011,23(2):152-156.
    [54]Naka S, Genji T, Fukuyama Y. Practical equipment models for fast distribution power flow considering interconnection of distributed generators[C]. Power Engineering Society Summer Meeting.2001. IEEE.
    [55]Zhu Y, Tomsovic K. Adaptive power flow method for distribution systems with dispersed generation[J]. Power Delivery, IEEE Transactions on,2002,17(3): 822-827.
    [56]陈海焱.含分布式发电的电力系统分析方法研究[D].武汉:华中科技大学,2007.
    [57]Kron G. Diakoptics:piecewise solution of large-scale systems[M]. General Electric,1957.
    [58]Yuan C-P, Lucas R, Chan P, et al. Parallel electronic circuit simulation on the IPSC system[C]. Proceedings of the Custom Integrated Circuits Conference.1988. IEEE.
    [59]赵文恺,房鑫炎,严正.电力系统并行计算的嵌套分块对角加边形式划分算法[J].中国电机工程学报,2010,30(25):66-73.
    [60]Chan K, Daniels A, Dunn R, et al. A partitioning algorithm for parallel processing of large power systems network equations[C]. Advances in Power System Control, Operation and Management,2nd International Conference on.1993. IET.
    [61]洪潮,沈俊明.求解大型稀疏线性方程组的一种并行算法及其在并行潮流计算中的应用[J].武汉水利电力大学学报,2000,33(4):29-34.
    [62]Frohlich N, Glockel V, Fleischmann J. A new partitioning method for parallel simulation of VLSI circuits on transistor level[C]. Proceedings of the Design, Automation and Test in Europe Conference and Exhibition.2000. IEEE.
    [63]Vale M, Falcao D, Kaszkurewicz E. Electrical power network decomposition for parallel computations[C]. IEEE International Symposium on Circuits and Systems.1992.
    [64]张伯明,张海波.多控制中心之间分解协调计算模式研究[J].中国电机工程学报,2006,26(22):1-5.
    [65]张海波,张伯明,孙宏斌.基于异步迭代的多区域互联系统动态潮流分解协调计算[J].电力系统自动化,2003,27(24):1-9.
    [66]张海波,张晓云.基于异步迭代的交直流互联系统分布式动态潮流计算[J].电力系统自动化,2009,33(18):33-36.
    [67]张海波,张伯明,孙宏斌.分布式潮流计算异步迭代模式的补充和改进[J].电力系统自动化,2007,31(2):12-16.
    [68]张海波,蒋良敏,陶文伟,等.实用化分布式动态潮流计算系统的设计与实现[J].电力系统自动化,2012,36(9):67-71.
    [69]颜伟,何宁.基于ward等值的分布式潮流计算[J].重庆大学学报:自然科学版,2007,29(11):36-40.
    [70]黄平,沈沉,陈颖.多层电力系统的异步迭代分布式潮流计算[J].电网技术,2008,32(7):19-24.
    [71]赵晋泉,徐鹏,高宗和,等.基于子网边界等值注入功率的异步迭代分布式潮流算法[J].电力系统自动化,2010,34(18):1-5.
    [72]孙宏斌,张伯明,相年德.发输配全局潮流计算一一第一部分:数学模型和基本算法[J].电网技术,1998,22(12):39-42.
    [73]孙宏斌,张伯明.发输配全局电力系统分析[J].电力系统自动化,2000,24(1):17-20.
    [74]孙宏斌,张伯明,相年德.发输配全局潮流计算第二部分:收敛性,实用算法和算例[J].电网技术,1999,23(1):50-53.
    [75]孙宏斌,郭烨,张伯明.含环状配电网的输配全局潮流分布式计算[J].电力系统自动化,2009,32(13):11-15.
    [76]Steinberg M J, Smith T H. The theory of incremental rates and their practical application to load division-part II[J]. American Institute of Electrical Engineers, Transactions of the,1934,53(4):571-584.
    [77]Steinberg M J, Smith T H. The theory of incremental rates and their practical application to load division-part I[J]. American Institute of Electrical Engineers, Transactions of the,1934,53(3):432-445.
    [78]Kron G. Tensorial Analysis of Integrated Transmission Systems Part I. The Six Basic Reference Frames[J]. American Institute of Electrical Engineers, Transactions of the,1951,70(2):1239-1248.
    [79]Wadhwa C, Nanda J. New approach to modified co-ordination equations for economic load dispatch[J]. Electrical Engineers, Proceedings of the Institution of,1976,123(9):923-925.
    [80]Carpentier J. Contribution a l'etude du dispatching economique[J]. Bulletin de la Societe Francaise des Electriciens,1962,3(8):431-447.
    [81]Shoults R R, Sun D. Optimal power flow based upon PQ decomposition[J]. Power Apparatus and Systems, IEEE Transactions on,1982, PAS-101(2):397-405.
    [82]Dommel H W, Tinney W F. Optimal power flow solutions[J]. Power Apparatus and Systems, IEEE Transactions on,1968, PAS-87(10):1866-1876.
    [83]Divi R, Kesavan H. A Shifted Penalty Function Approach for Optimal Load-Flow[J]. Power Apparatus and Systems, IEEE Transactions on,1982, PAS-101(9):3502-3512.
    [84]Talukdar S N, Giras T C, Kalyan V K. Decompositions for optimal power flows[J]. Power Apparatus and Systems, IEEE Transactions on,1983, PAS-102(12):3877-3884.
    [85]Stott B, Hobson E. Power system security control calculations using linear programming, Part Ⅱ[J]. Power Apparatus and Systems, IEEE Transactions on, 1978, PAS-97(5):1721-1731.
    [86]Stott B, Hobson E. Power system security control calculations using linear programming, Part Ⅰ[J]. Power Apparatus and Systems, IEEE Transactions on, 1978, PAS-97(5):1713-1720.
    [87]Stott B, Marinho J, Alsac O. Review of linear programming applied to power system rescheduling[C]. Power Industry Computer Applications Conference, IEEE Conference Proceedings,1979.
    [88]Alsac O, Bright J, Prais M, et al. Further developments in LP-based optimal power flow[J]. Power Systems, IEEE Transactions on,1990,5(3):697-711.
    [89]Reid G F, Hasdorff L. Economic dispatch using quadratic programming[J]. Power Apparatus and Systems, IEEE Transactions on,1973, PAS-92(6):2015-2023.
    [90]Bartholomew-Biggs M. Recursive quadratic programming methods based on the augmented Lagrangian[J]. Computation Mathematical Programming,1987, 21-41.
    [91]Sun D I, Ashley B, Brewer B, et al. Optimal power flow by Newton approach[J]. Power Apparatus and Systems, IEEE Transactions on,1984, PAS-103(10):2864-2880.
    [92]Wu Y-C, Debs A S, Marsten R E. A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows[J]. Power Systems, IEEE Transactions on,1994,9(2):876-883.
    [93]Granville S. Optimal reactive dispatch through interior point methods[J]. Power Systems, IEEE Transactions on,1994,9(1):136-146.
    [94]Irisarri G, Wang X, Tong J, et al. Maximum loadability of power systems using interior point nonlinear optimization method[J]. Power Systems, IEEE Transactions on,1997,12(1):162-172.
    [95]Torres G L, Quintana V H. An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates[J]. Power Systems, IEEE Transactions on,1998,13(4):1211-1218.
    [96]Capitanescu F, Glavic M, Ernst D, et al. Interior-point based algorithms for the solution of optimal power flow problems[J]. Electric Power systems research,2007,77(5):508-517.
    [97]潘珂,韩学山,孟祥星.无功优化内点法中非线性方程组求解规律研究[J].电网技术,2006,30(19):59-65.
    [98]Alsac O, Stott B. Optimal load flow with steady-state security[J]. Power Apparatus and Systems, IEEE Transactions on,1974, PAS-93(3):745-751.
    [99]Qiu W, Flueck A J, Tu F. A new parallel algorithm for security constrained optimal power flow with a nonlinear interior point method[C]. Power Engineering Society General Meeting,2005.
    [100]李尹,张伯明,孙宏斌,等.基于非线性内点法的安全约束最优潮流[J].电力系统自动化,2007,31(19):7-13.
    [101]李尹,张伯明,孙宏斌,等.基于非线性内点法的安全约束最优潮流(二)算法实现[J].电力系统自动化,2007,31(20):6-11.
    [102]Monticelli A, Pereira M, Granville S. Security-constrained optimal power flow with post-contingency corrective rescheduling [J]. Power Systems, IEEE Transactions on,1987,2(1):175-180.
    [103]Capitanescu F, Wehenkel L. Improving the statement of the corrective security-constrained optimal power-flow problem[J]. Power Systems, IEEE Transactions on,2007,22(2):887-889.
    [104]Capitanescu F, Wehenkel L. A new iterative approach to the corrective security-constrained optimal power flow problem[J]. Power Systems, IEEE Transactions on,2008,23(4):1533-1541.
    [105]王永刚,韩学山,王宪荣,等.动态优化潮流[J].中国电机工程学报,1997,17(03): 195-198.
    [106]韩学山,柳焯,陈小虎.动态优化调度研究的回顾与展望[J].电力系统自动化,1994,18(9):64-68.
    [107]韩学山,赵国梁,柳焯.动态优化调度积留量法的基本理论一一紧段落与准备段落的分析[J].东北电力学院学报,1995,15(3):1-7.
    [108]韩学山,徐志勇,柳焯.动态优化调度积留量法的基本理论一一动态优化调度的解耦求解模型[J].东北电力学院学报,1996,16(1):1-7.
    [109]Xie K, Song Y. Optimal power flow with time-related constraints by a nonlinear interior point method[C]. Power Engineering Society Winter Meeting,2000.
    [110]赖永生,刘明波.电力系统动态无功优化问题的快速解耦算法[J].中国电 机工程学报,2008,28(7):32-39.
    [111]刘方,颜伟,徐国禹.动态最优潮流的预测/校正解耦内点法[J].电力系统自动化,2007,31(14):38-42.
    [112]杨明,韩学山,梁军,等.计及网络安全约束及用户停电损失的动态经济调度方法[J].电力系统自动化,2009,33(14):27-31.
    [113]王孟夏,韩学山,杨朋朋,等.计及电热耦合的动态最优潮流模型与算法[J].电力系统自动化,2010,34(3):28-32.
    [114]车仁飞.配电网潮流计算及重构算法的研究[D].济南:山东大学,2003.
    [115]王威,韩学山,王勇,等.一种减少生成树数量的配电网最优重构算法[J].中国电机工程学报,2008,28(16):34-38.
    [116]王威,韩学山,王勇,等.配电网络电容器优化投切的作用范围法[J].电力系统及其自动化学报,2009,20(6):36-40.
    [117]熊宁,程浩忠.基于开关组的禁忌算法在配电网动态重构中的应用[J].电力系统自动化,2009,32(11):56-60.
    [118]赵晶晶,李新,彭怡,等.基于粒子群优化算法的配电网重构和分布式电源注入功率综合优化算法[J].电网技术,2009,33(17):157-162.
    [119]陈琳,钟金,倪以信,等.含分布式发电的配电网无功优化[J].电力系统自动化,2006,30(14):20-24.
    [120]Ochoa L F, Harrison G P. Minimizing energy losses:Optimal accommodation and smart operation of renewable distributed generation[J]. Power Systems, IEEE Transactions on,2011,26(1):198-205.
    [121]Dolan M J, Davidson E M, Kockar I, et al. Distribution Power Flow Management Utilizing an Online Optimal Power Flow Technique [J]. Power Systems, IEEE Transactions on,2012,27(2):790-799.
    [122]Gabash A, Li P. Active-Reactive Optimal Power Flow in Distribution Networks With Embedded Generation and Battery Storage[J].2012.
    [123]Aguado J A, Quintana V H, Conejo A J. Optimal power flows of interconnected power systems[C]. Power Engineering Society Summer Meeting,1999.
    [124]Conejo A J, Nogales F J, Prieto F J. A decomposition procedure based on approximate Newton directions[J]. Mathematical programming,2002,93(3): 495-515.
    [125]Batut J, Renaud A. Daily generation scheduling optimization with transmission constraints:a new class of algorithms[J]. Power Systems, IEEE Transactions on,1992,7(3):982-989.
    [126]Kim B H, Baldick R. Coarse-grained distributed optimal power flow[J]. Power Systems, IEEE Transactions on,1997,12(2):932-939.
    [127]Baldick R, Kim B H, Chase C, et al. A fast distributed implementation of optimal power flow[J]. Power Systems, IEEE Transactions on,1999,14(3): 858-864.
    [128]Kim B H, Baldick R. A comparison of distributed optimal power flow algorithms[J]. Power Systems, IEEE Transactions on,2000,15(2):599-604.
    [129]Hur D, Park J-K, Kim B H. Evaluation of convergence rate in the auxiliary problem principle for distributed optimal power flow[C]. Generation, Transmission and Distribution, IET Proceedings,2002.
    [130]Hur D, Park J-K, Kim B H. On the convergence rate improvement of mathematical decomposition technique on distributed optimal power flow[J]. International Journal of Electrical Power & Energy Systems,2003, 25(1):31-39.
    [131]程新功,厉吉文,曹立霞,等.电力系统最优潮流的分布式并行算法[J].电力系统自动化,2004,27(24):23-27.
    [132]程新功,厉吉文,曹立霞,等.基于电网分区的多目标分布式并行无功优化研究[J].中国电机工程学报,2003,23(10):110-113.
    [133]刘宝英,杨仁刚.采用辅助问题原理的多分区并行无功优化算法[J].中国电机工程学报,2009,29(7):47-51.
    [134]李鹏,张保会,汪成根,等.基于模型预测的分布式电压协调控制[J].电力系统自动化,2010,34(11):8-12.
    [135]李强,韩爱稳,赵洪山.基于电网分区和辅助问题原理的电力系统多区域有功负荷经济调度[J].继电器,2006,34(11):31-34.
    [136]刘科研,盛万兴,李运华.基于分布式最优潮流算法的跨区输电阻塞管理研究[J].中国电机工程学报,2007,27(19):56-61.
    [137]赵晶晶,魏炜,王成山.基于电网分区的分布式输电能力计算[J].中国电机工程学报,2008,28(7):1-6.
    [138]Rogers K M, Klump R, Khurana H, et al. An authenticated control framework for distributed voltage support on the smart grid[J]. Smart Grid, IEEE Transactions on,2010,1(1):40-47.
    [139]Liu J, Salama M, Mansour R R. Identify the impact of distributed resources on congestion management[J]. Power Delivery, IEEE Transactions on,2005, 20(3):1998-2005.
    [140]Heussen K, Koch S, Ulbig A, et al. Unified system-level modeling of intermittent renewable energy sources and energy storage for power system operation[J]. Systems Journal, IEEE,2012,6(1):140-151.
    [141]陈亚民.电力系统计算程序及其实现[M].水利电力出版社,1995.
    [142]王锡凡,方万良,杜正春.现代电力系统分析[M].科学出版社,2003.
    [143]Feijoo A E, Cidras J. Modeling of wind farms in the load flow analysis[J]. Power Systems, IEEE Transactions on,2000,15(1):110-115.
    [144]赵晶晶,符杨,李东东.考虑双馈电机风电场无功调节能力的配电网无功优化[J].电力系统自动化,2011,35(11):33-38.
    [145]王一波,伍春生,廖华,等.大型并网光伏发电系统稳态模型与潮流分析[J].清华大学学报:自然科学版,2009,49(8):1093-1097.
    [146]IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems[S]. IEEE Std 929-2000.
    [147]张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008,32(7):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700