用户名: 密码: 验证码:
低碳背景下电力系统规划与运营模式及决策方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统实现一次能源向二次能源的转换以及电能的输配和使用,是国民生产中碳排放水平最高的部门之一。低碳经济发展的压力以及我国节能减排相关政策都会给电力行业的发展带来诸多挑战。作为电力系统中连接电力生产与电力使用的枢纽,电网企业以电网的规划投资、电力系统的运行以及电力供应为核心业务,在低碳发展的新的时代背景下,电网企业的规划投资、运行及经营核心业务将面临着多方面的挑战与风险。在我国电力工业低碳发展背景下,电网企业还需要发挥自身的枢纽作用,引导好电力系统的规划投资工作,维护好电力系统的环保经济调度工作,实现好电力系统整体节能减排目标,发展好低碳电力工业对低碳国民生产的支撑作用。这就需要有针对性地分析低碳发展对电力系统带来的风险与挑战,从而提出有效的解决方案。本文的研究从电网企业的视角出发,分析了低碳发展战略对我国电网企业核心业务的影响;围绕电网企业的三大核心业务,分别研究了低碳背景下电源电网协调规划投资决策模型及方法、低碳背景下电力系统环保经济调度决策模型及方法、低碳背景下电网企业经营策略;最后,构建了我国低碳电力系统可持续发展运行机制。
     首先,从电网企业角度分析了低碳发展战略对我国电力系统的影响,包括对电力系统规划、调度及企业经营的影响。总的来看,对电力系统规划的影响突出表现在可再生能源无序投资,随着电网统一规划职能的弱化,电源电网规划决策缺乏协调的问题突出。对电力系统调度的影响则突出表现在具有间歇性和波动性特征的低碳电源大规模并网,系统调度的目标由过去的安全、经济调度转变为安全、环保、经济调度,同时对调度机构的决策响应能力提出了更高要求。对电网企业经营的影响突出表现在发挥电网枢纽作用,利用数据归集的优势,以对规划、调度和供电各环节的低碳贡献效果评估为核心,构建与电网公司三大核心业务相配套的低碳效果评估决策机制,持续优化企业经营策略、改善整个电力系统的碳排放水平,促进整个电力系统的低碳可持续发展。
     其次,从电网企业的角度构建了低碳背景下电源电网两阶段协调规划投资模型。第一阶段模型为低碳背景下考虑可再生能源并网的发电容量投资组合优化模型,能够为政府部门提供“发电容量最优规划容量对照表”,能够确定不同可再生能源装机份额时其他常规电源的装机份额,为政府部门从总量上控制电源侧的装机规模提供决策依据;第二阶段模型为计及碳排放约束的低碳电网最优规划模型,通过碳排放量计算模型以及碳排放价格EGARCH预测模型将电源侧碳排放的约束进行量化处理,构建了综合考虑输电线路投资成本、输电线损成本、发电成本以及碳排放成本的投资成本最小目标函数,并通过模拟退火智能算法进行求解,通过政府部门的整合,最终形成低碳电源电网协调规划最优方案。
     第三,从电网企业的角度构建了低碳背景下电力系统环保经济调度决策模型。构建了包含总燃料成本、污染物(C02、硫化物、氮化物)排放成本的系统调度目标函数,将输电线损的实际功率平衡和实际功率运行限制作为约束条件;构建变搜索半径差分进化算法对目标函数进行求解,通过变搜索半径的方法对差分进化算法进行全局寻优,从而避免了差分进化算法容易陷入局部最优陷阱的问题,实现全局最优。所构建的电力系统环保经济调度决策模型和方法能够为未来智能调度平台提供技术支持。
     第四,从电网企业的角度研究了低碳背景下以低碳贡献效果评估为核心的企业低碳生产经营模式。作为连接发电环节和用电环节的枢纽,电力系统发电、调度和用电数据都在电网公司归集,本部分根据电网公司在电力系统低碳发展中的核心作用,结合电力系统规划、调度相关的指标,构建了低碳贡献效果综合评估指标体系;引入基于灰色三角白化权函数的综合评价方法对电力系统低碳贡献度进行评估,并提出了电网企业低碳生产经营改进措施。构建的以低碳贡献效果综合评价为核心的电网企业低碳经营动态、闭环且持续改进的低碳经营机制,能够为降低整个电力系统碳排放水平提供决策依据。
     第五,要想构建一个低碳、高效的电力系统,不仅需要低碳背景下电力系统规划与运营的决策方法研究,从理论上进行创新并为各相关市场主体提供决策支持,还需要从制度层面研究与设计保障低碳背景下电源电网协调规划、低碳调度可持续发展的顶层设计。针对我国目前还处于低碳电力系统发展初级阶段的电情,构建了低碳电力系统可持续发展运行机制,主要包括我国低碳电力系统协调规划机制的顶层设计和环保经济调度机制的顶层设计。为我国可再生能源有序投资、低碳电源电网协调规划和电力系统的环保经济调度机制提供政策上的保障。
Electric power system plays an important role in transformation of primary energy to secondary energy and power transmission, distribution and use, which is one of the departments with the highest carbon emission level. Low-carbon economy and energy-saving policies bring power industry many challenges, and then the core businesses of power grid enterprises, such as power grid planning and investment, operation of power system and power supply, are faced with various challenges and risks. Under the context of low carbon development, power system should take its responsibilities, to guide the investment and planning of power system, to maintain the environmental and economic dispatching, to achieve the goal of energy-saving, and then to support low carbon development of national product. For this reason, we need to analysis the challenges and risks brought to power system by low carbon development, and propose effective solutions. Firstly, this paper analysed the influence of low carbon development strategy to the core businesses of power grid enterprise from the perspective of the power grid corporation; around the three core businesses, the generation and transmission coordinated planning and investment decision-making model, environmental and economic dispatching decision-making model and operating strategies for power grid corporation were researched respectively in the low-carbon context; finally, China's low-carbon power system sustainable development and operating mechanism was built.
     Firstly, the influence of low carbon development strategy to the core businesses of power grid corporations from the perspective of the power grid corporation was analyzed, including power system planning, dispatching and operating. Overall, the impacts to planning outstand for the disorderly investment of renewable energy. As the weakening of unified power grid planning functions, generation and transmission planning isn't coordinated well. The impacts to the dispatching are mainly for the large-scale connection of low-carbon generation resource with the intermittent and volatility characteristics, the goals of power system dispatching transform from the security and economy to security, economy and environmental, and then it puts forward more requirements to the decision and responsiveness capacities of dispatching department. The impacts to the operating of power system are mainly the requirement of pivotal role. Taking advantage of data imputation, the operators can built the low-carbon impact assessment decision-making mechanism supporting the three core businesses of power grid corporations with the low-carbon impact assessment of planning, dispatching and supply as the core, so as to continuously optimize business strategy for the entire power system and promote low-carbon sustainable development.
     Secondly, from the angle of the power grid enterprises construct a two-phase coordination planning investment model for power and grid under the background of low carbon. On first stage, the generation capacity investment portfolio optimization model considering renewable energy integration under low carbon, not only can provide comparison tables of generation capacity optimal planning for government departments, but also can identify installed share of other conventional power supply once the installed capacity of renewable energy changes, so it means the model can provide a decision-making basis about controlling installed scale in total amount on the supply side for the government departments. The model on second stage is about transmission grid optimal planning with constraints of carbon emissions. Through carbon emissions。 calculation and carbon price EGARCH prediction model, the model first gave a quantification process to carbon emission constraint and constructed an objective function to realize a minimum investment cost with comprehensive consideration of costs of transmission line investment, the grid loss, power generation and carbon emissions. Then the model utilized the intelligent simulated annealing algorithm to find solutions and through the integration of government departments, finally formed the optimal solution of low carbon power and grid coordinate planning.
     Thirdly, from the view of the power grid enterprises, constructed an environmental protection and economic dispatching decision-making model in power system under the background of the low carbon. Scheduling objective function containing the total fuel cost and pollutant emissions (CO2, sulfide, nitride) cost, making the balance and operating limits of transmission line loss' real power as constraints. Furthermore, build a search radius difference evolution algorithm to find solutions of target function, and the global optimization solution can be found by changing search radius, which can avoid the problem that differential evolution algorithm is easy to trap into local optimum and achieve the global optimal. The environmental protection and economic dispatching decision-making model constructed above can provide technical supports for intelligent scheduling platform in the future.
     Fourthly, low-carbon production and operation mode in enterprises which takes low carbon evaluation as the core was studied from the point of power grid enterprise. Data of power generation, dispatching and consumption is gathered in power grid enterprise. According to the core impact of grid enterprise, this part distinguishes the relative indicators concerning power system planning and dispatching by separately taking generation, transmission and distribution and consumption as the subject, and designs the comprehensive low-carbon contribution evaluation indicator system. A comprehensive evaluation method based on grey triangular whitenization weight function was included to assess low carbon contribution of power system, and improvement measures for low-carbon production and operation in power supply enterprises were proposed. The low-carbon operation mechanism of grid enterprise, of which low-carbon contribution evaluation is the core, is dynamic, close-loop and continuous improvement, capable of providing decision-making basis for lowing carbon emission level of the whole power system.
     Fifthly, studies on decision-making methods of power system planning and operating, which innovate in theories to provide decision-making basis for relevant subjects, as well as the design of safeguard mechanism for coordinated planning of power supply and power grid are needed to build a power system of low carbon and high efficiency. Based on the fact that power system in China is still at the primary stage of low carbon development, a low carbon sustainable development and operation mechanism for power system is built, which includes the top level designs of power system's coordinative planning mechanism and environmental protection and economic dispatching mechanism. It could provide policy supports for the orderly investment of renewable energy, the low carbon coordinated planning of power supply and power grid and the environmental protection and economic dispatching mechanism.
引文
[1]何建坤,周剑,刘滨,等...全球低碳经济潮流与中国的响应对策[J].世界经济与政治,2010,(4)::18-35
    [2]王凯伟,毛星芝,罗鸽希.低碳经济发展的研究现状与趋势展望[J].经济学动态,2012,(9):87-90
    [3]Morrison, Yoshida. China, United States, Korea take lead in clean energy and low-carbon initiatives [J]. Research Technology Management,2009,52:2-4
    [4]单宝.欧洲、美国、日本推进低碳经济的新动向及其启示[J].国际经贸探索,2011,27(1):12-17
    [5]秦军.发展低碳经济的国际对比及其对我国的启示[J].科技进步与对策,2010,27(22):12-16
    [6]牛海燕,牛言跃,徐婷.节能减排视角下我国电力行业面临的问题及对策[J].科技与管理,2008,10(1):1-2
    [7]杨卓,毛应淮.电力行业的节能减排与低碳经济[J].中国环境管理干部学院学报,2010,20(1):1-4
    [8]徐敏杰,胡兆光,谭显东,等.中国中长期能源和电力需求及碳排放情景分析[J].中国电力,2012,45(4):101-107
    [9]Yiping Fang. Economic welfare impacts from renewable energy consumption:The China experience [J]. Renewable and Sustainable Energy,2011,15(9):5120-5128
    [10]江哲生.我国电力工业现状和“十二五”电源结构调整分析[J].电器工业,2009,(01):13-16
    [11]李萌.中国低碳经济中可再生能源持续发展问题研究[J].华中科技大学学报(社会科学版),2010,24(04):91-94
    [12]Ming Zeng, Chen Li, Lisha Zhou. Progress and prospective on the police system of renewable energy in China[J]. Renewable and Sustainable Energy Reviews, 2013,20:36-44
    [13]杨卓,毛应淮.电力行业的节能减排与低碳经济[J].中国环境管理干部学院学报,2010,20(01):1-4
    [14]毛永清.中国电力行业实现低碳化发展的途径与措施研究[D].北京:华北电力大学,2012
    [15]Ram M. Shrestha, Shreekar Pradhan. Co-benefits of CO2 emission reduction in a developing country[J]. Energy Policy,2010,38(5):2586-2597
    [16]Anya Castillo, Joshua Linn. Incentives of carbon dioxide regulation for investment in low-carbon electricity technologies in Texas [J]. Energy Policy,2011,39(3): 1831-1844
    [17]Todd Levin, Valerie M. Thomas, Audrey J. Lee. State-scale evaluation of renewable electricity policy:The role of renewable electricity credits and carbon taxes [J]. Energy Policy,2011,39(2):950-960
    [18]James Nelson, Josiah Johnston, Ana Mileva, et al. High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures [J]. Energy Policy,2012,43:436-447
    [19]CHEN Qixin, KANG Chongqing. Power generation expansion planning model towards low-carbon economy and its application in China [J]. IEEE Trans on Power Systems,2010,25(3):1117-1125
    [20]宋旭东,向铁元,熊虎,等.考虑碳排放权分配的低碳电源规划[J].电力系统自动化,2012,36(19):47-52
    [21]Qixin Chen, Chongqing Kang, Qing Xia, et al. Preliminary exploration on low-carbon technology roadmap of China's power sector [J]. Energy,2011, 36(3):1500-1512
    [22]Dongjie Zhang, Pei Liu, Linwei Ma, et al. A multi-period modelling and optimization approach to the planning of China's power sector with consideration of carbon dioxide mitigation [J]. Computers & Chemical Engineering,2012, 37(10):227-247
    [23]Mohammad Monfared, Saeed Golestan. Control strategies for single-phase grid integration of small-scale renewable energy sources:A review [J]. Renewable and Sustainable Energy Reviews,2012,16(7):4982-4993
    [24]Katrin Schaber, Florian Steinke, Thomas Hamacher. Transmission grid extensions for the integration of variable renewable energies in Europe:Who benefits where?[J]. Energy Policy,2012,43:123-135
    [25]Mel George, Rangan Banerjee. A methodology for analysis of impacts of grid integration of renewable energy [J]. Energy Policy,2011,39(3):1265-1276
    [26]David B. Richardson. Electric vehicles and the electric grid:A review of modeling approaches, Impacts, and renewable energy integration [J]. Renewable and Sustainable Energy Reviews,2013,19:247-254
    [27]程启明,程尹曼,汪明媚,等.风力发电机组并网技术研究综述[J].华东电力,2011,39(2):239-244
    [28]金海峰,吴涛.风电接入系统后的电压稳定性问题[J].电力自动化设备,2010,30(9):82-84
    [29]谢毓广,江晓东.储能系统对含风电的机组组合问题影响分析[J].电力系统自动化,2011,35(5):19-24,
    [30]尹明,王成山,葛旭波.风电并网经济技术评价研究综述[J].电力系统及其自动化学报,2010,22(5):102-108
    [31]袁铁江,晁勤,吐尔逊·依不拉音,等.大规模风电并网电力系统动态清洁经济优化调度的建模[J].中国电机工程学报,2010,30(31):7-13
    [32]Parks K, Denholm P, Markel T. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory. National Renewable Energy Laboratory Technical Report NREL/TP-640-41410. [Online]. Available:http://www.osti.gov/bridge,2007
    [33]Scott B. Peterson, Jeremy J. Michalek. Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption [J]. Energy Policy,2013,52:429-438
    [34]Kaldellis JK, Zafirakis D, Kaldelli EL, et al. Cost benefit analysis of a Photovoltaic-energy storage electrification solution for remote islands [J]. Renewable Energy,2009,34(5):1299-1311
    [35]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5
    [36]鲁刚,文福拴,钟志勇,等.电力市场环境下的发电机组检修问题[J].电力系统及其自动化学报,2008,20(5):1-9
    [37]唐任宗.电力市场环境下发电机组检修优化分析及其协调机制[J].电力技术经济,2008,20(4):20-24
    [38]Ali Badri, Ahmad Norozpour Niazi, Seyyed Mehdi Hoseini. Long Term Preventive Generation Maintenance Scheduling with Network Constraints [J]. Energy Procedia,2012,14:1889-1895
    [39]Mohammad Amin Latify, Hossein Seifi, Habib Rajabi Mashhadi. An integrated model for generation maintenance coordination in a restructured power system involving gas network constraints and uncertainties [J]. International Journal of Electrical Power & Energy Systems,2013,46:425-440
    [40]K.H. Chung, B.H. Kim, D. Hur. Distributed implementation of generation scheduling algorithm on interconnected power systems [J]. Energy Conversion and Management,2011,52(12):3457-3464
    [41]高军彦,麻秀范,凡鹏飞.计及分布式发电的配电网协调规划整体框架与模型[J].电网与清洁能源,2008,24(4):12-16
    [42]谢传胜,董达鹏,段凯彦.基于层次分析法-距离协调度的低碳电源电网规划协调度评价[J].电网技术,2012,36(11):1-6
    [43]K. Suresh, N. Kumarappan. Hybrid improved binary particle swarm optimization approach for generation maintenance scheduling problem [J]. Swarm and Evolutionary Computation,2013,9:69-89
    [44]K. Suresh, N. Kumarappan. Particle swarm optimization based generation maintenance scheduling using probabilistic approach [J]. Procedia Engineering, 2012,30:1146-1154
    [45]C.X. Guo, J.P. Zhan, Q.H. Wu. Dynamic economic emission dispatch based on group search optimizer with multiple producers [J]. Electric Power Systems Research,2012,86:8-16
    [46]Jamshid Aghaei, Taher Niknam, Rasoul Azizipanah-Abarghooee, et al. Scenario-based dynamic economic emission dispatch considering load and wind power uncertainties [J]. International Journal of Electrical Power & Energy Systems,2013,47:351-367
    [47]M. Basu. Dynamic economic emission dispatch using nondominted sorting genetic algorithm-II[J]. Elect. Power Energy Syst.,2008,30(2):140-149
    [48]Taher Niknam, Rasoul Azizipanah-Abarghooee, Alireza Roosta, et al. A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch [J]. Energy,2012,42(1):530-545
    [49]Florin Capitanescu, Louis Wehenkel. Experiments with the interior-point method for solving large scale Optimal Power Flow problems [J]. Electric Power Systems Research,2013,95:276-283
    [50]陈启鑫,康重庆,夏清,等.低碳电力调度方式及其决策模型[J].电力系统自动化,2010,34(12):18-23
    [51]M.K. Kim, D. Hur. An optimal pricing scheme in electricity markets by parallelizing security constrained optimal power flow based market-clearing model [J]. International Journal of Electrical Power & Energy Systems,2013,48:161-171
    [52]Taher Niknam, Mohammad rasoul Narimani, Masoud Jabbari, et al. A modified shuffle frog leaping algorithm for multi-objective optimal power flow [J]. Energy, 2011,36(11):6420-6432
    [53]Mingli Lei, Zuren Feng. A proposed grey model for short-term electricity price forecasting in competitive power markets [J]. International Journal of Electrical Power & Energy Systems,2012,43(1):531-538
    [54]刘科研,盛万兴,李运华.基于分布式最优潮流算法的跨区输电阻塞管理研究[J].中国电机工程学报,2007,27(19):56-61
    [55]Keyan Liu, Yunhua Li, Wanxing Sheng. The decomposition and computation method for distributed optimal power flow based on message passing interface [J]. International Journal of Electrical Power & Energy Systems,2011,33(5): 1185-1193
    [56]杨明,韩学山,梁军,等.计及网络安全约束及用户停电损失的动态经济调度方法[J].电力系统自动化,2009,33(14): 27-31
    [57]王孟夏,韩学山,杨朋朋,等.计及电热耦合的动态最优潮流模型与算法[J].电力系统自动化,2010,34(3):28-32
    [58]覃智君,阳育德,吴杰康.矢量化动态最优潮流计算的步长控制内点法实现[J].中国电机工程学报,2009,29(7): 52-58
    [59]杨明,韩学山,梁军,等.计及用户停电损失的动态经济调度方法[J].中国电机工程学报,2009,29(31):103-108
    [60]黄海伦,韦化,阳育德.电压稳定约束的最优潮流研究[J].电力自动化设备,2007,27(3):26-29
    [61]JJAZAYERI P, SHOARINEJAD A, ROSEHART W. Voltage stability constrained optimal power flow [J]. Automation of Electric Power Systems,2005,29(16): 48-55
    [62]D. Devaraj, J. Preetha Roselyn. Genetic algorithm based reactive power dispatch for voltage stability improvement [J]. International Journal of Electrical Power & Energy Systems,2010,32(10):1151-1156
    [63]徐琳,卢继平,汪洋,等.电力系统节点电压稳定指标的研究[J].电网技术,2010,34(3): 26-30
    [64]何斌,张秀彬,赵兴勇.考虑故障条件下电压稳定约束的最优潮流[J].高电压技术,2009,35(2):435-440
    [65]]李传栋,杨金刚,陈家荣.暂态稳定约束下的最优潮流[J].电力系统及其自动化学报,2009,21(6):45-50
    [66]孙艳,杭乃善,李如绮.考虑频率质量约束的最优潮流模型[J].中国电机工 程学报,2010,30(22):77-84
    [67]程浩忠,张节潭,欧阳武,等.主动管理模式下分布式风电源规划[J].电力科学与技术学报,2010,19(24):12-18
    [68]Antonios G. Marinopoulosa, Minas C. Alexiadisb, Petros S. Dokopoulosb. Energy losses in a distribution line with distributed generation based on stochastic power flow[J]. Electric Power Systems Research,2011,81(10):1986-1994
    [69]Seyed Abbas Taher, Mohammad Hasani, Ali Karimian. A novel method for optimal capacitor placement and sizing in distribution systems with nonlinear loads and DG using GA[J]. Commun Nonlinear Sci Numer Simulat,2011,16(2): 851-862
    [70]Y. Zhu, K. Tomsovic. Optimal distribution power flow for systems with distributed energy resources [J]. Electrical Power and Energy Systems,2007,29(3):260-267
    [71]遇柄旭.基于低碳经济下电力企业经营管理对策研究[J].现代企业教育,2012,(12): 253
    [72]Michael Grubb, Tooraj Jamasb, Michael G. Delivering a Low-Carbon Electricity System[M]. Cambridge University Press,2008
    [73]Andrew Ford. Simulation scenarios for rapid reduction in carbon dioxide emissions in the western electricity system [J]. Energy Policy,2008,36(1):443-455
    [74]John C.V. Pezzey, Frank Jotzo. Tax-versus-trading and efficient revenue recycling as issues for greenhouse gas abatement[J]. Journal of Environmental Economics and Management,2012,64(2):230-236
    [75]Damien Crilly, Toshko Zhelev. Emissions targeting and planning:an application of CO2 emissions pinch analysis (CEPA) to the Irish electricity generation sector [J]. Energy,2008,5:1-10
    [76]Tooraj Jamasb, William J, Nuttall, et al. Future electricity technologies and systems[M]. Cambridge University Press,2008
    [77]M.R. Othman, Martunus, R. Zakaria, et al. Strategic planning on carbon capture from coal fired plants in Malaysia and Indonesia:A review [J]. Energy Policy, 2009,37(5):1718-1735
    [78]Cornel Ensslin, Michael Milligan, Hannele Holttinen, et al. Current methods to calculate capacity credit of wind power[C]. IEEE PES General Meeting,2008,7: 1-3
    [79]Karki, Po Hu. Impact of wind power growth on capacity credit[C], Electrical and Computer Engineering, Canadian Conference,2007,4:1586-1589
    [80]Pudaruth G R, Li F. Capacity credit variation in distribution systems[C]. IEEE PES General Meeting,2008,6:1-7
    [81]何昌群,谢敬东,魏萍.电力行业节能减排是国家重要战略举措[J].华东电力,2008,36(9):67-71
    [82]尚金成.电力节能减排的理论体系与技术支撑体系[J].电力系统自动化,2009,33(6): 31-35
    [83]敖慧,敖熠.我国电力产业节能减排技术支撑体系的建立[J].武汉理工大学学报,2010,32(4):24-27
    [84]张振,谭忠富,胡庆辉.中国电力产业能效分析及节能减排途径[J].电力学报,2010,25(5):360-365
    [85]Nick Eyre. Energy saving in energy market reform—The feed-in tariffs option [J]. Energy Policy,2013,52:190-198
    [86]董全学,居勇,曾鸣,等.电网企业开展节能调度的社会效益和经济风险研究[J].改革与战略,2010,26(5):34-36
    [87]刘丽娟,王灵梅,杨春.火电企业节能减排的系统动力学仿真模型的建立[J].华东电力,2010,38(10):1498-1450
    [88]Giorgia Oggioni, Yves Smeers. Evaluating the application of different pricing regimes and low carbon investments in the European electricity market[J]. Energy Economics,2012,34(05):1356-1369
    [89]曾鸣,张徐东,田廓,等.低碳电力市场设计与政策分析[J].电力系统自动化,2011,35(24):7-11
    [90]曾鸣,吕春泉,田廓,等.智能电网对低碳电力系统的支撑作用[J].电力系统自动化,2011,35(23):6-10
    [91]Fredrich Kahrl, Jim Williams, Ding Jianhua. Challenges to China's transition to a low carbon electricity system [J]. Energy Policy,2011,39(7):4032-4041
    [92]曾鸣,马向春,杨玲玲.电力市场碳排放权可调分配机制设计与分析[J].电网技术,2010,34(5):141-145
    [93]MORENO R, PUDJIANTO D, STRBAC G. Future transmission network operation and design standards to support a low carbon electricity system[C]//Proceedings of 2010 IEEE Power & Energy Society General Meeting, July 25-29,2010 Minneapolis, MN, USA
    [94]FOXON T J, HAMMOND G P, PEARSON P J G. Developing transition pathways for a low carbon electricity system in the UK[J]. Technological forecasting and Social Change,2010,77(8):1203-1213
    [95]SAWANGPHOLN, PHARINO C. Status and outlook for Thailand's low carbon electricity development [J]. Renewable & Sustainable Energy Reviews,2011, 15(1):564-573
    [96]Zeng Ming, Xue Song, Ma Mingjuan, etal. New energy bases and sustainable development in China:A review[J]. Renewable & Sustainable Energy Reviews, 2013,20:169-185
    [97]Ming Zeng, Chen Li, Lisha Zhou. Progress and prospective on the police system of renewable energy in China[J]. Renewable & Sustainable Energy Reviews, 2013,20:36-44
    [98]柴忠信.发电企业成本管理与分析[M].北京:中国电力出版社,2011
    [99]田廓,邱柳青,曾鸣.基于动态碳排放价格的电网规划模型[J].中国电机工程学报,2012,32(4):57-65
    [100]Sadegheih A. New formulation and analysis of the system planning expansion model[J]. Europ Trans Electr Pow,2009,17:240-257
    [101]喻洁,黄学良,夏安邦.基于分区协调优化的环境经济调度策略[J].电工技术学报,2010,25(1):129-135
    [102]M. Basu, Economic environmental dispatch using multi-objective differential evolution[J]. Applied Soft Computing 2011,11(2):2845-2853
    [103]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990
    [104]陈贵.评价路面使用性能的灰色白化权函数聚类法[J].山西建筑,2010,36(14):259-260
    [105]朱传志,孙旭明,马士友.基于三角白化权函数的导弹分队信息作战能力评估[J].武器装备自动化,2006,25(6):9-10
    [106]R. Raineri, S. Rios, D. Schiele. Technical and economic aspects of ancillary services markets in the electric power industry:an international comparison[J]. Energy Policy,2006,34(13):1540-1555

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700