用户名: 密码: 验证码:
微网孤岛运行模式下阻抗匹配关系和混杂特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微网(Microgrid)也称微电网,是一种由分布式电源、储能装置、能量变换装置、负荷、监控和保护装置等组成的能够实现自我控制、管理和保护的小型发配电系统,既可以与大电网联网运行,也可以孤岛运行。本论文在国家自然科学基金项目“光伏并网发电系统与电网间阻抗匹配关系及系统稳定性研究”的支持下,以阻抗匹配和混杂系统相关理论为基础,以孤岛运行模式下的微网为研究对象,针对发电单元与负荷间阻抗失配、能量管理过程中的多目标优化等问题,从分布式发电单元接口逆变器建模及运行特性、恒功率负载影响、多逆变器并联稳定性、微网混杂特性、能量管理策略及其优化控制等方面展开理论和实验研究。研究成果对微网结构及控制系统规范化设计,优化不同工况下能量管理策略具有一定的理论指导意义和实际应用价值。
     深入分析光伏发电单元、储能单元的拓扑结构和控制方式,建立各单元小信号模型,并根据系统运行过程中各单元不同工作特点设计相应的控制策略。针对光伏发电单元,提出基于功率前馈的控制方法,该方法通过将光伏阵列输出功率信息直接引入到交流电流控制环节,提高光伏发电单元对输入功率波动的响应速度;针对储能单元,在对比以往不同蓄电池充电方式的基础上,设计恒压限流充电控制策略,通过合理配置电压外环输出限幅来减小原有两阶段充电过程中的电压、电流冲击。上述研究也为后续基于阻抗匹配关系的系统稳定性分析和能量管理策略的优化设计奠定理论基础。
     以阻抗稳定性分析方法为基础,建立光伏发电单元孤岛运行模式下的逆变器输出阻抗模型,分析滤波参数对系统输出阻抗及稳定性的影响,并通过时域分析方法证明分析结果的正确性,从理论上阐明阻抗分析方法的合理性和可行性。详细阐述恒功率负载(CPL)的负阻特性特点及其影响系统稳定性的原因,提出一种虚拟电感控制方法,通过在原有控制结构中增加电感电流正反馈支路的方式降低逆变器输出阻抗,提高系统的稳定性,同时该方法对于系统的动态响应速度和谐波问题也有一定改善作用。另外,考虑到实际微网中多逆变器并联的特点,本文提出单个逆变单元的导纳域稳定性分析方法,并给出相应幅值和相角稳定条件及设计准则,降低微网设计的复杂性。
     在详细分析微网系统混杂特性基础上,借助混杂系统相关理论建立可完整描述其运行状态的混合逻辑动态(MLD)模型。该模型以光伏单元直流母线能量作为状态变量,给出包括连续状态变量、控制输入、逻辑变量和辅助变量的系统方程及相关约束条件。针对所建立的模型以最优控制和模型预测控制理论为基础,以减少储能装置的充放电切换次数为目标,建立其二次型目标函数并借助混合整数二次规划(MIQP)手段,采用分支界定法求解其最优输入控制序列。通过该方法可以有效减少分布式电源出力和负荷波动情况下储能装置的充/放电次数,提高微网系统的经济性和可靠性。
     基于混杂理论研究成果,为保证微网孤岛模式下的能量供需平衡,本文以减少微网运行中蓄电池充放电次数为目标,提出主从控制和对等控制相结合的综合控制策略。采用两组光伏发电单元通过下垂控制方式组成主功率单元,为系统运行提供电压和频率支撑;储能单元采用PQ控制作为从功率单元维持系统功率平衡,以提高系统的可靠性和冗余性。在此基础上,针对分布式电源和负荷的随机性特点,提出基于协同控制的能量管理策略,以光伏发电单元直流母线电压为标量,通过调整蓄电池充电电流和交流输出电流参考的方式保证系统能量供需平衡。该方法在保证光伏发电单元直流母线电压稳定的同时,可以快速应对分布式电源和负荷的功率波动。上述所提理论和控制方法通过Matlab/Simulink数字仿真和相关实验等手段进行可行性和有效性的验证。
As a self-control, self-management and self-protection power generation anddistribution system, Microgrid is a cluster of interconnected distributed generationsystems, energy storage systems, power conversion devices, loads, monitoring andprotective equipments, which can operate on grid-connected or autonomous mode.Based on the impedance matching and hybrid system theory, the Microgridoperating on autonomous mode is studied in the dissertation, and theoretical studyand practical experiment of modeling to inverters, operating property analysis,restraining to adverse effect of constant power loads, stability analysis of paralleledinverters, hybrid property of Microgrid, power management and its optimal controlare carried out to resolve the unstability caused by mis-matching between thedistributed generation units and loads, and multi-target optimization of the powermanagement strategies. The research results show certain theoretical significanceand practical value for the interpretation of Microgrid structure, normalized controlsystem design and the performance optimization of power management strategy ondifferent operating modes.
     The topologies and control methods of photovoltaic power generation unitsand energy storage unit are analyzed and revealed in details. With their small-signalmodels, the control strategies are designed. For achieving better dynamicperformance of PV units, input power feed-forward control method is proposed, andthe output power messages of PV arraies are involved into inner current-loop toimprove response speed of output current when the input power is fluctuating. Forbattery energy storage unit, based on relative analysis of different charge methods, aconstant-voltage current-limiting control method is designed to decrease the surgeof current or voltage in traditional methods by regulating the limitation of outervoltage-loop output. The above mentioned property analysises lay a foundation forstability analyzed by impedance matching condition and optimization of powermanagement strategy.
     Based on the impedance matching theory, the output impedance model of PVunit is set up, filter parameters impact to the output impedance and system stabilityare certified by time-domain anslysis approach, the rationality and feasibility of theimpedance specification approach are clarified theoratically. The negativeincremental impedance property and degeneration of system stability of ACconstant power load (CPL) is studied by impedance specification approach. Avirtual inductor control method, which adopts an inductor current feedback closedloop, is proposed in order to damp the inverter equivalent output impedance and improve system stability. The system dynamic response is enhanced and harmoniccomponent at switching frequency is effectively suppressed. An admittancespecification is proposed to simplify the design process of Microgrid with numbersof distribution generations (DGs) operating in parallel. And the stable quantizedrelation between inverter output and load input admittance is indicated.
     By analyzing the hybrid property of Microgrid detailedly, a mixed logicaldynamical (MLD) model is set up with Hybrid theory. Choosing the energy in DCbus capacitor as state variable, the system function and constraint condition withcontinuous state variable, input control variable, logical variable and auxiliaryvariable are presented. Based on the MLD model, optimum control and modelpredictive control (MPC) theory, the quadric form objective function is designedand the optimal input control variable sequence is achieved by mixed integerquadratic programming theory and Branch&Bound method to reduce the batteriesswitching times between charge and discharge. Proposed method can improve theeconomy and reliability of Microgrid, and reduce the the batteries switching timesbetween charge and discharge when distributed generation output and loadsfluctuate especially the difference is small.
     Based on the MPC research results of Microgrid and aimed to reduce thebatteries switching times between charge and discharge, a combination controlstrategy is designed to improve the system reliability and redundancy. Two PV unitsare selected as master units by Droop control and provide voltage and frequencyreference, energy storage unit with PQ control acting as a slave unit to ensurepower balance for the whole system. Based on the random characteristics of PVgeneration and loads, cooperative control strategy of energy storage unit and PVunits is proposed. The DC bus voltage of PV units is considered for identificationsof energy storage unit switching function, and the system power balance is ensuredby adjusting the charge current reference of batteries and output current referenceof the inverter. With proposed method, both the stable of DC bus voltage and fastresponse to PV generation and loads fluctuation can be achieved. Finally, the digitalsimulations based on Matlab/Simulink and experiment platform are carried out, andconsequently the feasibility and validity of the proposed basic theory and keytechnique are verified.
引文
[1]李威.可再生能源产业的国际贸易争端[J].电力与能源,2012,33(2):99-103.
    [2] H. Karimi, H. Nikkhajoei, R. Iravani. Control of an Electronically-CoupledDistributed Resource Unit Subsequent to an Islanding Event[J]. IEEETransactions on Power Delivery,2008,23(1):493-501.
    [3]陈雅琳,高吉喜,李咏红.中国化石能源以生物质能源替代的潜力及环境效应研究[J].中国环境科学,2010,30(10):1425-1431.
    [4]毛显强,邢有凯,胡涛,等.中国电力行业硫、氮、碳协同减排的环境经济路径分析[J].中国环境科学,2012,32(4):748-756.
    [5]高军彦,王保喜.大电网格局下发展分布式发电实现集中电源与分布式电源优势互补[J].电气时代,2008,(10):100-106.
    [6]刘永奇,谢开.从调度角度分析8.14美加大停电[J].电网技术,2004,28(8):10-15.
    [7] S. Golestani, M. Tadayon. Distributed generation dispatch optimization byartificial neural network trained by particle swarm optimizationalgorithm[C]8thInternational Conference on the European Energy Market.Zagreb, Croatia,2011:543-548.
    [8]王晓寰,张纯江.分布式发电系统无缝切换控制策略[J].电工技术学报,2012,27(2):218-222.
    [9] F. Katiraei, M.R. Iravani. Power Management Strategies for a MicrogridWith Multiple Distributed Generation Units[J]. IEEE Transactions on PowerSystems,2006,21(4):1821-1831.
    [10] Yun-Wei Li, Ching-Nan Kao. An accurate power control strategy forinverter based distributed generation units operating in a low voltagemicrogrid[C]. Energy Conversion Congress and Exposition, San Jose, USA,2009:3363-3370.
    [11]缪源诚,程浩忠,龚小雪,等.含微网的配电网接线模式探讨[J].中国电机工程学报,2012,32(1):17-23.
    [12] K.T. Tan, P.L.So, Y.C. Chu. Control of parallel inverter-interfaceddistributed generation systems in microgrid for islanded operation[C].11thInternational Conference on Probabilistic Methods Applied to PowerSystems, Singapore,2010:1-5.
    [13] R. Majumder, S. Chakrabarti, G. Ledwich. et al. Control of battery storageto improve voltage profile in autonomous microgrid[C]. Power and EnergySociety General Meeting, Michigan, USA,2011:1-8.
    [14] Zheng Kai-Hui, Xia Ming-Chao. Impacts of microgrid on protection ofdistribution networks and protection strategy of microgrid[C]. InternationalConference on Advanced Power System Automation and Protection,Beijing, China,2011:356-359.
    [15]王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-14.
    [16]梁振锋,杨晓萍,张娉.分布式发电技术及其在中国的发展[J].西北水电.2006,(1):51-53.
    [17]杨素萍,赵永亮,栾凤奎,等.分布式发电技术及其在国外的发展状况[J].电力需求侧管理,2006,8(2):57-60.
    [18]刘翠玲,张小东.分布式能源—中国能源可持续发展的有效途径[J].科技情报开发与经济,2009,19(21):125-127.
    [19]王丽,魏敦崧.天然气分布式能源系统的应用[J].煤气与热力,2006,26(1):46-48.
    [20]朱成章.美国的分布式发电站[J].农电管理,2004,(8):41.
    [21]丁明,王敏.分布式发电技术[J].电力自动化设备,2004,24(7):31-36.
    [22] R.C. Dugan, T.E. McDermott. Operating conflicts for distributed generationon distribution systems[C]. Rural Electric Power Conference, Arkansas,USA,2001: A3/1-A3/6.
    [23]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(l):71-75.
    [24]薛迎成,邰能灵,杨兴武,等.美国和欧洲的分布式发电互联技术准则比较[J].华东电力,2009,37(3):406-411.
    [25] IEEE Standard1547-2003:IEEE Standard for Interconnecting DistributedResources with Electric Power Systems[S].2003.
    [26] Engineering Recommendation G59/1:Recommendations the connectionof embedded generating plant to the public electricity suppliers’distributionsystems[S].1991.
    [27] CIE/IEC61400-21: Measurement and assessment of power qualitycharacteristics of grid connected wind turbines [S].2001.
    [28]陈树勇,鲍海,吴春洋,等.分布式光伏发电并网功率直接控制方法[J].中国电机工程学报,2011,31(l0):6-11.
    [29] M.M. Casaro, D.C.Martins, Application of the Three-Phase Series ResonantConverter in a Dual-stage Inverter Operating without Specific Sensor toPerform the MPPT[C].33rdAnnual Conference of the IEEE IndustrialElectronics Society, Taipei, China,2007:1650-1655.
    [30] Wang Nianchun, Xu Qingshan, Shi Bin, et al. Research of Single-phaseInverter for PV Modules with MPPT[C]. Asia-Pacific Power and EnergyEngineering Conference, Wuhan, China,2009:1-4.
    [31] Román Eduardo, Alonso Ricardo, Iba ez Pedro, et al. Intelligent PVModule for Grid-Connected PV Systems[J]. IEEE Transactions onIndustrial Electronics,2006,53(4):1066-1073.
    [32] Li Yanlin, Oruganti Ramesh. A Flyback-CCM Inverter Scheme forPhotovoltaic AC Module Application[C]. Australasian Universities PowerEngineering Conference, Sydney, Australia,2008:1-6.
    [33] J.M.A. Myrzik, M. Calais. String and Module Integrated Inverters forSingle-phase Grid Connected Photovoltaic Systems-A Review[C]. IEEEPower Technology Conference Proceedings, Bologna, Italy,2003:3-9.
    [34] Kjaer Soeren Baekhoej, Pedersen John K, Blaabjerg Frede. A Review ofSingle-phase Grid-connected Inverters for Photovoltaic Modules[J]. IEEETransactions on Industry Applications,2005,41(5):1292-1306.
    [35]侯国青,陈世华.独立光伏系统逆变器的应用及选型[J].太阳能,2009,(7):33-35.
    [36]史丽萍,张建伟,阎同东,等.谐振过度软开关单相PWM并网逆变器[J].电源技术,2010,134(1):63-65.
    [37] T. Kerekes, R. Teodorescu, U. Borup. Transformerless PhotovoltaicInverters Connected to the Grid[C].20thApplied Power ElectronicsConference and Exposition, Sydney, Australia,2007:1733-1737.
    [38]肖华锋,杨晨,谢少军.基于改进型全桥电路的非隔离光伏并网逆变器[J].中国电机工程学报,2011,31(3):40-46.
    [39]朱艳伟,石新春,但扬清,等.粒子群优化算法在光伏阵列多峰最大功率点跟踪中的应用[J].中国电机工程学报,2012,32(4):42-48.
    [40] A. Barchowsky, J.P. Parvin, G.F. Reed, et al. A comparative study of MPPTmethods for distributed photovoltaic generation[C]. IEEE Innovative SmartGrid Technologies, Berlin, Germany,2012:1-7.
    [41] Peng Lei, Yaoyu Li, J.E.Seem. Sequential ESC-Based Global MPPTControl for Photovoltaic Array With Variable Shading[J]. IEEETransactions on Sustainable Energy,2011,2(3):348-358.
    [42] L.B. Steven, W.R. Clarence, R.K. Sanjeev, et al. Maximum Power PointTracking for Photovoltaic Optimization Using Ripple-Based ExtremumSeeking Control[J]. IEEE Transactions on Power Electronics,2010,25(10):2531-2540.
    [43] Y. Byunggyu, Y. Gwonjong, K. Youngroc. Design and experimental resultsof improved dynamic MPPT performance by EN50530[C].33rdInternational Telecommunications Energy Conference, Amsterdam,Netherlands,2011:1-4.
    [44] Xiao Weidong, O. Nathan, W.G. Dunford. Topology Study of PhotovoltaicInterface for Maximum Power Point Tracking[J]. IEEE Transactions onIndustrial Electronics,2007,54(3):1696-1704.
    [45]何志强,叶永强.一种新光伏MPPT算法及硬件实现和实用性分析[J].电力电子技术,2012,46(3):36-39.
    [46] Liu Chun-xia, Liu Li-qun. An improved perturbation and observation MPPTmethod of photovoltaic generate system[C].4thIEEE Conference onIndustrial Electronics and Applications, Xian, China,2009:2966-2970.
    [47]赖东升,杨苹.一种应用于光伏发电MPPT的变步长电导增量法[J].电力电子技术,2012,46(3):40-42.
    [48]徐明亮,唐玉兰,徐德云.在线扰动优化光伏MPPT模糊控制器[J].计算机工程与应用,2012,48(1):216-218.
    [49]袁晓玲,范发靖,周素梅.基于变结构模糊控制的MPPT控制策略[J].可再生能源,2012,30(2):5-8.
    [50] Jae-Hyung Kim, Jun-Gu Kim, Young-Hyok Ji, et al. An Islanding DetectionMethod for a Grid-Connected System Based on the Goertzel Algorithm[J].IEEE Transactions on Power Electronics,2011,26(4):1049-1055.
    [51]顾娟,林明耀,单竹杰,等.光伏并网逆变器反孤岛效应控制策略特性分析[J].电工电气,2009,(10):23-26.
    [52] Mulhausen John, Schaefer Joe, Mynam Mangapathirao, et al. Anti-IslandingToday, Successful Islanding in the Future[C].63rdAnnual Conference forProtective Relay Engineers, Texas, USA,2010:1-8.
    [53] Chen Weimin, Wang Wei, Chen Guocheng. Research of Active IslandingDetection Based on Slight Asymmetry Modulation[C].6thInternationalPower Electronics and Motion Control Conference, Wuhan, China,2009:2143-2146.
    [54] E.J. Estébanez, V.M. Moreno, A. Pigazo, et al. Performance Evaluation ofActive Islanding Detection Algorithms in Distributed GenerationPhotovoltaic Systems: Two Inverters Case[J]. IEEE Transactions onIndustrial Electronics,2009,(99):1-9.
    [55] Kim Gyeong-Hun, Seo Hyo-Rong, Jang Seong-Jae, et al. PerformanceAnalysis of the Anti-Islanding Function of a PV-AF System under MultiplePV System Connections[C].12thInternational Conference on ElectricalMachines and Systems, Tokyo, Japan,2009:1-5.
    [56] D.M. Francesco, L. Marco, D.A. Antonio. Overview of Anti-islandingAlgorithms for PV Systems. Part II:Active Methods[C].12thInternationalPower Electronics and Motion Control Conference, Shanghai, China,2006:1884-1889.
    [57] A.V. Timbus, R. Teodorescu. F. Blaabjerg, et al. Online Grid Measurementand ENS Detection for PV Inverter Running on Highly Inductive Grid[J].IEEE Power Electronics Letters,2004,2(3):77-82.
    [58] G.A. Kern. SunSine300Utility Interactive AC Module Anti-islanding TestResults[C]. IEEE Photovoltaic Specialists Conference, California, USA,1997:1265-1268.
    [59]刘方锐,余蜜,张宇,等.主动移频法在光伏并网逆变器并联运行下的孤岛检测机理研究[J].中国电机工程学报,2009,29(12):47-51.
    [60] Zhou Hui, Fang Jiangxiao. Wind Power Forecasting Based on EconometricsTheory[C].4thIEEE Electrical Power and Energy Conference, Halifax,Canada,2010:1-6.
    [61] H. Li, Z. Chen. Overview of Different Wind Generator Systems and TheirComparisons[J]. IET Renewable Power Generation,2008,2(2):123-138.
    [62]李军,田野,田华,等.永磁直驱风力发电中风力机模拟系统的研究[J].电力电子技术,2011,45(1):33-35.
    [63]李和明,张祥宇,王毅,等.基于功率跟踪优化的双馈风力发电机组虚拟惯性控制技术[J].中国电机工程学报,2012,32(7):32-39.
    [64]李建林,许洪华.风力发电中的电力电子变流技术[M].北京:机械工业出版社,2008:20-134.
    [65]徐大平,张新房,柳亦兵.风力发电控制问题综述[J].中国电力,2005,38(4):70-74.
    [66] A. Allag, M.Y. Hammoudi, S.M. Mimoune, et al. Tracking Control ViaAdaptive Backstepping Approach for A Three PWM AC-DC Converter[C].IEEE International Symposium on Industrial Electronics, Vigo, Spain,2007:371-376.
    [67]韦徵,陈冉,陈家伟,等.基于功率变化和模糊控制的风力发电机组变速变桨距控制[J].中国电机工程学报,2011,31(17):121-126.
    [68]杨晓红,葛海涛.基于BP神经网络的风力发电机组变桨距控制仿真研究[J].机械设计与制造,2010,(7):184-186.
    [69]张伦健,刘建坤,侯圣语.基于滑模变结构控制的直驱永磁风力发电系统研究[J].机电元件,2011,3(3):15-19.
    [70]刘广东,高宁,王东,等.永磁直驱式风电机组低电压穿越技术研究[J].电力电子技术,2012,46(3):27-29.
    [71] Li Jun, Li Dujiang, Hong Lei, et al. A Novel Power-Flow Balance LVRTControl Strategy for Low-speed Direct-Drive PMSG Wind GenerationSystem[C].36thAnnual Conference of the IEEE Industrial ElectronicsSociety, Glendale, USA,2010:748-753.
    [72]张建华,王健,莫岳平,等.双馈电机的Crowbar参数整定及保护特性研究[J].可再生能源,2011,29(2):33-38.
    [73]田野,王冕,张艺枥.基于机电储能的永磁同步发电机低电压穿越控制策略[J].电力系统自动化,2012,36(7):17-21.
    [74]姜传,肖湘宁.应用撬棒电路的双馈型风力发电机低电压穿越分析[J].电网与清洁能源,2012,28(1):80-83.
    [75]刘胜文,包广清,范少伟,等.兆瓦级直驱永磁风电系统低电压穿越研究[J].中国电力,2011,44(2):69-73.
    [76]宋新甫,王伟,周如.直驱风电机组低电压穿越改进控制方法仿真研究[J].电网与清洁能源,2011,27(9):79-84.
    [77]李巨峰,陈飞,张东文.燃料电池发电技术在电力工业中的应用及展望[J].河北电力技术,2008,27(1):44-46.
    [78] M.W. Ellis, M.R.V. Spakovsky, D.J. Nelson. Fuel cell systems: efficient,flexible energy conversion for the21st century[J]. Proceedings of the IEEE,2001,89(12):1808-1818.
    [79]王玲,李欣然,马亚辉,等.燃料电池发电系统的机电动态模型[J].中国电机工程学报,2011,31(22):40-47.
    [80] M.A. Laughton. Fuel Cells[J]. Power Engineering Journal,2002,16(1):31-41.
    [81]戴宪滨.燃料电池发电技术的特点及发展现状[J].科技咨询导报,2007,(20):98.
    [82]龙会国.燃料电池发电技术[J].湖南电力,2006,26(4):59-62.
    [83] Li Wang, Guang-Zhe Zheng. Analysis of a Microturbine Generator SystemConnected to a Distribution System Through Power-ElectronicsConverters[J]. IEEE Transactions on Sustainable Energy,2011,2(2):159-166.
    [84] Ling Su, Jianhua Zhang, Weishi Miao, et al. Study on Control Strategy forIslanded Microgrid Based on Microturbine[C]. Asia-Pacific Power andEnergy Engineering Conference, Chengdu, China,2010:1-4.
    [85]徐庆邮.微型燃气轮机的发展、技术特点及市场应用[J].上海电力,2009,(5):355-357.
    [86]翁一武,苏明,翁史烈.先进微型燃气轮机的特点与应用前景[J].热能动力工程,2003,18(104):111-115.
    [87]范李平,袁兆强,张凯.分布式发电对电力系统继电保护的影响[J].能源工程,2009,(2):15-19.
    [88]孙云莲,胡雯.浅析分布式电源并网对电能质量的影响[J].高科技与产业化,2009,(12):76-78.
    [89]随新鲜,王倩,杨亚强.分布式发电对配电网可靠性的影响研究[J].电力学报,2010,25(1):57-60.
    [90]徐玉琴,李雪冬,张继刚,等.考虑分布式发电的配电网规划问题的研究[J].电力系统保护与控制,2011,39(1):87-91.
    [91] N.W.A. Lidula, A.D. Rajapakse. Microgrids research: A review ofexperimental microgrids and test systems[J]. Renewable and SustainableEnergy Reviews,2011,15(1):186-202.
    [92] R.H. Lasseter, J.H. Eto, B. Schenkman. CERTS Microgrid Laboratory TestBed[J]. IEEE Transactions on Power Delivery,2011,26(1):325-332.
    [93] M.J. Erickson, T.M. Jahns, R.H. Lasseter. Comparison of PV invertercontroller configurations for CERTS microgrid applications[C]. IEEEEnergy Conversion Congress and Exposition, Phoenix, USA,2011:659-666.
    [94] Wencong Su, Zhiyong Yuan, Mo-Yuen Chow. Microgrid planning andoperation: Solar energy and wind energy[C]. IEEE Power and EnergySociety General Meeting, Minneapolis, USA,2010:1-7.
    [95]张建华,黄伟.微电网运行控制与保护技术[M].北京:中国电力出版社,2010:22-25.
    [96] S. Morozumi, S. Kikuchi, Y. Chiba. Distribution technology developmentand demonstration projects in Japan[C]. IEEE Power and Energy SocietyGeneral Meeting, Pittsburgh, USA,2008:1-7.
    [97]李鹏,张玲,王伟,等.微网技术应用与分析[J].电力系统自动化,2009,33(20):109-115.
    [98] S. Buso, S. Fasolo, P. Mattavelli. Uninterruptible power supply multiloopcontrol employing digital predictive voltage and current regulators[J]. IEEETransactions on Industry Applications,2001,37(6):1846-1854.
    [99] T. Yokoyama, A. Kawamura. Disturbance observer based fully digitalcontrolled PWM inverter for CVCF operation[J]. IEEE Transactions onPower Electronics,1994,9(5):473-480.
    [100]张晓光,赵克,孙力.永磁同步电动机混合非奇异终端滑模变结构控制[J].中国电机工程学报,2011,31(27):116-122.
    [101]唐勇奇,赵葵银,汪超.基于滑模变结构控制的三相PWM整流器[J].电力自动化设备,2006,26(5):39-41.
    [102]叶文,彭宇兴,姜积任,等.基于线性神经网络的单相SPWM逆变器畸变抑制[J].电力电子技术,2011,45(9):120-122.
    [103]冯彬,张广明.一种新型多电平逆变器在光伏并网系统的应用[J].电力电子技术,2011,45(4):10-12.
    [104]张凯,彭力,熊健,等.基于状态反馈与重复控制的逆变器控制技术[J].中国电机工程学报,2006,26(10):56-62.
    [105] D. Chen, J. Zhang, Z. Qian. An Improved Repetitive Control Scheme forGrid-Connected Inverter With Frequency-Adaptive Capability[J]. IEEETransactions on Industrial Electronics,2013,60(2):814-823.
    [106]叶珠环,肖国春,曾忠,等.基于电流状态反馈的串联电压质量调节器比例谐振和谐波补偿控制[J].电工技术学报,2011,26(10):84-92.
    [107] Meng Fanjun, R. Akella, M.L. Crow. Distributed Grid Intelligence forFuture Microgrid with Renewable Sources and Storage[C]. North AmericanPower Symposium, Arlington, USA,2010:1-6.
    [108] Limei Zhang, Shaolin Wang, Yunjun Zhao, et al. Prospects for andApplications to Microgrid Technology[C]. Asia-Pacific Power and EnergyEngineering Conference, Chengdu, China,2010:1-4.
    [109] J.Y. Kim, J.H. Jeon, S.K. Kim, et al. Cooperative Control Strategy ofEnergy Storage System and Microsources for Stabilizing the Microgridduring Islanded Operation[J]. IEEE Transactions on Power Electronics,2010,25(12):3037-3048.
    [110] R. Zamora, A.K. Srivastava. Controls for microgrids with storage: Review,challenges, and research needs[J]. Renewable and Sustainable EnergyReviews,2010,14(7):2009-2018.
    [111] F. Katiraei, P. Lehn, M.R. Iravani. Micro-grid autonomous operation duringand subsequent to islanding process[J]. IEEE Transactions on PowerDelivery,2010,20(1):3037-3048.
    [112]姚雨迎,张东来,徐殿国.级联式DC/DC变换器输出阻抗的优化设计与稳定性[J].电工技术学报,2009,24(3):147-152.
    [113] T. Kato, K. Inoue, H. Kawabata. Stability analysis of a grid-connectedinverter system[C].13thWorkshop on Control and Modeling for PowerElectronics, Kyoto, Japan,2012:1-5.
    [114] Xuan Zhang, Jinjun Liu, Ting Liu. Virtual negatively resistive outputimpedance for power sharing among paralleled inverters in microgrid[C].8thInternational Conference on Power Electronics and ECCE Asia, Jeju,Korea,2011:1809-1812.
    [115] Jian Sun. Impedance-Based Stability Criterion for Grid-ConnectedInverters[J]. IEEE Transactions on power electronics,2011,26(11):3075-3078.
    [116] Guoqiao Shen, Jun Zhang, Xiao Li, et al. Current control optimization forgrid-tied inverters with grid impedance estimation[C].25thAnnual AppliedPower Electronics Conference and Exposition, Palm Springs, USA,2010:861-866.
    [117]李卫东,刘曰锋.混杂系统研究综述[J].自动化技术与应用,2007,27(1):1-4.
    [118]马红波,冯全源,郭进.升压型DC/DC开关变换器的混杂建模与控制研究[J].铁道学报,2010,32(4):50-55.
    [119]郑雪生,李春文,戎袁杰. DC/AC变换器的混杂系统建模及预测控制[J].电工技术学报,2009,24(7):87-92.
    [120]李雄杰,周东华.基于混杂模型和滤波器的电力电子电路故障诊断[J].西北大学学报,2011,41(3):410-414.
    [121]马皓,毛兴云,徐德鸿.基于混杂系统模型的DC/DC电力电子电路参数辨识[J].中国电机工程学报,2005,25(10):50-54.
    [122] E. Handschin, F. Neise, H. Neumann. Optimal operation of dispersedgeneration under uncertainty using mathematical programming[C].15thPower Systems Computation Conference, Liège, Belgium,2006,28(9):618-626.
    [123] A.G. Tsikalakis, N.D. Hatziargyriou. Centralized Control for OptimizingMicrogrids Operation[J]. IEEE Transactions on Energy Conversion,2008,23(1):241-248.
    [124] T.M. Tveita, T. Savolaa, A. Gebremedhinb. Multi-period MINLP model foroptimising operation and structural changes[J]. Energy Conversion andManagement,2009,50(3):639-647.
    [125] Y. Damchi, H.R. Mashhadi, J. Sadeh. Optimal coordination of directionalovercurrent relays in a microgrid system using a hybrid particle swarmoptimization[C]. International Conference on Advanced Power SystemAutomation and Protection, Beijing, China,2011:1135-1138.
    [126] H.R. Magham, M.J. Sanjari, B. Zaker, et al. Voltage profile improvement ina microgrid including PV units using genetic algorithm[C].2ndIranianConference on Smart Grids, Tehran, Iran,2012:1-5.
    [127] Shi Zhang, Dingwei Wang, Xinran Xu, et al. Optimal Microgrid PartitionStrategy of Distribution Generation Based on Advanced GA[C].International Conference on Intelligent System Design and EngineeringApplication, Changsha, China,2010:13-16.
    [128]欧阳翚,牛铭.基于不同控制策略的微网仿真[J].电网与清洁能源,2011,27(3):19-24.
    [129]郭天勇,赵庚申,赵耀,等.基于风光互补的微网系统建模与仿真[J].电力系统保护与控制,2010,38(21):104-108.
    [130]胡海松,张保会,张嵩,等.微网中的储能设备及飞轮储能特性的研究[J].电网与清洁能源,2010,26(4):21-24.
    [131]邓美玉,陈维荣,戴朝华.微网高渗透并网仿真及电网无功优化[J].可再生能源,2011,29(5):41-45.
    [132]韩奕,张东霞.含逆变型分布式电源的微网故障特征分析[J].电网技术,2011,35(10):147-152.
    [133] H. Kakigano, Y. Miura, T. Ise. Low-Voltage Bipolar-Type DC Microgridfor Super High Quality Distribution[J]. IEEE Transactions on PowerElectronics,2010,25(12):3066-3075.
    [134] Yuan-Chih Chang, Chang-Ming Liaw. Establishment of a Switched-Reluctance Generator-Based Common DC Microgrid System[J]. IEEETransactions on Power Electronics,2011,26(9):2512-2527.
    [135] Li Zhang, Tianjin Wu, Yan Xing,et al. Power control of DC microgrid usingDC bus signaling[C].26thAnnual IEEE Applied Power ElectronicsConference and Exposition, Fort Worth, USA,2011:1926-1932.
    [136] H. Kakigano, A. Nishino, T. Ise. Distribution voltage control for DCmicrogrid with fuzzy control and gain-scheduling control[C].8thInternational Conference on Power Electronics and ECCE Asia, Jeju, Korea,2011:256-263.
    [137] H. Bevrani, F. Habibi, P. Babahajyani, et al. Intelligent Frequency Controlin an AC Microgrid: Online PSO-Based Fuzzy Tuning Approach[J]. IEEETransactions on Smart Grid,2012,(99):1-10.
    [138] Wei-Tzer Huang, Wen-Chih Yang. System steady-state analysis of a low-voltage microgrid with various distributed energy resources[C]. IEEEConference on Cybernetics and Intelligent Systems, Singapore,2010:237-242.
    [139] P.C. Loh, F. Blaabjerg. Autonomous operation of hybrid microgrid with ACand DC sub-grids[C].14thEuropean Conference on Power Electronics andApplications, Birmingham, United Kingdom,2011:1-10.
    [140] Xiong Liu, Peng Wang, P.C. Loh. A Hybrid AC/DC Microgrid and ItsCoordination Control[J]. IEEE Transactions on Smart Grid,2011,2(2):278-286.
    [141] A. Mohamed, M. Elshaer, O. Mohammed. Bi-directional AC-DC/DC-ACconverter for power sharing of hybrid AC/DC systems[C]. IEEE Power andEnergy Society General Meeting, Detroit, USA,2011:1-8.
    [142] J.H.R. Enslin, P.J.M. Heskes. Harmonic Interaction between a LargeNumbers of Distributed Power Inverters and the Distribution Network[J].IEEE Transzations on Power Electronics,2004,19(6):1586-1593.
    [143] Jong-Yul Kim, Jin-Hong Jeon, Seul-Ki Kim, et al. Cooperative ControlStrategy of Energy Storage System and Microsources for Stabilizing theMicrogrid during Islanded Operation[J]. IEEE transaction on powerelectronics,2010,24(12):3037-3048.
    [144] E. Barklund, N. Pogaku, M. Prodanovic,et al. Energy Management Systemwith Stability Constraints for Stand-alone Autonomous Microgrid[C]. IEEEInternational Conference on System of Systems Engineering, San Antonio,USA,2007:1-6.
    [145] R.D. Middlebrook. Input filter considerations design and application ofswitching regulators[C]. Proc. IEEE Industrial Application Society AnnualMeeting, Chicago, USA,1976:91-107.
    [146] C.M. Wildrick, F.C. Lee. A method of defining the load impedancespecification for a stable distributed power system[J]. IEEE Transaction onPower Electronics,1995,10(3):280-285.
    [147] Xiaogang Feng, Zhihong Ye, Kun Xing, et al. Individual load impedancespecification for a stable DC distributed power system[C]. Applied PowerElectronics Conference and Exposition, Dallas, USA,1999:923-929.
    [148] Y. Panaov, J. Rajagopalan, F.C. Lee. Analysis and Design of N ParalleledDC/DC Converters with Master-Slave Current-Sharing Control[C]. AppliedPower Electronics Conference and Exposition, Atlanta, USA,1997:436-442.
    [149] A. Khaligh. Realization of Parasitics in Stability of DC–DC ConvertersLoaded by Constant Power Loads in Advanced Multiconverter AutomotiveSystems[J]. IEEE Transactions on Industrial Electronics,2008,55(6):2295-2305.
    [150] Xinbo Liu, Yuanjun Zhou, Wei Zhang, et al. Stability Criteria for ConstantPower Loads With Multistage LC Filters[J]. IEEE Transactions onVehicular Technology,2011,60(5):2042-2049.
    [151] A. Khaligh, A.M. Rahimi, A. Emadi. Negative Impedance Stabilizing PulseAdjustment Control Technique for DC/DC Converters Operating inDiscontinuous Conduction Mode and Driving Constant Power Loads[J].IEEE Transactions on Vehicular Technology,2007,56(4):2005-2016.
    [152] P. Jintakosonwit, H. Akagi, H. Fujita. Performance of automatic gainadjustment in shunt active filters for harmonic damping throughout powerdistribution systems[C]. IEEE32ndAnnual Power Electronics SpecialistsConference, Vancouver, Canada,2001(3):1389-1395.
    [153] Xinyun Liu, N. Fournier, A.J. Forsyth. Active stabilisation of an HVDCdistribution system with multiple constant power loads[C]. IEEE VehiclePower and Propulsion Conference, Harbin, China,2008:1-6.
    [154] M. Cespedes, T. Beechner, Lei Xing, et al. Stabilization of constant-powerloads by passive impedance damping[C]. IEEE25thAnnual Applied PowerElectronics Conference and Exposition, Palm Springs, USA,2010:2174-2180.
    [155] A.M. Rahimi, A. Emadi. Active Damping in DC-DC Power ElectronicConverters: A Novel Method to Overcome the Problems of Constant PowerLoads[J]. IEEE transactions on Industrial Electronics,2009,56(5):1428-1439.
    [156] S.D. Sudhoff, S.F. Glover, P.T. Lamm, et al. Admittance space stabilityanalysis of power electronic systems[J]. IEEE Transactions on Aerospaceand Electronic Systems,2000,36(3):965-973.
    [157]莫以为,萧德云.混合动态系统及其应用综述[J].控制理论与应用,2002,19(1):1-8.
    [158]王蓓,赵廷弟,焦健.基于有限状态机的安全性仿真技术[J].北京航空航天大学学报,2011,37(4):428-438.
    [159]梁俊,台宪青.基于有限状态机的工控系统软件设计[J].微计算机信息,2008,24(4):54-56.
    [160]皮大伟,陈南,张丙军.基于有限状态机理论的ABS模糊控制仿真研究[J].系统仿真学报,2009,21(16):4961-4965.
    [161] R.M. Hierons. Controllable Testing from Nondeterministic Finite StateMachines with Multiple Ports[J]. IEEE Transactions on Computers,2011,60(12):1818-1822.
    [162] R. Zurawski, MengChu Zhou. Petri nets and industrial applications: Atutorial[J]. IEEE Transactions on Industrial Electronics,1994,41(6):567-583.
    [163] M. Llorens, J. Oliver. Structural and dynamic changes in concurrentsystems: reconfigurable Petri nets[J]. IEEE Transactions on Computers,2004,53(9):1147-1158.
    [164] J.I.L. Biel, E.J. Macias, M.P. Parte. Simulation-Based Optimization for theDesign of Discrete Event Systems Modeled by Parametric Petri Nets[C].5thUKSim European Symposium on Computer Modeling and Simulation,Madrid, Spain,2011:150-155.
    [165]杨健维,何正友.基于时序模糊Petri网的电力系统故障诊断[J].电力系统自动化,2011,35(15):46-51.
    [166] Albert Bemporad, A.M. Morari. Control of systems intergrating logic,Dynamics, and Constraint[J]. Automatic,1999,35(3):407-427.
    [167] A.I. Sulyman, Y. Al-Zahrani, S. Al-Dosari, et al. A two-stage constellationpartition algorithm for reduced-complexity MIMO-MLD systems[C].35thConference on Local Computer Networks, Denver, USA,2010:745-748.
    [168] M. Hejri, A. Giua. Hybrid modeling and control of switching DC-DCconverters via MLD systems[C]. IEEE Conference on Automation Scienceand Engineering, Bangalore, India,2011:714-719.
    [169]董领逊,窦丽华,夏元清,等.一类综合控制系统的MLD建模与仿真研究[J].系统仿真学报,2009,21(2):500-506.
    [170]程代展,郭宇骞.切换系统进展[J].控制理论与应用,2005,22(6):955-960.
    [171] L. Hetel, J. Daafouz, C. Lung. Stability analysis for discrete time switchedsystems with temporary uncertain switching signal[C].46thConference onDecision and Control, New Orleans, USA,2007:5623-5628.
    [172]翟长连,何苇,吴智铭.切换系统的稳定性及镇定控制器设计[J].信息与控制,2000,29(1):21-26.
    [173]王国俊,宋建社.命题逻辑中的程度化方法[J].电子学报,2006,34(2):252-257.
    [174] C. Ekaputri, A. Syaichu-Rohman. Implementation model predictive control(MPC) algorithm for inverted pendulum[C]. IEEE Control and SystemGraduate Research Colloquium, Selangor, Malaysia,2012:116-122.
    [175] Fook Wai Kong, D. Kuhn, B. Rustem. A cutting-plane method for Mixed-Logical Semidefinite Programs with an application to multi-vehicle robustpath planning[C]. IEEE49thConference on Decision and Control, Atlanta,USA,2010:1360-1365.
    [176] M. Sakawa, K. Kato, H. Mohara. Efficiency of a decomposition method forlarge-scale multiobjective fuzzy linear programming problems with blockangular structure[C].2ndInternational Conference on Knowledge-BasedIntelligent Electronic Systems, Adelaide, Australia,1998:80-86.
    [177]康卓,李艳,刘溥,等.一个通用的混合非线性规划问题的演化算法[J].计算机研究与发展,2002,39(11):1471-1477.
    [178]张聚,李平,王万良.基于Branch&Bound方法MIQP问题的求解及应用[J].系统仿真学报,2003,15(4):488-491.
    [179] Limin Wang, Guizhen Hao. Drainage pipe network optimization designbased on branch-bound method[C].2ndInternational Conference onIntellectual Technology in Industrial Practice, Changsha, China,2010:260-263.
    [180]戚中,单锋.无界域上不定二次规划的一个算法[J].沈阳建筑工程学院学报,2001,17(1):75-80.
    [181] A. Bemporad, M. Morari. Control of Systems Integrating Logic,Dynamics,and Constraints[J]. Automatica,1999,35(3):407-427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700