用户名: 密码: 验证码:
拖拉机多段液压机械无级变速器控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压机械无级变速传动(HMCVT)是一类由液压功率流与机械功率流联合的双功率流传动形式,良好的原理设计与先进的控制技术相结合,能够实现大功率、高效率无级变速传动,在大功率车辆上表现出良好的应用前景。论文针对HMCVT在大功率拖拉机上的应用,围绕原理设计、特性分析、建模仿真、无级变速和换段规律、工程应用控制策略、控制技术等方面进行了研究。
     在分析HMCVT的组成原理、基本类型和传动特性的基础上,结合农业拖拉机的作业特征及其对传动系统性能的要求,开发了一种新型的多段HMCVT传动原理。新型多段HMCVT具有无级变速范围宽,在拖拉机的主要工作速度段传动效率高的突出优点。研究了HMCVT的传动比、转矩、功率流及效率等特性的分析计算方法和装备HMCVT拖拉机的牵引特性分析计算原理和表达方法,为车辆液压机械无级变速器的原理设计、性能分析、装车匹配及控制技术研究奠定了理论基础。
     以开发多段HMCVT控制系统为主要目的,采用模块化方法建立了具有双流复合传动特征的多段HMCVT数学模型以及拖拉机整车动力传动系统数学模型。建模中,将多段HMCVT机械传动构件简化为具有集中质量和阻尼的刚性系统,在满足控制仿真要求的基础上简化了模型结构。针对多段HMCVT状态多变的特征,根据有限状态机原理,应用Matlab软件开发了多段HMCVT连续无级变速和换段的多状态转换仿真系统。通过仿真分析,提出了提高传动比调节速度的变增益PID控制原理和消除车速波动的调速位置变化率前馈控制原理。验证了建模方法的有效性,为快速研究各种控制策略提供了仿真试验条件。
     获取最高生产率是设计拖拉机的主要目标,据此,针对多段HMCVT这类具有无级变速和有级换档双重特征的无级变速器,制定了基于牵引功率最大的无级变速和换段规律。指出要实现拖拉机的牵引功率最大,需要调节HMCVT的传动比,使发动机工作在与调速位置对应的最大功率点上。制定了使HMCVT优先工作在高效率段从而提高拖拉机牵引功率的换段原理。提出了用调速位置、发动机转速、工作段号和实际传动比作为控制参数的工程应用控制策略,论述了无级变速及换段规律中发动机工作转速和换段转速的计算原理。仿真表明了工程应用控制策略的有效性,为控制系统的开发提供了理论依据。
     分析了影响拖拉机经济性的主要因素,指出因为多段HMCVT在不同传动比下效率差别较大,保证发动机的燃油消耗率与HMCVT传动效率之比g_e/η_b最小,是实现拖拉机经济性最佳的基本要求。提出了在HMCVT传动比和发动机转速二元协同控制下,保证g_e/η_b最小和车速稳定的拖拉机经济性最佳无级变速和换段规律。制定了以目标车速、发动机转速、油泵齿条位移、最佳传动比和滑转率为控制参数的工程应用控制策略。研究了用滑转率修正系数,对不同地面和垂直载荷条件下的滑转率进行实时修正的方法,实现了在各种工况下拖拉机的实际速度与目标速度的一致。给出了最佳传动比的优化计算原理和详细计算流程,制定了避免循环换段的换段规则。仿真验证了无级变速规律的合理性和工程应用控制策略的有效性。
     在仿真分析和变速规律研究的基础上,根据建立的HMCVT传动拖拉机工作模式,开发了多段HMCVT液压和电控系统。由于排量比控制决定传动比控制的精度,论文提出一种排量比模糊-PID动态加权综合控制原理。进行了传动比控制台架试验,达到了快速性和准确性好、动态跟踪误差小的效果。该研究成果为多段HMCVT装车应用奠定了基础。
Hydro-mechanical continuously variable transmission (HMCVT) combines the hydrostatic power flow and mechanical power flow to realize stepless speed change with high efficiency and large power, so it has many advantages in the power train system of heavy vehicles. To develop and utilize the HMCVT in large power tractors, This thesis studies its principle and characteristics, modeling and simulation, stepless speed change and range shift law, control strategy and implementation method, as well as electronic control technology.
     Based on the analysis of compositive principle, fundamental types and kinematic characteristics, according to the work feature of tractors and the need of power train system, a novel principle of multi-range HMCVT is developed, which has a wide stepless speed change range and high efficiency in the main work speed field of tractors. The analysis methods of transmission ratio, torque, power split ratio and efficiency characteristic are derived. For the tractive characteristic of tractors equipped multi-range HMCVT, an analysis and drawing method is represented. These research will establish the theory foundation of HMCVT on the design, characteristic analysis, match method and control technology.
     For the development of control system, with the modular method, the model of multi-range HMCVT and tractor's powertrain system are established. The mechanical components are simplified as lumped mass-dashpot system to meet the need of control simulation and reduce the complexity of model. Based on the principle of finite state machine(FSM) and software of MATLAB, a multimode transfer simulation system of multi-range HMCVT is developed, which can simulate the control process of continuously speed change and range shift. By control simulation and analysis, it is presented that a variable parameters PID control principle which can increase the adjusting speed of transmission ratio, and that a throttle change rate forward control principle which can avoid the fluctuation of vehicle speed. The validity of modeling method is proved by bench test. A simulation test condition is created for the development of control strategy.
     According to the main purpose of obtaining highest productivity for tractors, based on getting largest tractive power, a speed change and range shift law for the multi-range HMCVT is represented. A control strategy of engineering implementation is established, which uses throttle position, engine speed, range number and real transmission ratio as the control parameters. It is expounded that the calculating method of engine work speed and range shift speed in the speed change and range shift law. The control strategy of engineering implementation is proved to be validity by simulation test, which is the theory support to develop the control system of multi-range HMCVT.
     By analyzing the main influencing factors of economical efficiency for tractors, it is represented that the rate of fuel consumption and the multi-range HMCVT's efficiency (ge/ηb) must be keep least to realize the highest economical efficiency, because the efficiency of multi-range HMCVT changes in a wide field with the transmission ratio. Based on getting the highest economical efficiency of tractors, a speed change and range shift law for the multi-range HMCVT is presented, which can ensure ge/ηb to be the least and the vehicle speed to be correct on the condition of coordinate control of transmission ratio and engine speed. A control strategy of engineering implementation is established, which uses object vehicle speed, engine speed, injection pump gear rack position, optimal transmission ratio and slip rate as the control parameters. The real vehicle speed is held to be equal to the object vehicle speed on any work conditions by real time adjusting the slip rate that is adjusted by slip rate correction factor on different condition of soil and vertical load. The calculating method of optimal transmission ratio is derived. A range shift law is made which can avoid the recirculation range shift. The control strategy of engineering implementation is proved to be validity by simulation test.
     According to the established work modes of tractors equipped with HMCVT, the hydrostatic and electronic control system of multi-range HMCVT is developed. Because the control precision of transmission ratio is decided by the displacement ratio, a weight dynamic change fuzzy-PID integrated control principle for the displacement ratio control is presented. The control of transmission ratio is done by this principle in the bench test. The result showed that the rapidity and accuracy is good and the dynamic follow error is small.
引文
[1] Alexander Krauss, Monika Ivantysynova. Power Split Transmissions Versus Hydrostatic Multiple Motor Concepts-A Comparative Analysis[J]. SAE paper 2004-01-2676, 2004.
    [2] Sung, Dukhwan, Hwang, Sungho, Kim, Hyunsoo. Design of hydromechanical transmission using network analysis[J]. Journal of Automobile Engineering, 2005, 219(1): 53-63.
    [3] 雷雨龙,李永军,葛安林.机械式自动变速器换档综合智能控制[J].汽车工程,2001,23(5):311-328.
    [4] 张俊智,王丽芳,葛安林.自动换档规律的研究[J].机械工程学报,1999,35(8):39-41.
    [5] 申水文,葛安林.模糊换档技术与综合换档规律[J].农业工程学报,1997,13(9):146-149.
    [6] 王丽芳,张俊智.机械式变速器的自适应控制[J].中国机械工程,1999,10(3):267-268.
    [7] Yuhai Wang, Jian Song, Xingkun Li. Simulation of AMT Autoshift Process Based on Matlab/Simulink/Stateflow[J]. SAE paper 2004-01-2055, 2004.
    [8] H Lee, H Kim. Improvement in fuel economy for a parallel hybrid electric vehicle by continuously variable transmission ratio control[J]. Journal of Automobile Engineering, 2005, 219(1): 43-51.
    [9] 胡建军.汽车无级变速传动系统建模、仿真及其匹配控制策略研究[D].重庆:重庆大学,2001.
    [10] G Carbone, L Mangialardi, B Bonsen, et al. CVT dynamics: Theory and experiments[J]. Mechanism and Machine Theory, 2007, 42(1): 409-428.
    [11] L Mangialardia, G Mantriota. Power flows and fficiency in infnitely variable transmissions[J]. Mechanism and Machine Theory, 1999, 34(7): 973-994.
    [12] R Paoluzzi, G Rigamonti and L G Zarotti. Simulation studies of vehicle-transmission interactions[J]. Journal of Terramechanics, 1996, 33(5): 143-153.
    [13] Bitsche O, Gutmann G. Review—systems for hybrid cars[J]. Journal of Power Sources, 2004, 134(12): 8-15.
    [14] Takashi Iino, Akihito Okuda, Mikihiro Takano. Research of hydrostatic CVT for passenger vehicles[J]. JSAE Review, 2003, 24(4): 227-230.
    [15] Messenger, Ben. Hydrostatic Transmission Designed for Compact Mobile Applications[J]. Diesel Progress: North American Edition, 2003, 20(9): 76-77.
    [16] P Sethur, et al. Nonlinear control of a continuously variable transmission(CVT) for hybrid vehicle powertrains[C]. Proceedings of the American control conference. Detroit: SAE, 2001: 600-610.
    [17] Hidehiro Oba, et al. Development of a Hybrid Powertrain System Using CVT in a Minivan[J]. SAE Paper 2002-01-0991.
    [18] Naim A Kheir, Mutasim A Salman, Niels J Schouten. Emissions and fuel economy trade-off for hybrid vehicles using fuzzy logic[J]. Mathematics and Computers in Simulation, 2004, 66(7): 155-172.
    [19] Kuen-Bao Sheu, Tsung-Hua Hsu. Design and implementation of a novel hybrid-electric-motorcycle transmission[J]. Applied Energy, 2006, 83(9): 959-974.
    [20] Takeshi Yamamoto, Toshikazu Osidari, Masaki Nakano. Improvement of loading cam performance in atoroidal CVT[J]. JSAE Review, 2002, 22(1): 481-487.
    [21] Hirohisa Tanaka. Speed ratio control of a parallel layout double cavity half-toroidal CVT for four-wheeldrive[J]. JSAE Review, 2002, 22(4): 213-217.
    [22] Zhilin Dong, Qin Zhang, Shufeng Han. Control an electrohydraulic steering system using a PID controller with a nonlinear compensation algorithm[C]. Proceedings of SPIE. SPIE, 2002: 87-95.
    [23] 王意.行走机械液压驱动技术发展大观[J],液压气动与密封,2000(2):19-28.
    [24] AGCO company. New transmission to challenge the powershift[J]. African Farming, 2001(6): 1-5.
    [25] 田全忠.液压机械传动在大功率履带拖拉机上的应用与分析[J].拖拉机与农用运输车,2001,28(2):31-34.
    [26] 苑士华,侯国勇,张宝斌.液压机械无级变速器的变参数PID控制[J].机械工程学报,2004,40(7):81-84.
    [27] 胡纪斌,赵然,苑士华.提高液压机械无级传动换段品质的方法[J].北京理工大学学报,2002,22(2):36-39.
    [28] 洛阳拖拉机研究所.九十年代国外机械工业基本情况(拖拉机)[M].北京:机械工业出版社,2002:50-54.
    [29] 夏海南.液压机械传动在工程机械上的应用[J].工程机械,2000,31(3):17-19.
    [30] Sergio M Savaresi, Francesco L Taroni, et al. Control system design on a power-split CVT for high-power agricultural tractors[J]. IEEE/ASME transactions on mechatronics, 2004(9): 569-579.
    [31] 刘修骥.车辆传动系统分析[M].北京:国防工业出版社,1998:20-40,208-250.
    [32] 李兴华.液压机械传动在推土机上的应用[J].筑路机械与施工机械化,1998,15(4):5-8.
    [33] [J]. 2000, 34(8): 16-18.
    [34] [J]. 2000, 34(8): 18-21.
    [35] G White. Multiple-stage split-power transmissions[J]. Journal of Mechanisms, 1970, 5(10): 505-520.
    [36] Orshansky, Eli, et al. Characteristic of multiple range hydromechanical transmissions[J]. SAE paper 720724, 1972.
    [37] Kirejczyk J. Continuously variable hydromechanical transmission for commercial vehicle by simulation studies[J]. SAE paper 840873, 1984.
    [38] David M Latson, et al. HMT-250 split-path hydromechanical transmission is variable ratio unit developed for military use[J]. SAE paper 670932, 1967.
    [39] Warren E Wilson, et al. Ideal and real hydromechanical transmissions[J]. SAE paper 680605, 1968.
    [40] Paul E Troin, et al. Application consideration with the CUMMINS Sundstrand DMT-25 hydromechanical transmission[J]. SAE paper 750732, 1975.
    [41] Folsom, Lawrence R. Hydromechanical transmission optimized for automotive application[C]. SAE Special Publications, Advanced Power Technology Inc, 1991(12): 13-24.
    [42] 唐新星,赵丁选.工程车辆等比三段式液压机械的复合传动[J].吉林大学学报,2006,44(9):56-61.
    [43] 夏丽芳.液压机械传动系统单排方案的理论特性[J].兵工学报,1992,13(1):40-66.
    [44] Andreas Kugi, Kurt Schlacher, et al. Modeling and simulation of a hydrostatic transmission with variable-displacement pump[J]. Mathematics and computers in simulation, 2000, 53(3): 409-414.
    [45] 顾银芳.液压机械无级转向机分流及同流工况动态性能的理论与试验[D].北京:北京理大学,2000:15-20.
    [46] Brumercik, Frantisek, Kocur, et al. Differential hydro-mechanical transmissions with hydrostatic units[J]. Komunikacie, 2005, 30(1): 49-53.
    [47] 彭启踪,管庆.DSP集成开发环境[M].北京:电子工业出版社,2005:1-300.
    [48] Hiroyuki Mitsuya, Keiji Otanl. Development of hydromechanical transmission(HMT) for Bulldozers[J]. SAE paper 941722, 1994.
    [49] ZF. Agricultural equipment transmission S-Mate & ZF-Eccom. Available at: www.ZF.com, 17-11-2002.
    [50] Fendt. Fendt400 Vario: Technical specifications. Available at: www.Fendt.com, 17-11-2002.
    [51] 苏奎峰,吕强,耿庆锋.TMS320F2812原理与开发[M].北京:电子工业出版社,2005:1-320.
    [52] Doug Fussner, et al. Development of dual stage input coupled split power transmission arrangement and their characteristics[J]. SAE paper 2002-01-0590, 2002.
    [53] Doug Fussner, et al. Development of single stage input coupled split power transmission arrangement and their characteristics[J]. SAE paper 2002-01-1294, 2002.
    [54] Coutant, et al. Method for controlling shift points in a continuously variable transmission[P]. U.S.patent: 5624339, 1997-4-29.
    [55] 田丽萍.农业拖拉机液压机械无级变速规律研究[D].洛阳:河南科技大学,2005:20-40.
    [56] EATON公司.液压泵及传动技术[M].上海:EATON公司,2003:32-35.
    [57] 张明柱,周志立,徐立友,李言.农业拖拉机用多段液压机械无级变速器设计[J].农业工程学报,2003,19(6):118-121.
    [58] 葛安林.车辆自动变速理论和设计[M].北京:机械工业出版社,1993:40-80.
    [59] 董敬,庄志,常思勤.汽车拖拉机发动机[M].北京:机械工业出版社,2001:75-86.
    [60] R Pfiffner, L Guzzella, C H Onder. Fuel-optimal control of CVT powertrains[J]. Control Engineering Practice, 2003, 11(3): 329-336.
    [61] Brace C, et al. An operating point optimizer for the design and calibration of an integrated diesel/continuously variable transmission powertrain[J]. Journal of Automobile Engineering, 1999, 213(3): 215-226.
    [62] Deacon M, et al. Impact of alternative controller strategies on exhaust emissions from an integrated diesel/continuously variable transmission powertrain[J]. Journal of Automobile Engineering, 1999, 213(2): 95-107.
    [63] Manfred Boos,et al.ZF无级变速器(CVT)ECOTRONIC的开发与装置的优越性[J].传动技术,1997,11(4):1-13.
    [64] 何仁.汽车动力传动系统合理匹配的实用方法[J].中国公路学报,2000,13(1):100-108.
    [65] 冯国胜,杨绍普.柴油机及其电控系统仿真[J].系统仿真学报,2005,17(9):2276-2279.
    [66] 彭长清.误差与回归[M].北京:兵器工业出版社,1991:304-310.
    [67] 翁家昌.拖拉机理论[M].北京:中国农业机械出版社,1988.1-76.
    [68] Zhang Mingzhu, Zhou Zhili, Xu Liyou, Li Yan. Algorithm of the efficiency of continuously Variable hydro-mechanical transmissions[C]. Proceedings of 7th Asia-Pacific Conference of the International Society forTerrain-VehicleSystems. Changchun: ISTVS, 2004: 492-498.
    [69] Tsutomu lshino, Kazuya maki. Method of controlling continuously variable transmission[P]. U.S.patent: 4949596, 1990-8-21.
    [70] I Sakai, et al. Shift scheduling method of automatic transmission vehicles using Fuzzy logic[C]. IEEE roundtable discussion of Fuzzy and Neural systems and vehicle application. Detroit: IEEE, 1991: 1-27.
    [71] K Hayashi. Neuro fuzzy optimal transmission control for automobile with variable loads[C], Proeeedings ofthelECON'93. Hawaii: IEEE, 1993: 430-434.
    [72] Takeshi Takiyama, Shigeyuki Morita. Engine_CVT consolidated control using LQI control theory[J]. JSAE Review, 1999, 20(3): 251-258.
    [73] Zhang Naiqian. Microprocessor-based digital control for improving tractor operating efficiency[D]. Virginia: Virginia Polytechnic Institute and State Univesity, 1987: 20-60.
    [74] Jonas Fredriksson, et al. Nonlinear control applied to gearshifting in automated manual transmission[C]. Proceedings of39th IEEE conference on decision and control. Australia: IEEE, 2000: 210-218.
    [75] K K Ang, et al. MCMAC-CVT: a novel on-line associative memory based CVT transmission control system[J]. Neural Networks, 2002, 15(2): 219-236.
    [76] Bender J G, Struther K D. Advanced Controls for Heavy Duty Transmission Aplieations[J]. Transportation Electronics, 1990, 15(4): 343-353.
    [77] 罗永革.湿式离合器金属带式无级变速器(CVT)模糊控制策略研究[D].杭州:浙江大学,2001.
    [78] Y Sakai. The "ECVT"electro continuously variable transmission[J]. SAE paper 880481, 1988.
    [79] Y Sakai. The electronically controlled continuously variable transmission(ECVT-Ⅱ) [C]. International congress on transportion electronics proceeding. Detroit: ICTEP, 1988(10): 110-120.
    [80] Ide T, UdaegawaA. Simulation approach to the effect of ratio changing speed of a metal V-belt CVT on the vehicle response[J]. Vehicle system design, 1995, 24(1): 25-32.
    [81] 曹青梅.液压机械无级变速器的控制系统研究[D].洛阳:河南科技大学,2005.
    [82] P Sethur, et al. Nonlinear control of a continuously variable transmission(CVT) [J]. IEEE transactions on control system technology, 2003, 11(1): 200-215.
    [83] Djurovic M, Helduser S. New control strategies for electrohydraulic load-sensing[C]. Bath Workshop on Power Transmission and Motion Control, Geneva: PTMC, 2004(4): 201-210.
    [84] Heera Lee, Chulsoo Kim and Talchoi Kim. CVT ratio control algorithm by considering powertrain response lag[J]. SAE Paper 2004-01-1636, 2004.
    [85] 王红岩.汽车无级变速传动系统建模、仿真及其匹配控制策略研究[D].重庆:重庆大学,2001.
    [86] 花家寿,何维廉.轿车无级变速器的试验研究及其试验装置的开发[J].传动技术,2000,14(4):33-39.
    [87] 朱华.微型轿车CVT系统计算机仿真与试验研究[D].北京:北京理工大学,2000.
    [88] Shuiwen Shen, Alex Serrarens, Maartenn Steinbuch et al. Coordinated control of a mechanical hybrid driveline with a continuously variable transmission[J]. JSAE Review, 2001, 21(10): 453-461.
    [89] Kensuke Osamura, Hiroyuki Itoyama, Hiroshi lwano. Improvement of drive torque response by applying an integrated control algorithm for a diesel engine and CVT[J]. JSAE Review, 2001,22(7): 293-298.
    [90] Takeshi Takiyama. Engine-CVT-A/F consolidated control using decoupling control theory[J]. JSAE Review, 2001, 22(1): 9-14.
    [91] Ilyas Eker. Governors for hydro-turbine speed control in power generation: a SIMO robust design approach[J]. Energy Conversion and Management, 2004(45): 2207-2221.
    [92] Kensuke Osamura. Improvement of drive torque response byapply ing an integrated control algorithm for a diesel engine and CVT[J]. JSAE Review, 2001, 22(2): 293-298.
    [93] Yokohama. Fuzzy control system CVT-starting wet-clutch, 240japan[J]. SAE paper 9636420, 1996.
    [94] H Tanaka, et al. Fuzzy control of clutch engagement for automatic manual transmission[J]. Vehicle system dynamics, 1995, 24(2): 185-195.
    [95] Whiffin P G. An introduction to the ZF 5HP24 transmission control system fitted to the new Jaguar XK8, The Electrical System of the Jaguar XK8 (Digest No: 1996/281) [J]. IEEE Colloquium, 1996, 1(4): 1-14.
    [96] 葛安林.离合器最佳接合规律探讨[J].汽车工程,1988,10(2):20-25.
    [97] 雷雨龙.机械式自动变速器起步过程控制[J].机械工程学报,2000,36(5):69-71.
    [98] 王云成,施国标,于海涛,等.机械式自动变速器系统的离合器起步模糊控制[J].农业机械学报,2000,31(11):32-35.
    [99] National Instruments Corporation. LabVIEWS.20. website: http//www.Labview, 2006-9-1.
    [100] 姚怀新.行走机械液压传动与控制[M].北京:人民交通出版社,2002:30-70.
    [101] Toshihiro Saito, Alan D, Lewis. Development of a Simulation Technique for CVT Metal Pushing V-Belt with Feedback Control[J]. SAE paper 2004-01-1326, 2004.
    [102] Borman G L. Mathematical simulation of internal combustion engine process and performance including comparisons with experiment[D]. Wisconsin : University of Wisconsin-Madison, 1964.
    [103] Blumberg P N. Powertrain simulation: A tool for the design and evaluation of engine congtrol strategies in vehicles[J]. SAE paper 760158, 1976.
    [104] Wenbo Wang. Dynamic powertrain system modeling and simulation with applications for diagnostics, design and control[D]. Wisconsin: University of Wisconsin-Madison, 2000. 10-200.
    [105] 毕小平,王普凯.坦克动力-传动装置性能匹配与优化[M].北京:国防工业出版社,2004.10.
    [106] Andrew J, Fox. Design and analysis of a modified power-split continuously variable transmission[D]. Virginia: West Virginia University, 2004: 166-169.
    [107] Hamid Vahabzadeh, Samuel M Linzell. Modeling, simulation and control implementation for a split-torque, geared neutral, infinitely variable transmission[J]. SAE paper 910409, 1991.
    [108] Fereydoon Jamzadeh, Tung-ming Hsieh, Keith struthers. Dynamic simulation modeling for heavy duty automatic transmission control development[J]. SAE paper 922441, 1992.
    [109] Jia-shiun Chert. Vehicle powertrain models using multibody dynamics [D]. Iowa: University of Iowa, 1995.
    [110] A Haj-Fraj, F Pfeiffer. Optimal control of gear shift operation in automatic transmissions[J]. Journal of the Franklin institute, 2001, 338 (2-3): 371-390.
    [111] Han-Sang Jo, Sung-Tae Jo, et al. Analysis of the shift characteristics of an automated manual transmission in the parallel type hybrid drivetrain system of transit bus[J]. Heavy vehicle system, 2001, 8(1): 60-82.
    [112] Barry Powell, Xianjie Zhang, Robert Baraszu. Computer model for a parallel hybrid electric vehiele(PHEV)with CVT[C]. Proceeding of the American control conference. Chicago: AACC, 2000(7): 70-79.
    [113] Gregory A, Hubbard, Kamal Youcef-Toumi. Modeling and simulation of a hybrid-electric vehicle drivetrain[C]. Proceedings of American Control Conference. Chicago: AACC, 1997(6): 636-640.
    [114] Lawrence Mianzo. A transmission model for hardware-in-the-loop powertrain control system software development[C]. Proceedings of the 2000 IEEE International Conference on Control Applications. Anchorage: IEEE, 2000(9): 25-27.
    [115] 徐立友,周志立,张明柱,李言.基于MATLAB的柴油机性能试验数据的处理[J].河南科技大学学报,2006,27(4):34-54.
    [116] Wu K, Zhang Q, Hansen A. Modelling and identification of a hydrostatic transmission hardware-in-the-loop simulator[J]. International Journal of Vehicle Design, 2004, 40(1): 54-62.
    [117] K Wu, et al. A multiple Iocally-linearized diesel engine model[J]. Transactions of ASAE, 2002, 45(2): 21-28.
    [118] 周志立,张明柱,徐立友.多段液压机械无级变速器开发传动方案论证报告[R].洛刚:河南科技大学,2002:20-28.
    [119] Moskwa J J, Munns S A, et al. The development of vehicular powertrain system modeling methodologies: Philosophy and implementation[J]. SAE paper 971089, 1997.
    [120] Jung Hyeon Kim, et al. Analysis of transmission load of agricultural tractors[J]. Journal of Terramechanies, 2000, 37(30): 113-125.
    [121] 周志立,张明柱,徐立友,张文春.多段连续液压机械无级变速器[P].中国专:2005 20031072.9,2006-8-1.
    [122] 马从谦,陈自修,张文照.渐开线行星齿轮传动设计[M].北京:机械工业出版社,1987.20-110.
    [123] Zhang Mingzhu, Zhou Zhili, Xu Liyou, Li Yah. Speed change and range shift control schedule of the multi-range hydro-mechanical CVT for tractors[C]. The 2006 IEEE International Conference on Mechantronies and Automation. Luoyang: IEEE, 2006: 1970-1974.
    [124] SAUER Inc. 90 Serial pump and motor technology documentation[R]. SAUER-DANFOSS Co., 1999.
    [125] 王杰,胡纪滨,陈德民.液压机械传动多领域虚拟样机集成与协同仿真[J].机械设计与制造,2006,(11):10-14.
    [126] Qyan Zheng. Modeling and control of powertrain with stepped automatic transmissions[D]. Ohio: Ohio State University, 1999.
    [127] MathWorks Inc. SIMULINK model-based and system-based design[M]. Natick: MathWorks Inc, 2004: 1-200.
    [128] Dawson J A. An experimental and computational study of internal combustion engine modeling for controls oriented research[D]. Ohio: The Ohio State Univesity, 1998.
    [129] K Dasgupta, J Watton, S Pan. Open-loop dynamic performance ofa servo-valve controlled motor transmission system with pump loading using steady-state characteristics[J]. Mechanism and Machine Theory, 2006, 41(3): 262-282.
    [130] 张明柱,周志立,徐立友,李言.拖拉机多段液压机械无级变速器的动力学建模及仿真[J].西安理工大学学报,2006,22(3):269-273.
    [131] Koji Hasunaka, Kiyoshi Takagi, Sinji Watanabe, et al. A Study on Electro-Hydraulic Control for Automatic Transmission[J]. SAE paper 892000, 1989.
    [132] 张明柱,周志立,田丽萍,李言.拖拉机多段液压机械CVT的动力学建模及控制仿真[J].河北农业大学学报,2006,29(6):114-118.
    [133] Murin, Jozef. A controlled diesel drive line with hydrostatic transmission: Part 1- Mathematical model[J]. International Journal of Vehicle Design, 2005, 41(2): 109-122.
    [134] 李士勇.模糊控制,神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [135] 张明柱,周志立,徐立友,李言.柴油发动机调速特性的连续性数学模型研究[J].农业工程学报,2004,20(3):75-77.
    [136] dSPACE GmbH. HIL in the automobile, website: http//www.dspace.com, 2006-9-1.
    [137] Susanne K, Dirk Jegminat. How to Do Hardware-in-the-Loop Simulation Right[J]. SAE paper 2005-01-1657, 2005.
    [138] Herbert Schuette, Peter Waeltermann. Hardware-in-the-Loop Testing of Vehicle Dynamics Controllers-A Technical Survey[J]. SAE paper 2005-01-1660, 2005.
    [139] Rexroth Bosch Group. Axial piston virable displacement pump A4VG[M]. RE92003/11.03, 2003.
    [140] Caterpiller Inc. Control strategy for optimizing multi-range hydro-mechanical transmission[P]. U.S. patent: 6056657, 2000-5-2.
    [141] Caterpiller Inc. Method and apparatus for adaptively shifting ranges in an continuously variable transmission[P]. U.S. patent: 6295497, 2001-9-25.
    [142] ZF Inc. Handbook of ZF Eccom transmission[M]. Hauptverwaltung und: ZF AG, 2003.
    [143] Fendt Inc. Brochure of FT 900 series tractor[M]. Duluth: AGCO Corporation, 2003.
    [144] Tsutomu lshino, et al. System for controlling a hydrostatic-mechanical transmission at the time of vehicle acceleration or deceleration[P]. U.S. patent: 5622050, 1997-4-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700