用户名: 密码: 验证码:
多路输出反激式变换器的分析模型及改善交叉调整率控制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于反激式变换器结构简单、器件少、成本低,在输出功率小于150W的电源场合应用非常广泛。多路输出反激式变换器是在反激式变换器的磁芯上增加辅助输出绕组和整流电路构成的,所以它进一步提高了变换器的成本优势。但是,由于多路输出反激式变换器往往仅对主输出采用闭环反馈以实现其输出电压稳定,而辅输出则开环不反馈,在主输出负载或辅输出负载变动时,会引起辅输出路电压较大范围的波动,这就是多路输出反激式变换器的交叉调整问题。在实际应用中一般是选取对电压要求较为苛刻且功率最大的供电回路作为主输出路,允许电压在一定范围内波动的负载采用输助输出供电。所以,需要采用适当的方法或辅以改善电路使辅输出路电压的波动范围保持在负载允许的范围内,并在最大限度上保持多路输出反激式变换器的成本优势,这就是改善交叉率的目的和意义。
     本文的主要研究内容如下:
     首先,简要介绍了多路输出反激式变换器特点及其交叉调整问题和现有的改善交叉调整率的主要方法,并分析了现行方法的优点和不足;
     其次,在研究多绕组变压器磁耦合关系的基础上建立了多输出反激变换器的分析模型,分析了变换器在不同工作模式下的各个开关模态,计算了各不同工作模式下各模态的持续时间和关键时刻电感的电流值;
     然后,提出了改善多路输出反激式变换器交叉调整率的强耦合整流控制方法,以分析模型为基础分析了其工作原理和开关模态,通过仿真和实验验证了该控制方法能够减小负载变动时辅助输出路电压的波动范围,总结了强耦合控制方法的特点和适用场合;
     最后,对全文的工作进行了总结,并提出了下一步的研究方向。
Flyback converters are widely used in the applications that load is less than 150W, because they are simple composed, low cost and less devices are needed. A multiple-output flyback converter can be achieved when auxiliary output windings and rectifier circuits are added to a common flyback converter, so it enhances fatherly cost advantage of the converter. However, the voltage of auxiliary output may varies largely when main output’s load or auxiliary output’s load changes, for only main output is sampled to keep its voltage stable but auxiliary output is in the open-loop situation. That’s multiple-output flyback converters’cross-regulation problem. In practice, the output whose load needs stable voltage critically and the largest power is selected as main output. And the outputs, whose load allow voltage to vary in an acceptable range, are selected as auxiliary outputs. So, appropriate method should be adopted or auxiliary devices should be added to the converter to constrain auxiliary output’s voltage within adoptable range. Meanwhile, the cost advantage should be kept. That’s the purpose and significance to improve cross-regulation in multiple-output flyback converters.
     This article includes the following works:
     Firstly, the cross-regulation problem in multiple-output flyback converters is introduced. Current methods to improve cross-regulation in multiple-output flyback converters are given, as well as their merits and disadvantages.
     Secondly, analytical model is achieved on the base of magnetic coupling relationship between windings of a multiple-winding transformer. Switch modes of multiple-output flyback converters under different working modes are presented. Duration and current of inductance in different switch modes are calculated out.
     Thirdly, forcibly coupled rectification is presented to improve cross-regulation in multiple-output flyback converters. Switch modes of converter using forcibly coupled rectification are given on the base of precedent analytical model. It is drawn from simulations and experiments that voltage of auxiliary output varies less in multiple-output flyback converters using the new rectification method. Also, characters and applications of this new method are discussed.
     In the end, this paper is summarized and further research direction is proposed.
引文
[1] Keith Billings.开关电源手册[M].第二版.张占松,汪仁皇,谢莉萍译.北京:人民邮电出版社, 2006: 156-157
    [2] Chang J-M, Pedram M.Energy Minimization Using Multiple Supply Voltage [ J]. IEEE Trans. VlsiSyst., 1997, 5: 436-443
    [3] D. C. Hamill, T. P. C. Yeo, Characterization of cross regulation in dc-dc converters[C]. International Telecom Energy Conference, 1993: 372–378
    [4] Maksimovi D, Erickson R. Modeling of Cross-Regulation in Multiple-output Flyback converters[C]. Proceedings of IEEE APEC, 1999: 1066- 1072
    [5] HU Yuequan, ZHANG Jun, CHENWe. Mathematical Modeling of Cross-regulation Problem in Flyback Converters[C]. Proceedings of IEEE PESC, 2002: 2072-2077
    [6] Kusumal Chalermyanont, Pairote Sangampai, Anuwat Prasertsit. High Frequency Transformer Designs for Improving Cross-Regulation in Multi-Output Flyback Converters[C]. IEEE PEDS, 2007: 53-56
    [7]毛行奎,陈为.通过设计变压器改善反激变换器的交叉调整率[J].低压电器, 2007, 23: 8-12
    [8] Chen Qing, Fred C. Lee, Milan M Jovanovic. Analysis and Design of Weighted Voltage-mode Control for a Multiple-output Converter [J]. IEEE, 1993:449~455
    [9] Chuanwen Ji, SMITH M J, SMEDLEY K M. Cross Regulation in Flyback Converters: Analytic Model and Solution [J]. IEEE Transactions on Power Electronics, 2001,16(2): 231-239
    [10] Milan M Jovanovic, Laszlo Huber. Small-signal Modeling of Nonideal Magamp PWM Switch [J]. IEEE Transactions on Power Electronics, 1999, 14(5): 882~889
    [11] Tang Wei. A New Control Method for Synchronous-witching Post Regulator [C]. IEEE 31st Annual Power Electronics Specialists Conference, 2000:408~411
    [12]董文辉,金天均,陈辉明.后级调整技术在多路输出反击电路中的运用[J].电工技术学报, 2005, 20(12): 64-68
    [13] L. Heinemann, R. Ullrich, B. Becker, H. Grotstollen. State Space Modeling of High Frequency Multiwinding Transformers[C]. Power Electronics Specialists Conference, 1993: 1091-1097
    [14] T. G. Wilson Jr. Cross regulation in an energy-storage dc to dc converter with two regulated outputs[C]. Power Electronic Specialists Conference, 1977: 190-199
    [15] J. Marrero. Improving cross regulation of multiple output flyback converters[C]. Power Conversion Electronic, 1995: 357-365
    [16] K. Liu. Effects of leakage inductances on the cross regulation in a discontinuous conduction mode flyback converter[C]. High Frequency Power Conversion Conference, 1989: 254-259
    [17] M. Goldman, A. F. Witulski. Predicting regulation for a multiple output current-mode controlled dc-to-dc converter[C]. Applied Power Electronics Conference and Exposition, 1993: 617–623
    [18] Howimanporn S, Bunlaksananusorn C. Performance Comparison of Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM) Flyback Converters [C].PEDS03. 2003,(2):1434~1438.
    [19]梁永春,孙林,龚春英,严仰光.同步整流反激逆变器研究[J].中国电机工程学报, 2006, 26(6): 95-99
    [20]胡宗波,张波.同步整流器中MOSFET的双向导电特性和整流损耗研究[J].中国电机工程学报, 2002, 22(3): 88-93
    [21]胡宗波,张波.新型栅极电荷保持驱动同步整流器的研究[J].电工技术学报, 2003, 18(2): 45-50
    [22]胡宗波,张波.一种全新的电压驱动同步整流器的研究[J].电力电子技术, 2003, 37(1): 4-7
    [23]沙占友.同步整流式电源变换器的设计[J].电气应用, 2006, 25(6): 60-63
    [24]宋辉淇,林维明.同步整流反激变换器的损耗模型分析[J].低压电器, 2006, 8: 50-58
    [25]苏过林,杨善水,陈万华.同步整流芯片IR1167在变压整流器中应用[J].电气应用, 2008, 11: 76-79
    [26]关伟成,张东来,樊晓东,高晓光.同步整流驱动电路的研究[J].电力电子技术, 2005, 39(3): 88-94
    [27]钱海,于锁平,陈乾宏.采用同步整流技术的准谐振反激变换器[J].电力电子技术, 2008, 42(11): 40-42
    [28]张占松,蔡宣三.开关电源的原理与设计[M].修订版.北京:电子工业出版社, 2007: 237-262
    [29] Abraham I. Pressman.开关电源设计[M].第二版.王志强等译.北京:电子工业出版社, 2006: 71-89
    [30]刘胜利.现代高频开关电源实用技术[M].北京:电子工业出版社, 2001: 78-93
    [31]赵修科.开关电源中的磁性元器件[M].沈阳:辽宁科学技术出版社, 2001: 201-216
    [32]毛行奎,陈为.反激式变换器的变压器线圈涡流损耗机制分析与新型损耗模型[J].中国电机工程学报, 2009, 29(3): 29-34
    [34]王红梅,唐春霞,龚春英.改进型交错并联有源箝位反激变换器的研究[J].电力电子技术, 2007, 41(5): 47-57
    [35] Michele Sclocchi.高性能反激变换器设计[J].电子产品世界, 2008, 62-63
    [36]王忠礼,段慧达,高玉峰. MATLAB应用技术——在电气工程与自动化专业中的应用[M].北京:清华大学出版社, 2007: 70-98
    [37]王沫然. MATLAB与科学计算.第二版.北京:电子工业出版社, 2004: 98-158
    [38]陈杰. MATLAB宝典.北京:电子工业出版社, 2007
    [39]邓国扬,盛义发.基于Matlab/Simulink的电力电子系统的建模与仿真[J].南华大学学报, 2003, 17(1): 2-5
    [40]郑亚民,蒋保臣.基于Matlab/Simulink的整流滤波电路的建模与仿真[J].电子技术, 2002, 29(4): 53-55
    [41]王栋,张燕,张文学.从磁路角度分析反激变换器效率低的主要原因[J].电力电子技术, 2005, 39(3): 66-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700