用户名: 密码: 验证码:
磁性纳米复合材料的制备及其去除水体污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕纳米材料治理水体重金属污染物而展开。基于吸附法和纳米材料的优点,制备了一系列磁性纳米复合吸附剂,同时将纳米材料的独特性能运用到微生物固定化技术中,用于高效治理水体重金属污染物。论文以磁性纳米复合材料去除水体中的铜、锌、镉重金属离子、磁性纳米颗粒选择性的去除Cr(VI)、磁性纳米粒子从铅锌二元金属溶液中选择性去除他们以及碳纳米管作为固定化材料来固定铜绿假单胞菌还原Cr(VI)为主要研究内容而进行,具体如下。
     (1)首先通过分散聚合法合成了磁性多孔纳米复合物,然后借助化学法将聚乙烯亚胺共价修饰到粒子表面,制备了磁性纳米复合吸附剂,用于水体中铜、锌和镉的去除。用SEM和FTIR表征了它的外部形貌和内部结构。该吸附剂对铜、锌和镉的吸附随着pH的升高而升高,且吸附速度快,几乎在10min内达到吸附平衡。动力学拟合表明:该吸附过程符合准二级动力学方程;基于Langmuir吸附等温式的最大吸附容量分别是Cu~(2+)157.81mg/g,Zn~(2+)138.84mg/g,Cd~(2+)105.26mg/g。该磁性纳米复合物吸附剂对重金属的吸附表现出不同的亲和性,同样条件下,对铜的吸附优先于锌和镉。该吸附剂稳定性好,分离简单,且可以反复利用,为水体重金属污染治理提供了一个技术选择,通过修饰不同的功能性物质,可以制备其他高效的纳米吸附剂用于水体污染物的去除(第二章)。
     (2)以水体中高毒性的Cr(Ⅵ)为治理对象,制备稳定性提高的磁性纳米吸附剂来选择性的去除它。首先通过煅烧Fe_3O_4形成具有核壳结构的Fe_3O_4@γ-Fe_2O_3磁性纳米粒子,然后将含有大量亚胺基团的聚合物修饰到颗粒表面,制备了磁性纳米吸附剂。该吸附剂为直径100nm的球体,等电点为pH=11.4,水分散性好,对盐酸或者氢氧化钠的耐受浓度可达1mol/L。在pH=2-3的范围,由于修饰的亚胺基团导致吸附剂表面的质子化,对Cr(Ⅵ)的去除效果非常的好。当用于吸附Cr(Ⅵ)的时候,能在15min内达到吸附饱和,数据拟合表明:吸附符合准二级动力学过程。对热力学参数(ΔG,ΔH和ΔS)的分析表明:该吸附剂对Cr(Ⅵ)的吸附为自发的放热过程,吸附容量随着温度的升高而有所降低,在35-15℃范围内的最大吸附量为74.07-83.33mg/g。溶液中共存的离子K~+、Na~+、Ca~(2+)和Cu~(2+)以及Cl~-和NO_3~-不会对Cr(Ⅵ)吸附造成影响。负载有Cr(Ⅵ)的吸附剂可以用0.02mol/L的氢氧化钠进行有效的再生。连续使用5次后对Cr(Ⅵ)的去除效率比最初只下降了9%。该研究的结果表明,基于磁性纳米颗粒的吸附剂可以选择性的去除废水中的Cr(Ⅵ),且具有实际的应用前景(第三章)。
     (3)制备了一种磁性纳米吸附剂来选择性的去除二元金属废水中的铅和锌。该吸附剂是通过嫁接亚胺基团到磁性纳米颗粒上而制备。可调节的选择性吸附是通过改变溶液的pH值和加入EDTA试剂来实现的。调查发现:当二元金属溶液条件为:pH=6,[EDTA]/[M~(2+)]=0.7时候,锌主要以二价锌离子的形式存在,而铅是以PbEDTA~(2-)的阴离子复合物存在,在该条件下通过鳌合作用选择性的去除锌,而对铅不产生吸附作用;当溶液条件为pH=2,[EDTA]/[M~(2+)]=0.7的时候,金属铅主要以PbEDTA~(2-)和PbHEDTA~-阴离子金属复合物的形式存在,而锌则主要以二价锌离子的形式稳定于溶液中,在强酸性条件下,该吸附剂借助静电作用选择性的去除二元金属溶液中铅。被吸附铅和锌分别经过碱(0.04mol/L的氢氧化钠)和酸(0.05mol/L的盐酸)洗脱后,而浓缩富集。此外,经过再生的吸附剂仍然保持了较高的吸附容量(第四章)。
     (4)将多壁碳纳米管聚乙烯醇和海藻酸钠同时用于固定铜绿假单胞菌来还原Cr(Ⅵ)为Cr(Ⅲ)。使用4%的海藻酸钠、6%的聚乙烯醇、以及0.2-0.5%的MCNTs作为基质的时候,可以在交联剂4%的硝酸钙溶液中形成直径为3mm的小球体。经过冷冻解冻处理后的微生物小球的机械强度显著提高。多壁碳纳米管在基质中对Cr(Ⅵ)还原酶的固定起到了积极作用。和游离的菌相比,固定的菌体对Cr(Ⅵ)的耐受浓度提高到了80mg/L。可以反复利用且从液相中分离简单。该技术方法为处理Cr(Ⅵ)废水提供了新的方法选择,且可以用于固定其他微生物来治理环境污染物(第五章)。
     (5)磁性纳米催化剂在环境污染物治理中的前景巨大。合成了磁性介孔硅,其孔径范围在5-7nm左右,且分布比较均匀,BET比表面积为536.5m~2/g,BJH吸附脱附孔容为1.08cm~3/g。欲将其用于固定金属钴,催化过硫酸盐产生高氧化性能的过硫酸根来降解水体中的偶氮化合物(第六章)。
Environmental pollution has become a serious global problem. Based on the advantages of adsorption method and nanaomaterials, a serial of nanocompounds are prepared to remedy the heavy metals contaminated water. The key contents include:preparation of magnetic nanocompound for the effective adsorption of Cu Zn and Cd in effluent; selective removal of Cr(VI) by stability-enhanced magnetic nanoparticles; selective adsorption of Pb and Zn from binary-metal solution; using of carbon nanotubes as immobilization materials to immobilize Pseudomonas aeruginosa for the reduction of Cr(VI). They are briefly as follows:
     (1) Magnetic porous compound was synthesized by dispersion polymerization method, and then polyethylenimine was modified onto its surface to obtain the adsorbent. The adsorbent was used to remove Cu, Zn and Cd in effluent. SEM and FTIR were applied to characterize its morphology and structure. Adsorption of heavy metal increased with the increasing of solution pH, and achieved adsorption equilibrium within10min. Kinetics study showed that the adsorption process was well fitted with pseudo-second-order model. The maximum adsorption capacity was Cu2+157.81mg/g, Zn2+138.84mg/g, Cd2+105.26mg/g based on Langmuir adsorption isotherms. The magnetic adsorbent showed different adsorption affinity towards heavy metal, which was Cu2+> Zn2+> Cd2+. Besides, the adsorbent had good stability, easy separation and could be used repeatedly, which provided an alternative for heavy metal wastewater remediation. What is more, other effective nanoadsorbent could be developed by modification of different functional composite onto magnetic porous powder (in chapter2).
     (2) The stability enhanced magnetic nanoparticle was prepared to selectively remove toxical Cr(VI). The Fe3O4was calcined to form magnetic nanoparticle with core-shell structure of Fe3O4@γ-Fe2O3, and then imine groups was grafted onto its surface to develop magnetic adsorbent. The adsorbent had a spheric shape with average diameter of100nm, its zero point of zeta potential was pH=11.4, dispersed in water evenly and could resist HCl and NaOH solution as high as1mol/L. The adsorbent was able to effectively remove anionic Cr(Ⅵ) in the pH range of2to3due to the large amount of protonated imine groups on its surface, and could be magnetically separated from liquid quickly. Adsorption equilibrium was reached within15min and independent of initial Cr(Ⅵ) concentration. The Cr(Ⅵ) maximum sorption capacity at a temperature range of35to15℃was74.07to83.33mg/g, which was obtained using the Langmuir adsorption isotherm. The calculated thermodynamic parameters (ΔG, ΔH, and ΔS) indicated that adsorption of Cr(Ⅵ) was spontaneous and exothermic in nature. Competition from coexisting ions (K+, Na+, Ca2+, Cu2+, Cl-, and NO3-) was found insignificant. The adsorbent had satisfying acid-alkali stability and could be regenerated by0.02mol/L NaOH solution. The results suggested the potential application of the PEI-modified magnetic nanoparticles in selective removal of Cr(Ⅵ) from wastewater (in chapter3).
     (3) A magnetic nanoadsorbent was prepared to selectively remove Pb and Zn from binary-metal ions. The nanoadsorbent was prepared by introducing imine groups onto the surface of stability enhanced magnetic nanoparticles and then characterized by TEM and FTIR. The tunable selectivity was achieved by adjusting the solution pH and adding EDTA chelator. It was found that when the solution condition was [EDTA]/[M2+]=0.7with pH of6, zinc was existed with the form Zn2+and lead was PbEDTA2-compound, the zinc was selectively removed by chelate interaction. When the solution condition was [EDTA]/[M2+]=0.7and pH of2, PbEDTA2-and PbHEDTA-was existed in binary metal solution, zinc existed stablely with the form of Zn2+, under this solution condition, the adsorbent selectively removed lead by electrostatic interaction. The lead and zinc loaded adsorbent could be regenerated by0.04mol/L NaOH and0.05mol/L HCl, respectively, and still possessed high adsorption capacity. The recovered metal ions could be concentrated and reused (in chapter4).
     (4) An immobilization technology based on polyvinyl alcohol (PVA), sodium alginate and multiwalled carbon nanotubes (MCNTs) was developed to immobilize Pseudomonas aeruginosa (Pa) for reduction of Cr(Ⅵ) to soluble Cr(Ⅲ). It was found that6%PVA,4%sodium alginate and0.4%MCNTs with4%Ca(NO3)2cross-linking agent (w/w) was the best option for forming beads with the average diameter of3mm. The immobilized Pa was subjected to freezing-thawing treatment to enhance its mechanical strength. MCNTs played a positive role in immobilization of chromium reductase. Compared with free cells, the immobilized Pa bead was able to resist higher toxicity of80mg/L Cr(VI), was convenient to operate for consecutive reduction of Cr(VI). The microbe immobilization technology provided an alternative for Cr(VI) wastewater treatment, and could be extended for other microorganism immobilization (in chapter5).
     (5) Magnetic nanocatalyst has immense potential in remediation contaminated environment. Therefore, magnetic mesoporous silica was developed. Its pore size was in the range of5-7nm with a narrow particle size distribution. The BET surface area was536.2m2/g and BJH pore volume was1.08cm3/g. The magnetic mesoporous silica was planned to immobilize Co to activate PMS to generate sulfate radical to remove dyes in water (in chapter6).
引文
[1] Patter s on J W. Industrial waste wat er treat ment t echnology. SecondEditi on, Butt erort h, Stoneha m, MA.USA,1985,92-101
    [2] Morrow H. Batteries, Chi na and the European Commission; MetalBulletin14th International Minor Metals Semi nar, Hong Kong, M arc h12-13,2003
    [3] Rydh C J, Svar d B. I mpact on gl obal metal flows arising from the useof portabl e rechargeable batt eries. Sci ence Tot a l En vironment,2003,302(1-3):167-184
    [4] Pac hy J, Ca d mi u m, i n mineral commodit y summaries. U. S. Ge ol.Survey2001,38-39
    [5] Asano T. Wastewater reclamati on and reuse. Technomic Publishing Co:Lancaster, USA,1998
    [6] Aas eth J, J acobs en D, Anderse n O, et al. Tr eat ment of mercur y andl ead p oi soni ng s wi t h di mercaptosuccinic aci d and sodiumdi merca pt opropa nes ul fonate: A re vi ew. Anal yst,1995,120(3):853-854
    [7] Cha C W. A st udy on the effect of garlic to the heavy metal poisoningof rat. Jouranl of Kor ean medcine Sc ience1987,2(4):513-224
    [8] Ewan K, Pamphlett R. I ncreased i norga nic mer cur y i n spi nal motorneur ons followi ng chel ating ag ents. Ne urot oxic ology,1996,17(2):343-349
    [9] Ouki S K, Ne ufe ld R D. Use of acti vated car bon for t he recovery ofchromi um fr om i ndustrial wa stewaters. Jouranl of chemicalTec hnology and Bi otechnol ogy,1997,70(1):3-8
    [10] Caroline H, Wi lliam B L, Jeanne F, et al. Adsorption and desorptionof chromium ions by poly(acrylic acid) gels. J our nal of Appli e dpolyme r Science,1999,72(4):455-466
    [11] Periasam K, Srinivasan K, Murugan P R. St udies on chromium(VI)re moval by acti va ted ground-nut husk carbon. Industry JournalEnvironment He alt h,1991,33(4):433-439
    [12] Sengupta A K. Environmental separation of heavy metals. Lewispublishers: Bota Raton,2002
    [13] Chun D W, Xia o J X, Ji a L L, et al. Enhanced coagulation for treatingslightl y polluted al gae containin g sur fa c e wat e r c o mbi n i ngpolyalumi num chloride (PAC) wit h diatomit e. Desalination,2011,279(1-3):140-145
    [14] Samrani A G E, Lartiges B S, Villi éras F. Chemical coagulation ofcombi ned se wer over fl o w: Hea vy met al r e moval a n d t r eat mentopti miz ati on. Wa ter Resear ch,2008,42(4-5):951-960
    [15] Ara vindhan R, M adha n B, Ra o J R, et al. Bioaccumulation ofchromi um from tannary wast ewat er: an appr oach for chrome recoveryand reuse. Envir onmet Science Tec hnology,2004,38(1):300-306
    [16] Guclu K, Apak R. Modeling the adsorption of free and heavy me talcomplex-bound EDTA ont o red mud by a nonelectr ost ratic sur f acecomplexat ion model. Journal of Coll oid Int er face Sci ence,2003,260(2):280-290
    [17] Ya ng L, Tan L, Gu X H, et al. Effect of the size and amount of Zr O2additi on on pr ope r ties of Sr Co0.4Fe0.6O3-δ. AIChE Journal,2003,49(9):2374-2382
    [18] Bae s A U, Okuda T, Nishiji ma W, et al. Adsor pti on and i on exchangeof so me ground water anion contaminant s in an ami ne modi fiedcoconut c oir. Wat er Sci enc e Tec hnology,1997,35(7):89-95
    [19] Shar ma D C, F orst er C F. R e moval o f he xa val ent chr o mi u m usi ngspha gnum mos s pea t. Water r esearc h,1993,22(7):1201-1208
    [20] Gode F, Pehli va nb E. Re moval of Cr (VI) from aque ous soluti on bytwo lewai tit-anion exchange resins. Journal of hazar dous materi als,2005, B119(1-3):175-182
    [21] Qdais H A, Mouss a H. Re moval of heavy metals from wastewater byme mbra ne pr oces se s: a comparati ve study. Des alinati on,2004,164(2):105-110
    [22] Kara kul ski K, Gryt a M, Mor aws ki A. Membrane processes used forpota ble water quali ty i mpr ove ment. Desalination,2002,145(1-3):315-319
    [23] Schafer A I, Schwicker U, Fischer M M. Microfiltration of colloidsand nat ur al orga ni c matter. Jour nal of Me mb rane Scie nce,2000,171(2):151-172
    [24] Schafer A I, Fane A G, Wait e T D. Fouling effects on rejection in theme mbrane filtration of natural waters. Desalination,2000,131(1-3):215-224
    [25] Ka nnan N, Sundaram M M. Kinetics and mechanism of removal ofmet hyl ene blue by a dsor ption on various car bons: a compar ative study.Dyes and pigme nt,2001,51(1):25-40
    [26] Sandhya B, Tonni A K. Cr(VI) removal from synt hetic wast e wate rusing coconut shell char coal and commerci al activated car bonmodi fied with oxi dizing agent and/or chitosan. Chemos phere,2004,54(7):951-967
    [27] Gar dea-Torresdey J L, Gonzalez J H, Tiemann K J. Phytofilteration ofhazar dous cad mium, chromi um, l ead, and zinc ions by biomass ofMedic ago sati va (alfal fa). Jour nal of hazardous materials,1998,57(1-3):29-39
    [28] Ga rg V K, Gupta R, Ku mar R. Ads orption of chromium fr om aqueoussolution on treated sa wdust. Bi ores ource Tec hnology,2004,92(1):79-81
    [29] Acar F N, Malkoc E. Removal of Chromium (VI) from aqueoussoluti on by Fa gus orient ali s. Bior es ource Tec hnol ogy,2004,94(1):13-15
    [30] Krishanani K K, Parmila V, Meng X. De toxi fic ati on of chromi um (VI)in coastal water using lignocellulosic agricultural waste. Wa ter SA.2004,30(4):541-545
    [31] Bis hnoi N R, Baj aj M, Sha r ma N. Adsorption of chromium (VI) onactivat ed rice husk car bon and activated alumina. Bior esourceTec hnology,2004,91(3):305-307
    [32] Gupta V K, Ali I. Re moval of le ad and chr omium fr om wastewat erusing ba gasse fl y a sh-a s uga r indust ry wast e. J ournal of Coll oid a ndInter fac e Scie nce,2004,271(2):321-328
    [33] Faraj zade h M A, M onji A B. Adsor ption characteristics of wheat brantowards heavy metal cations. Separation and Purification Technology,2004,38(3):197-207
    [34] Mohan D, Singh K P, Singh V K. Chromi um (III) removal fromwast ewater using low cost activated c a rbon deri ved from agric ultur ewaste material and activat ed carbon fa bric filter. Journal of hazardousmat erials,2006, B135(1-3):280-295
    [35] Fahi m N F, Barsoum B N, Ei d A E. Removal of Cr (I II) from tannerywast ewater usi ng activat ed carbon fr om sugar industrial waste.Jour nal of haz ardous materi al s,2006,136(2):303-309
    [36] Sari n V, Pant K K. Re mova l of chromi um fr om industrial waste byusing e uc alypt us ba rk. Bi ores ource Te c hnol ogy,2006,97(1):15-20
    [37] Venkateswarlu P, Ratnam M V, Ra o D S. Re moval of chromi um fromaque ous s oluti on us ing Az adi rachta indica (neem) leaf powder as anadsorbe nt. I nternat ional J ournal of Physi cal Science,2007,2(8):188-195
    [38] Kart hike yan T, Raj gopal S, Miranda L R. Cr (VI) adsor ption fr omaque ous s oluti on by Hevea brasili nesis saw du st acti vat ed carbon.Jour nal of haz ardous materi al s,2005,124(1-3):192-199
    [39] Ra o M, Parwate A V, Bhol e A G. Removal of Cr and Ni fr om aqueoussoluti on using ba ga sse and fl y as h. Wa ste Management,2002,22(7):821-830
    [40] Gupta V K, Mohan D, Shar ma S. Removal of Cr(VI) fromelectroplating industry wast ewat er using bagasse fly ash. TheEnvironmentalist,1999,19(2):129-136
    [41] Vali x M, Cheung W H, Zhang K. Role of heteroatom in activat edcarbon for the re moval of he xaval ent Cr from wast ewater. Jour nal ofhazar dous material s,2006,135(1-3):395-405
    [42] Oliveira E A, Mont anher S F, Andnad e A D, et al. Equili br ium studi esfor t he sorption of chromi um and ni c ke l fro m a q ueo us sol ut i on s usi ngraw rice bran. Process Biochemi stry,2005,40(11):3485-3490
    [43] Ga rg U K, Kaur M P, Ga rg V K. Removal of hexavalent Cr fr omaque ous soluti ons by a gr icultur al wa ste bioma ss. Jour nal ofhazar dous material s,2007,140(1-2):60-68
    [44] Zul kali M M D, Ahme d A C, Nor ula kmal N H. Oriza sativa L.husk asheavy me tal adsorbent: optimization with lead as model solution.Bior esour ce Tec hnology,2006,97(1):21-25
    [45] Gar dea-Torresdey J L, Hej a zi M, Tiemann K J, et al. Use of Hop(Humulus lupulus) agricultural by-products for the re ducti on ofaqueous l ead (II) envir onmental healt h hazar ds. Jour nal of hazar dousmat erials,2002,95(2):95-112
    [46] Lee S H, Shon J S, Chung H S, et al. Effect of chemical modi ficationof car boxyl gr oups in a ppl e residue s on me tal ion bindi ng. Kore a nJour nal of Che mic al Engi neer ing,1999,16(5):576-580
    [47] Saee d A, Iqbal M, Akhtar M W. Re moval and r ecovery of lead (II)fr om single and multiple (Cd, Ni, Cu, Zn) solutions by crop millingwast e (bl ack gra m husk). J ournal of hazardous materials,2005,117(1):65-73
    [48] Ba nkar D B, Dara S S. Effectiveness of Soymi da febri f u ga bar k f orscavengi ng l ead i ons. Proc. Nati on. Se min. Pollut. Cont. Envir on.Mana ge.1985,1,121
    [49] Raji A K, Anirudhan T S. Sorptive be havi our of chromium (VI) onsaw dust carbon in aqueous media. Ec ology Envir onme ntConser vat ion,1998,4(1-2):33-37
    [50] Gajghate D G, Saxena E R, Vittal M. Removal of lead from aqueoussoluti on by acti vate d car bon. India n J ournal of Environmental Health,1991,33(2):374-379
    [51] Nasi r M H, Na dee m R, Akhtar K, et al. Efficacy of modi fi eddistillation sludge of rose (Rosa centifolia) petals for lead and zincre moval from aque ous s oluti ons. Journal of hazardous materials,2007,147(3):1006-1014
    [52] Mont anher S F, Oliveira E A, Rollembe rg M C. Removal of metal ionsfr om a queous sol utions by sorption ont o ri ce bra n. Jour nal o fhazar dous material s,2005,117(2-3):207-211
    [53] Taty-Cost odes V C, Fa vdvet H, Porte C. Re moval of cadmium andlead ions fr om aqueous solutions by adsorption onto saw dust of Pinussylvestris. Jour nal of hazar dous mater ials,2003,105(1-3):121-142
    [54] Yu B, Zhang Y, Shukla A, e t al. The re moval of he avy met als fr omaque ous soluti ons by sa wdust ad sorpti on–r emoval of l ead andcomparison of its adsorption with koper. J ournal of ha zardousmat erials,2001,84(1):83-94
    [55] Kamble S K, Patil M R. Removal of heavy metals from waste water ofthermal power station by water-hyacint hs. Indian Journal ofEnvironmental Protection.2001,21(3):623-626
    [56] Ahluwalia S S, Goyal D. Microbial and plant derived biomass forremoval of heavy metals fr om waste water. Bi ores ourc e Te chnol ogy,2007,98(12):2243-2257
    [57] Ka dirvelu K, Na ma siva ya m C, Thamaraiselve K. Re moval of heavymet al fr om i ndustr ial wastewater s by adsor pt ion on t o acti vat edcarbon prepared from an agricultu r al sol id waste. Bior esour ceTechnology,2001,76(1):63-65
    [58] Iqbal M, Saeed A, Ak htar N. Petiolar felt sheet of palm: a ne wbios orbent for t he r e moval of he av y me tals from contaminated water.Bior esour ce Tec hnology,2002,81(2):151-153
    [59] Wilson W, Ya ng H, Seo C W. Select metal adsorpti on by activatedcarbon made from peanut shells. Bioresource Technology,2006,97(18):2266-2270
    [60] Benaissa H. Screening of new sorbe nt materi als for ca dmi um re movalfr om aqueous solutions. Journal of hazardous ma ter ials,2006,132(2-3):189-195
    [61] Singh K K, Rast ogi R, Ha sa n S H. Re moval of cadmiu m fr om wa st ewater usi ng agricul tural wast e using ri ce poli sh. Jour nal of hazar dousmat erials,2005,121(1-3):51-58.
    [62] Kuma r U, Ba ndyopadhyay M. Sor pti on of Cd fr om aqueous solutionusing pretreated ri ce husk. Bior es ource Technology,2006,97(1):104-109
    [63] Singh K K, Rast ogi R, Ha sa n S H. Re moval of cadmiu m fr om wa st ewater usi ng agricul tural wast e using ri ce poli sh. Jour nal of hazar dousmaterials,2005, A121,51-58
    [64] Krishnan K A, Anirudhan T S. Re moval of cadmi um (II) from aqueoussolutions by steam-activat ed sulphuri sed carbon prepared fr om suga rcane bagasse pith: Kinetics and equilibrium studies. Wa ter SA.2003,29(2):147-156
    [65] Min S H, Ha n J S, Shin E W. Improvement of cadmium ion removal bybase treated of juniper fi ber. Wa ter Re search,2004,38(5):1289-1295
    [66] Aj mal M, Ra o R A K, Ahma d R. Adsorption studies on partheniumhyst erophrous weed: Removal and recovery of Cd (II) fromwast ewater. Jour nal of hazar dous mater ials,2006,135(1-3)242-248
    [67] Srivastava S, Ahmed A H, Thakur I S. Removal of chromium andpenta chl orophenol fr om ta nnery e ffl uent. Bioresource Technology,2007,98(5):1128-1132
    [68] Mohan D, Singh K P. Single-and multi-component adsorption ofcadmiu m and zi nc using acti vated carbon derived from bagasse-anagricultural waste. Wa ter Research,2002,36(9):2304-2318
    [69] Gupta V K, J ain C K, Ali I, et al. Removal of cadmiu m and ni ckelfr om wast ewat er usi ng bagasse fly as h-a sugar industry waste. Wa terRes earc h,2003,37(16):4038-4044
    [70] Mont anher S F, Oliveira E A, Rollembe rg M C. Removal of metal ionsfr om a queous sol utions by sorption ont o ri ce bra n. Jour nal o fhazar dous material s,2005,117(2-3):207-211
    [71] Faraj zade h M A, M onji A B. Adsor ption characteristics of wheat brantowards heavy metal cations. Separation and Purification Technology,2004,38(3):197-207
    [72] Kur nia wa n T A, Chan G Y S, Lo W H. Comparis on of l ow-c ostadsorbent s for tr eat ing wastewater l a d en wit h h eavy met a l s. Sci enc eo f t he Tot al E nvir o n ment.2006,366(2-3):409-426
    [73] Saeed A, Akhter M W, Iqbal M. Removal and recovery of heavymetals fr om aqueous sol ution using papaya wood as a ne w biosor be nt s.Separation and Purification Tec hnology,2005,45(1):25-31
    [74] Johns M M, Marshall W E, Tole s C A. Agricultural byproducts asgranular activat ed carbons for a ds orbi ng di ssol ved met al s a n dorganic s. Jour nal of Che mic al Tec hnology and Biot echnology,1998,71(2):131-140
    [75] Sciban M, Radeti c B, Kevresan Z. Adsorption of heavy metals fromelectropla ting wast e water by wood saw dust. Bioresour c e Tec hn ol o gy,2007,98(2):402-409
    [76] Kar nitz J O, Gurge l L V A, Melo J C P, et al. Adsorption of heavymet al i on fr o m aque ous si ngl e met al sol ut i on by c he mi call y modi fie dsuga rca ne ba gas se. Bior esour ce Tec hnology,2007,98(5):1291-1297
    [77] Pino G, Mesquita L, Tor e m M, Pi nt o G. Bi osorption of heavy me talsby powde r of gree n coc onut s hell. Se parati on Scie nce Technology,2006,41(14):3141-3153
    [78] Seki K, Saito N, Aoya ma M. Re mo val of heavy metal ions fr omsoluti ons by c oni fer ous bar ks. Wood Sci ence Te chnology,1997,31(2)441-447
    [79] Kuznicki S M, Bell V A, Nair S, et al. A titanosilicate Molecularsieve wi th adj ust able process for size-sl ective adsorpti on ofmolecules. Nat ure,2001,412(6):720-724
    [80] Harris R G, Wells J D, Johnson, B B. Selective adsor ption of dyes an dother organic molecules to kaolinite a nd oxi de s ur face s. Colloi ds andsur fac es A: physic ochemi cal and engi neeri ng aspects2001,180(1-2):131-140
    [81] Hanzlika J, Jehlieka J, Sebek O. Multi-component adsorption of Ag(I),Cd(II) and Cu(II) by natur al carbonac e ous mater ials. Water research,2004,38(8):2178-2184
    [82] Old I M N, Va rum K M, Guibal E. Binding of ions t o chi t osa n-selecti vit y st udi es. Carbohydrate pol ymer s,2003,54(4):471-477
    [83] Var m A J, Des hpa ndea S V, Kennedy J F. Metal co mp lexation bychitosan and its dericatives: A review. Carbohydrate pol ymer s,2004,55(1):77-93
    [84] Congost M A, Sal vatierra D, Mar ques G, et al. A novel phosphinesulfide functionalized polymer for t he sel ecti ve separ at i o n o f Pd(I I)and from base metals. Reacti ve and functional polymers,1996,28(2):191-200
    [85] Sanchez J M, Hi dalgo M, Salvado V. The selective adsor ption ofgold(III)and palladi um(II) on new phosphine sul phide-type chel atingpolymers bearing di fferent spacer ar ms. Equilibri um and kineticcharacteri zation. Reactive and functi onal pol ymers2001,46(5):283-291
    [86] Harti nge r L, Handbook of e fflue nt tr eat ment and r ecycl ing for t hemet al fi ni shing i ndustru2e d, fi nishing publication Ltd., Stevenage,1994
    [87] Thomas W J, Crit tende n B D. Ad sorption tec hnol ogy and desi gn,Oxford, boston, Butterworth-hienema nn,1998
    [88] Rydberg J, Cox M, Musi kas C. Solvent Extraction: Pri nciples a ndPracti ce2nd. Revi sed and Expanded, New York: Marcel Dekker, I nc.,Ne w York,2004
    [89] Bond A H, Dietz M L, Roger s R D. Meta l-ion separation andpreconcentration: Progress and Op portunities. Wa shington D.C.,Oxford University Pres s,1999:2-13
    [90] Long R O, Yang R T. Carbon na not ube s as superior sorbent for di oxi nremoval. J. Am. Chem. Soc,2001,123(9):2058-2059
    [91] Masciangioli T, Zhang W X. Environmental technologies at t henanoscal e. Environme nt Scie nce Technoogy,2003,37(5):102A-108A
    [92] Panov A G, Larson R G, Totah N I, et al. Photooxidation of tolueneand p-xyl ene in c at ion-e xcha nge d zeolites X, Y, ZSM-5, and beta: t herole of zeolite physicochemical properties in product yield andselecti vit y. Journal physic al Che mistr y.2001, B104(24):5706-5714
    [93] Wa tson J H P, Cr oudace I W. Adsorption of radioactive metals bystron gl y ma gnet i c i on s s ul fi de nanoparticles produced bysul fate-reduci ng bacteria. Separation science technology,2001,36(12):2571-2607
    [94] Fate me h R R, Sa deghi S, Zi nab G. Kinetic, equilibrium andthermodynamic st udies for t he removal of lead (II) and copper (II)ions from aqueous solution s by nanocrystalline Ti O2. Superlatticesand Micr ostruct ures,2010,48(6):577-591
    [95] Song J Y, Kong H Y, Ja ng J. Ads orpt ion of he avy me tal ions fr o maque ous soluti on by pol yrhoda nine-e ncapsula t ed ma gneticnanopart i cles. J our nal of Col loid and I nter fac e Science,2011,359(2):505-511
    [96] Chang Y, Chen D H. Preparatio n and adsorption properties ofmonodisperse chit osan-bound Fe3O4magnetic nanoparticles forremoval of Cu(I I) ions. Journal of Coll oid and I nter face Science,2005,283(2):446-451
    [97] Bushra R, Shahadat M, Raeisssi A S. Development of nano-compositeadsorbent for re moval of heavy metal s from industri al effluent andsynt hetic mixt ures; its conducti ng behavi or. Des alina ti on,2012,289(15):1-11
    [98] Ba druddoza A, Ta y A S, Tan P Y. Carboxymethyl-β-c yclodext ri nconj ugat e d ma gneti c na nopar ticles as nano-a ds or bent s for re moval ofcopper ions: Synt hesis and adsorption studies. Jour nal of Haz ardousMaterial s,2011,185(2-3):1177-1186
    [99] Ba nerjee S S, Che n D H. Fa s t re mo val of coppe r ions by gum arabi cmodi fied magnet ic nano-adsorbent. Journal of Hazardous Material s,2007,147(3):792-799
    [100] Saravanan P, Vi nod V T P, Sreedha r B. Gum konda gogu modi fi e dma gnet ic na no-adsorbent: An e ffi cient protocol for removal ofvarious toxic metal ions. Materials Sci ence a nd Engine eri ng: C,2012,32(3):581-586
    [101] Jin X L, Yu C, Li Y F, Qi Y X, Ya ng L, Guanghui Zha o, Hua iyua n Hu.Preparati on of novel nano-ads orbe nt bas ed on organic-inorganichybr id a nd their adsorpti on for he avy met als a nd orga nic poll utant spresented in water environment. Journal of Haz ardous Mat eria ls,2011,186(2-3):1672-1680
    [102] Rostamian R, Najafi M, Ra fati A. Synthe sis a n d charact erization ofthiol-functionalized silica na no holl ow sphere a s a novel ads orbe ntfor re moval of poisonou s heavy metal ions fr om water: Kinetics,isotherms and error analysis. Chemical Engineering Journal,2011,171(3):1004-1011
    [103] Hei daria A, Youne sia H, Me hraba n Z. Re moval of Ni(II), Cd(II), andPb(II) from a ternary aqueous solution by ami no functionaliz edme sopor ous a nd nano me soporous silica. Chemical EngineeringJour nal,2009,153(1-3):70-79
    [104] Okuyama K, Lenggoro I W. Preparation of nanoparti cl es via spra yroute. Chemical Engineering Science,2003,58(3-6):537-547
    [105] Schmid G. Nanoparticles: fr om Theory to Application. Wiley-VCH,We inheim,2003,125-136
    [106] He nglei n A. Top. Current Ch e mi stry,1988,143:113-180
    [107] Henglein A. Small-particle r esearch: physicochemi cal pr operti es ofextremely small colloidal metal and se mi conduct or particl e s.Che mistr y Revie w,1989,89(8):1861-1873
    [108] Abr a ms B L, Wil coxon J P. Na nosi ze se mi conductor s forphot ooxidation. Cri tical Revi ews in Solid St ate Materials Science,2005,30(3):153-182
    [109] Liu L C, Guan X, Li Z M, et al. Supported bimetallic AuRh/γ-Al2O3nanocatal yst for t he sel ective cat alyti c reduction of NO by propylene.Applied Catalysis B: Environme ntal,2009,90(1-2):1-9
    [110] Prabhur a m J, Zhao T S, Wong C W. Synthesis and physicalelectrochemi cal characterization of Pt/C nanocatalyst for polyme relectrol yt e fuel cell s. Journal of Power Sourc es,2004,134(1):1-6
    [111] Virkutyt e J, Je gat heesa n V, Var ma R S. Visible li ght acti vatedTi O2/micr ocrystalli ne cell ul ose na nocatalyst to destr oy organi cconta mi na nts i n wat er. Bi ores ource Te c hnol ogy,2011(in press)
    [112] Triantis T M, Fotioua T, Kal oudi s T, e t al. phot ocatal ytic degr a da t i onand mi ner alization of micr oc ystin-LR under UV-A, solar and visi bl elight usi ng na nostr uctur ed ni troge n doped Ti O2. Journal of Ha zardousMaterial s,2012,211-212(15):196-202
    [113]刘晓辉,范家起,李强。聚丙烯/蒙脱土纳米复合材料制备表征及动态力学性能。高分子学报,2000,5:65-71
    [114] Chen C H, Teng C C, Su S F, et al. Effects of micr oscale calci umcarbonate andnanoscale calci um carbonate on th e fusion,t her mal,an dmechanical characterizations of rigi d poly(vi nyl chl or ide)/cal ci umcarbonate compos it es. Journal of Pol ymer Sci ence Part B-PolymerPhysic s,2006,44(2):451-460
    [115] Sun S, Li C Z, Zha ng L, et a l. Interfacial structures and me chanicalproperties of PVC composites reinforced by CaCO3with differentparticle sizes and sur face tr eat ment s. Pol y mer Int er nati onal,2006,55(2):158-164
    [116] Wa ng H J, Zhou A L, Peng F, et al. Adsorption characteristic ofacidi fied carbon nanotubes for heavy met al Pb(II) in aqueous solut ion,Material s Scie nce Enginerring A,2007,466(1-2):201-206
    [117] Wa ng J H, Zheng S R, Sha o Y, et al. Amino-functionalizedFe3O4@Si O2core-shell ma gnetic nanomaterial as a novel adsorbentfor aqueous heavy metals removal, Journal of Colloid InterfaceScience,2010,349(1):293-299
    [118] Schi avell o M. Some worki ng princi ples of he terogene o usphot ocat a lysis by s e mi conductors. El e ctroc hi mi ca Acta,1993,38(1):11-14
    [119] Nair M, Luo H Z, Heller A. Rates of photocat alyt ic oxi dati on of c rud eoil on salt water on buoyant, cenos phere-attached titanium dioxide.Industrial Engi nerri ng Chemi sty Re search,1993,32(10):2318-2323
    [120] Carra way R E, Hoff ma n A J, Hoff ma nn M R. Photocatal yti c oxidationof organic acids on quantum-siz ed semi conduct or colloi ds.Environment Scie nce Tec hnology,1994,28(5):786-793
    [121] Ya ng Z, Lv L, Dai Y. Synt hesis of ZnO–SnO2composite oxides byCTAB-assisted co-precipitation a nd photoc atalytic properties.Applie d Sur face Sci ence,2010,256(9):2898-2902
    [122] Koci K, Obalova L, Matejova L, et al. Effect of TiO2parti c le siz e onthe photocatalytic reduction of CO2. Applie d Catal ysi s B,2009,89(3-4):494-502
    [123] Ki m J H, Jung W Y, Bae k S H, et a l. Hydrot her mal synthe sis oftitanium dioxides using basic peptizing agents and theirphot ocat alytic act ivity. Chemical Engineeri ng Sci e nce,2007,62(18-20):5154-5159
    [124] Pitoniak E, Wu C Y, Mazyck D W. Adsorption enha ncementme chanisms of silica-titania nanocomposites for elemental mercuryvapor removal. Environment Science Technology,2005,39(5):1269-1274
    [125] Lee S H, Pump rueg S, Moudgil B. I nacti vation of bacterialendospores by phot ocatal ytic nanocomposit es. Coll oids Sur faces B,2005,40(2):93-98
    [126] Lee S W, Dr wiega J, Wu C Y, et al. Anatase Ti O2nanoparticle coatingon barium ferrite using titanium bis-ammonium lact ato dihydroxideand it s use as a magnetic phot ocatal yst. Chemistry of Materials,2004,16(6):1160-1164
    [127] Lee S W, Dr wie ga J, Wu C Y. Synt hesi s and characterizat ion of har dma gnetic composite photocatalyst-barium ferrite/silica/titania.Material Chemistry and Phys ics,2006,96(2-3):483-488
    [128] Jang S J, Choi H S, Par k H. A c omposit e phot ocat a lyst of CdSnanopart i cles deposited on Ti O2nanosheet s. Journal of Na nos cie nceNa note chnology,2006,6(11):3642-3646
    [129] Wa ng C X, Yu C J, Chen L Y. Zr O2-modi fi e d mes oporousnanocrystalline Ti O2-xNx as efficient visible light photocatalysts.Environment Science Technology,2006,40(7):2369-2374
    [130] Ohsaki H, Kanai N, Fukunaga Y, et al. Photocatalytic pr operti es ofSnO2/Ti O2multilayers, Thin Solid Films,2006,502(1-2):138-142
    [131] Fouad O A, I s mail A A, Zaki Z I. Zinc oxide thin fil ms prepared b ythermal evaporation deposition and its photocatalytic activity.Applied Catalysis B,2006,62(1-2):144-149
    [132] El-Bahy Z M, I s mail A A, Moha med R M. Enhancement of titania bydopi ngr ar eearth for phot odegradati on of organicdye (Di rect Bl ue).Jour anl of Hazar dous Mat erial,2009,166(1):138-143
    [133] Is mail A A, Ibr ahi m I A, Ahmed M S, et al. Sol–gel s ynthesis oftitania–silica photocatalyst for cyanide photodegradation. Journal ofPhotoc he mistr y and Photobi ology A: Chemistry,2004,163(3):445-451
    [134] Ismail A A, Ibrahi m I A, Moha me d R M. Sol-gel s ynthesis ofvana dia-s ilica for phot ocat a lytic de gradati on of cya nide. Appli e dCatal ysi s B,2003,45(2):161-166
    [135] Moha med R M, Is mail A A, Othma n I. Prepar ation of Ti O2-ZSM-5zeolite for photodegradation of EDTA.Journal of Molecular CatalysisA: Che mi cal,2005,238(1-2):151-157
    [136] Othma n I, Moha me d R M, Ibrahi m I A. Synthe si s and modific ation ofZSM-5with ma nga nese and lant han u m a nd t he i r e ffe c t s ondecol oriz ation of i ndigo ca r mi ne dye. Appli ed Catal ysi s A,2006,229(1-2):95-102
    [137] Barakat M A, Chen Y T, Huang C P. Re mo v al o f t oxic cyani de a ndCu(II) Ions fr om water by illuminated Ti O2catal yst. AppliedCatal ysi s B,2004,53(1):13-20
    [138] Is mail A A, U. S.-Egypt J oint S&T Pr oject, Ac ade my of Sci enti fi cRes earc h and Tec hnol ogy, Ministr y of Scient ific Rese arch, Fi nalreport: s ynthe sis and c hara ct erization of Ti O2-ZnO nanoparticles viasol gel te chni que for was tewater treatment,2007
    [139] Bara kat M A, Sc hae ffer H, Ha yes G. J. Phot oc atalytic Degradation o f2-chl orophenol by Co-dope d Ti O2Nanoparticles. Applied Catalysis B,2004,57(1):23-30
    [140] Bara kat M A. Adsorpti on and phot ode gradat ion of pr ocion yel lowH-EXL dye in textile wastewater over TiO2suspension. Jour nal ofHydro-Environment Resear ch,2011,5(1):137-142
    [141] Sepelak V, Baabe D, Litterst F J. Enhanced magnetization innanocrystalline high-energy milled MgFe2O4. Scri pta Materi al ia,2003,48(7):961-966
    [142] Liu M L M, Prashant V K. Nanoscal e materials. Kl uwer academi cpubli sher s: Bost on,2003
    [143] Edelsten A.S. an d Cammarata R.C. Institute of physics publishing:Bristol,1996
    [144] Wong R S K, Fe ng J Y, Hu X J. Disc ol oration a nd mi nera lization ofnon-biode grada ble az o dye or ange II B T coppe r-doped Ti O2nanocatal ysts. J ournal of Environment Science Healt h partA-toxic/hazardous substance and envi ronmental engineer ing,2004,A39(10):2583-2595
    [145] Kuri har a L K, Chow G M, Schoe n P E. Nanostr uctur ed ceramic nit ridepowders and a me thod of ma king the same.1997, Navy case No.77219. US pate nt a pplica tion pe ndi ng
    [146]沈彬,李游,王志飞。磁性纳米颗粒负载钯催化剂对Heck反应的催化活性。催化学报,2007,28(6):509-513
    [147] Zha n J Y, Tian G F, Jiang L Z. Super par amagnetic pol yi mide/γ-F e2O3nanocomp osite fil ms: pre par ation and characterization. Thi n Soli dFil ms,2008,516(18):6315-6320
    [148] Li J, Qiu X Y, Lin Y Q, et al. A study of modifie d Fe3O4na noparticle sfor the s ynthe sis of ioni c ferr ofluids. Applie d Surfa ce Scie nce,2010,256(23):6977-6981
    [149]肖旭贤铁氧体纳米粒的制备及生物性能研究中南大学,博士学位论文,2008,98-102
    [150] Lu B W, Chen W C. A dis posable gl ucos e bi osens or ba sed on dr opcoating of screen printed carbon electrodes with magneti cnanopart i cles. Jour nal of Ma gneti s m a nd Ma gne tic Materials,2006,304(1): e400-e402
    [151] Liu Z M, Li u Y L, Ya ng H F. A phe nol bios ens or base d onimmobilizing tyrosinase to mo dified core-shell ma gneticnanopart i cles supporte d at a c arbon paste electrode. Anal yti caChi mi ca Acta,2005,533(1):3-9
    [152] Zha ng Y, Ze ng G M, Tang L. A hydr oquinone bi os ensor usi ngmodi fie d core-s hell ma gnetic nanopart i cl es s up p orted on carbon pasteelectrode. Bi osensors and Bi oelectro nic s,2007,22(9-10):2121-2126.
    [153] Ra wal R, Chawla S, Pundir C S. An ele ctroc he mi cal s ul fite bi ose nsorbase d on gold c oat ed ma gnet ic na nopa rticles mo dified gold electrode.Biosensor s and Bi oelectro nic s,2012,31(1):144-151
    [154] Zhang F W, Niu J R, Wa ng H B, et al. Palladium wa s s upporte d onsupe rpar a ma gnet ic nanopart i cles: A magneti call y rec ove r able c atal ystfor Heck r eaction. Material s Research Bulletin,2012,47(2):504-507.
    [155] álvarez P M, Jaramill o J, López-Pi ero F. Pr eparation andcharacteri zation of magnet ic Ti O2nanoparticles and their utilizationfor the de grada tion of e me rgi ng poll utants in water. Applied CatalysisB: Envir onmenta l,2010,100(1-2):338-345
    [156] Kas saee M Z, M as rouri H, Mova he di F. Sulfamic acid-functionalizedma gnet ic Fe3O4nanoparti cles as an effi cient and reusable catalyst forone-pot s ynthesis of α-ami no nitriles in water. Applied Catalysis A:Ge neral,2011,395(1-2):28-33
    [157] Senapati K, Borgohain C, Phukan P. Synt hes is of hi ghly sta bl eCoFe2O4nanoparticles and their use as ma gnetically separablecatalyst for Knoevenagel reaction in aqueous medi um. Journal o fMolec ular Catalysis A: Che mi cal,2011,339(1-2):24-31
    [158] Wa ng H, Huang Y M. Prus sian-blue-modi fie d iron oxi de magneti cnanopart i cles as e ffecti ve pe roxidase-like catalysts to degr ademet hyl ene bl ue with H2O2. Journal of Hazardous Materials,2011,191(1-3):163-169
    [159] Saravanan P. Vi nod V T P, Sreedha r B. Gum konda gogu modi fi e dma gnet ic na no-adsorbent: An e ffi cient protocol for removal ofvarious toxic metal ions. Materials Sci ence a nd Engine eri ng: C,2012,32(3):581-586
    [160] Has he mi a n S, Sal i mi M. Na no composite a potential low costadsorbent for removal of cyanine acid. Chemical Engineering Journal,2012,188(15):57-63
    [161] Iram M, Guo C, Guan Y, et al. Adsor ption and magnetic re moval ofneutr al r ed dye fr om a queous solution us ing Fe3O4holl ownanospher es. Journal of Hazardous Materi als,2010,181(1-3):1039-1050
    [162] Hao Y M, Man C, Hu Z B. Effective removal of Cu (II) ions fromaque ous soluti on by a mino-functi onalized ma gnetic nanoparticles.Jour nal of Hazar dous Mat erial s,2010,184(1-3):392-399
    [163] Prasad B, Ghosh C, Chakraborty A, et a l. Adsor pt ion of ars enite (As3+)on nano-sized Fe2O3wast e powder fr om the st eel industr y.Des alina ti on,2011,274(1-3):105-112
    [164] Ba nerjee S S, Che n D H. Fa s t re mo val of coppe r ions by gum arabi cmodi fied magnet ic nano-adsorbent. Journal of Hazardous Material s,2007,147(3):792-799
    [165] Mark S Y, Che n D H. Fast ads orpti on of met hyl ene blue onpoluacryli c ac id-bound ir on oxide ma gnetic na noparticles. Dyes andpigme nts,2004,61(1):93-98
    [166] Chang Y C, Chen D H. Pr eparati on and a ds orpti on properti es o fmonodisperse chit osan-bound Fe3O4magnetic nanoparticles forremoval of Cu(II) i ons. Jour nal of coll oid and i nt erface sci ence,2005,283(2):446-451
    [167] O’ Conne l l D W, Bir kins ha w C, O’ Dw yer T F. Heavy metal adsorben t sprepared fr om t he modi ficati on of cel lulose: A revi ew. Bior esour ceTec hnology,2008,99(15):6709-6724
    [168] Bhattac ha ryya K G, Gupta S S. Adsorption of a fe w heavy metals onnatur al a nd modi fied kaoli nite a nd mont mo rillonite: A revi e w.Adva nce d Colloi d I nter fac e Science,2008,140(2):114-131
    [169] Ju X J, Zhang S B, Zhou M Y, et al. Novel heavy metal adsorptionmaterial: ion-recognition P(NIPAM-co-BCAm) hydrogels for remo valof lea d(I I) ions. Jour nal of Hazardous Material s,2009,167(1-3):114-118
    [170] Sud D, M ahaja n G, Ka ur M P. Agricultural waste material as potentia ladsorbe nt for se que stering he avy me tal ions from aqueous solutions:A r eview. Bior esour ce Technology,2008,99(14):6017-6027
    [171] Wa ng Z L, Liu X J, Lv M F. A new kind of me soporous Fe7Co3/car bonnanocomp osite and its application as ma gnet ica lly s epar a ble a ds or ber.Material Letters,2010,64(10):1219-1221
    [172] La m K F, Fong C M, Ye ung K L. Sel ective ads orpti on of gol d fr omcomple x mi xtur es usi ng mes oporous adsorbe nt s. Che mic alEnginerr i ng Journa l,2008,145(2):185-195
    [173] De nizli A, Senel S, Al sa ncak G, et al. M ercur y r e moval fr omsynt hetic solutions usi ng pol y(2-hydr oxyet hyl-met ha crylate) ge lbeads modifie d wit h p ol y(e t hyle nei mi ne). Reactive and FunctionalPol ymer,2003,55(2):121-130
    [174] De ng S B, Ting Y P. Characterization of PEI-modi fied bioma ss a ndbiosorpti on of Cu(II) Pb(II) and Ni (II), Wat er Research,2005,39(10):2167-2177
    [175] Na varro R R, Tatsumi K, Sumi K. Role of anions on heavy metalsorpti on of a cell ul ose modi fied with poly(glycidylmethacrylate) andpolyethyl enei mi ne. Wat er Re searc h,2011,35(11):2724-2730
    [176] Ghoul M, Bacquet M, Morcellet M. Upt ake of hea vy met als fr omsynt hetic aqueous sol utions using modi fied PEI-silica gels. WaterRes earc h,2003,37(4):729-734
    [177] An F J, Ga o B J. Chelati ng a dsor pt ion prope rties of PEI/Si O2forplumbum ion, J our nal of Haz a rdous Mat erials,2007,145(3):495-500
    [178] Chen Y, Pan B, Li H, et al. Select ive removal of Cu(II) i ons by usi ngcation-exchange resin-support e d P ol yeth yl en e i mi ne (PEI)nanoclusters. Environment Science Tec hnology,2010,44(9):3508-3513
    [179] Ga o Q, Chen F H, Zha ng J L, et al. The study of novel Fe3O4@γ-Fe2O3core/shell nanoma terials with i mpr ove d properties. Jour nal ofMagnetism and Magnetic M a terials,2009,321(8):1052-1057
    [180] De ng S B, Ti ng Y P. Polyet hyleni mi ne-modi fied fungal bi omass as ahigh ca pa city bi os orbe nt for Cr(VI) anions: sorption capacit y a nduptake mechanisms. Environment Science Te chnology,2005,39(21):8490-8496
    [181] Ha n X, Wong Y S, Wong M H. Bios or ption a nd biore duc ti on of Cr(VI)by a mi croalgal isolate, Chlorella miniata. J ournal of Haz ardousMaterial s,2007,146(1-2):65-72
    [182] Chanda M, Re mpel G L. Chromi um(III) removal byepoxy-cross-linked poly(ethylenimine) used as gel-coat on silica:Sor ption charact eristics. Industrial and Engineeri ng Chemi stryRes earc h,1997,36(6):2184-2189
    [183] Muruges a n A, Ravi kumar L, Sathya Se l vaBala V, et al. Removal of Pb,Cu, a nd Cd ions fr om a queous so lution using polyazome thineamides:Equilibrium and kinetic approach. Desalination2011,271(1-3):199-208
    [184] Re dda d Z, Gere nte C, Andres Y. Ads orption of several me tal ions ontoa low-cost biosorbent: Kinetic and Equilibrium Studies. EnvironmentScie nce Technology,2002,36(9):2067-2073
    [185] Fan T, Li u Y G, Fe ng B Y, e t al. Bi os orpti on of Cd, Zn, and Pb byPenicillium simplicissimum: Isotherms, kinetics and thermodynamics.Jour nal of Hazar dous Mat erial s,2008,160(2-3):655-661
    [186] Wa ng J H, Zheng S R, Sha o Y, et al. Amino-functionalizedFe3O4@Si O2core-shell ma gnetic nanomaterial as a novel adsorbentfor aqueous heavy metals removal. Journal of Colloid InterfaceScie nce,2010,349(1):293-299
    [187] Vengris T, Binkiene R, Sveikauskait e A. Nickel copper and zin cre moval from wa st e wate r by modi fi ed clay sorbent. Applied ClayScie nce,2001,18(3-4):183-190
    [188] Wilson K, Yang H, Se o C S. Select met al adsorpti on by acti vatedcarbon made from peanut shells. Bioresource Technology,2006,97(18):2266-2270.
    [189] Hu J, Chen G H, Lo M C I. Re mo val and recovery of Cr(VI) fr omwast ewater by ma ghemite nanopart i cl es. Wat er Rese a rch,2005,39(18):4528-4536
    [190] Liu J F, Zhao Z S, Jiang G B. Coati ng Fe3O4ma gnetic nanoparticleswith humi c aci d for hi gh effi cient removal o f he avy met al s i n wat er.Environment Scie nce Tec hnology,2008,42(18):6949-6954
    [191] Oliveira L C A, Petkowicz D I, Smaniotto A. Ma gnetic zeolites: a newadsorbent for remo val of metallic contaminants fr om water. WaterRes earc h,2004,38(17):3699-3704
    [192] Ya ntase e W, War ne r C L, Sangvani ch T, et al. Removal of heavymet als fr om a queous s yste ms with thiol functionalizedsupe rparamagnetic nanoparticles. Environment Science Technology,2007,41(14):5114-5119
    [193] Lu A H, Li W C, Mat ous sevit c h N, et al. Hi ghly stablecarbon-pr otecte d c obalt nanoparti cles and graphite shell s. Che mi c alCommunications,2005,98(1):98-100
    [194] Hai H T, Kur a H, Ta kahas hi M. Fa cil e s ynt he sis of Fe3O4nanopart i cles by reduc tion phase t ransfor mation from γ-Fe2O3nanopart i cles in organic solvent. Jour nal of Coll oid Inter face Sci ence,2010,341(1):194-199
    [195] Sun J, Sun W Y, Gao L. Adsorption behaviour of PEI on siliconcarbi de powder. J ournal of I norga nic Material s,2000,15(2):259-263.
    [196] Tang F Q, Hua ng X X, Zha ng Y F. Effe ct ofdispersa nt s on sur facechemical propert ies of nano-zirconia suspensions. Cer a mi csInternational,2000,26(4):93-97
    [197] Trimaille T, Pichot C, Delair T. Surface functionalization ofpoly(D,L-lactic acid) nanoparticles with poly(ethyl eni mine) andplas mi d DNA by the la yer-by-la yer appr oac h. Colloi ds Sur face A,2003,221(1):39-48
    [198] We ckhuysen B M, Wa chs I E, Sc hoonhe ydt R A. Sur fa c e che mist ryand spectroscopy of chromi um in inorga nic oxi de s. Chemical Reviews,1996,96(8):3327-3349
    [199] Ba yra moglu G, Celi k G, Yl ma z M. M odi ficati on of sur face propertiesof Lentinus sajor-caju mycelia by physical and chemical met hods:evaluation of t heir Cr6+removal efficiencies fr om aqueous medium.Jour nal of Hazar dous Mat erial s,2005,119(1-3):219-229
    [200] We ng C H, Wa ng J H, Hua ng C P. Adsorption of Cr(VI) onto Ti O2fr om dilute aqueous soluti ons. Water Sc ience Tec hnol ogy,1997,35(5):55-62
    [201] Lalvani S B, Hubener A, Wiltowski T S. Chromium adsorption byligni n. Energy Sour ces,2000,22(1):45-56
    [202] Wa ng L Y, Ya ng L Q, Li Y F, e t al. St udy on adsorpt i o n me chani s m o fPb(II) and Cu(II) i n aqueous soluti on using PS-EDTA resin. ChemicalEngine eri ng Journa l,2010,163(3):364-372
    [203] Li Y J, Gao B Y, Wu T, et al. Hexa valent chr omium re moval fr omaque ous soluti on by ads or ption on aluminum ma gnesium mi xedhydr oxi de. Water Researc h,2009,43(12):3067-3075
    [204] Ba yra moglu G, Arica M Y. Adso rption of Cr(VI) onto PEIimmobilized acrylate-based magnetic beads: Isotherms, kinetics andther modyna mics st udy. Che mic al Engineeri ng J ournal,2008,139(1):20-28
    [205] Hu J, Lo M C, Chen G H. Adsorption of Cr(VI) by ma gnetit enanoparticles. Wa ter Science Technology,2004,50(12):139-146.
    [206] Re n Y M, Zha ng M L, Zha o D. Synthesis and properties of ma gneticCu(I I) i o n i mpri nt ed c o mp o si t e a dsor bent for selecti ve removal ofcopper. Desalination,2008,228(1-3):135-149
    [207] Liu Y, Li u Z C, Ga o J, et al. Se lecti ve adsor ption beha vior of Pb(II)by mesoporous sili ca SBA-15-support ed Pb(II)-i mprinted pol ymerbased on sur face mol ecul arly i mprinting t echni que. J our nal o fHazardous Mat erial s,2011,186(1):197-205
    [208] Liu Y H, Cao X H, Hua R, et al. Selecti ve adsor ption of ur anyl i on o nion-i mpri nted chit osan/PVA c ross-li nke d hydroge l. Hydr ometallurgy,2010,104(2):150-155
    [209] Chen J H, Li G P, Liu Q L, et al. Cr(III) ionic i mprinted polyvinylalcohol/sodium alginate (PVA/SA) porous composite me mbranes forselecti ve adsorpti on of Cr(III) i ons. Chemical Engi neering Journal,2010,165(2):465-473
    [210] Fryxell G E, Lin Y, Fi skum S, et al. Actinide sequestration usingsel f-as se mbled monol ayer s on me s opor ous support s. Envir onme ntScie nce Technology,2005,39(5):1324-1331
    [211] Lin Y, Fryxell G E, Wu H. Sele ct ive sor pt ion of c esium usi ngsel f-as se mbled monol ayer s on me s opor ous support s. Envir onme ntScience Technology,2001,35(19):3962-3966
    [212] La m K F, Yeung K L, McKa y G. An i nves t i gati on o f gold adsorptionfr om a binary mixture with selective me soporous silica adsorbents.Jour nal of Physi cal Che mistr y B,2006,110(5):2187-2194
    [213] Mures eanu M, Ci oatera N, Tra nda fi r I, et al. Selective Cu2+adsorption and recovery fr om contaminated wa ter using me soporoushybr id si lica bi o-adsorbe nt s.Micr oporous Me s opor ous Material s,2011,146(1-3):141-150
    [214] Chen Y L, Pa n B C, Li H. I mmo bilization of polyethyleniminenanoclust ers ont o a cati on exchange resin thr ough s el f-crossli nki ngfor sel ect ive Cu(II) removal Journal of Haza rdous Mater ials,2011,190(1-3):1037-1044
    [215] Liu C K, Bai R B, Ly Q S, et al. Selective removal of copper and leadions by diethyl enet ria mi ne functi onal i zed adsor bent: behavior s andmechanisms. Water Resear ch,2008,42(6-7):1511-1522
    [216] De ng S, Bai R B, Chen J P. Aminated polyacrylonitrile fibers for leadand copper removal. Langmui r,2003,19(12):5058-5064
    [217] Abollino O, Aceto M, Malandrino M. Adsorption of heavy metals onNa-montmorillonite Effect of pH and organic substances. WaterRes earc h,2003,37(7):1619-1627
    [218] Nowack, B. Environmental Chemistry of AminopolycarboxylateChelating Agents. Environment Science Technology,2002,36(18):4009-4016
    [219] Esc uder o C, Ga baldon C, Mar zal P. Effect of EDTA on divalent metaladsorpti on onto gr ape st alk and ex hausted coffee wastes. Jour nal ofHazardous Mat erial s,2008,152(2):476-485
    [220] Ya ng L Y, Chen S, Xu W Q, et al. I dent i fi cation of γ-Fe2O3inFertile-ferric Oxide Catalysts Using Second Derivative IR Spectra.Acta Phys ica Chi mi ca (i n Chi nese)1994,10(2):164-167
    [221] Chi ang C L, Sung C S, Wu T F, et al. Applicati on ofsupe rpar a ma gnet ic nanopart i cles in purification of plasmi d DNA fr ombacterial cells. Journal of Chromatogra phy B,2005,822(1-2):54-60
    [222] Mikhaylova M, Ki m D K, Bobryshe va N, et al. Super par amagnetismof Magnetite Nanoparticles: Dependence on Surface Modification.Langmuir,2004,20(6):2472-2477
    [223] Ole g A, Kuznet sov N A. Brusent sov A, et a l. Corr ela tion of t hecoagulati on rates and toxicity of bi oc ompatibl e ferroma gneticmicr opart icles. Journal of Magnetism and Magnetic Materials1999,194(1-3):83-89
    [224] Liu A M, Hi dajat K, Ka wi S. A ne w clas s of hybri d me sopor ousmaterials with functionalized organic monol ayers for sel ectiveadsorption of heavy metal ions. Chemistry Communication,2000,15(13):1145-1146
    [225] Ant oc hshuk V, Ol khovyk O, Jaroniec M. Benzoylthiour ea-Modi fi edMesoporous Silica for Mercury(II) Re moval. Langmui r,2003,19(7):3031-3034
    [226] Gustafsson J P. Vi sual MI NTEQ. Version2.40; KTH: Stockholm,Sweden,2006.
    [227] Nowack B, Lutenkirchen J, Behra P. Modeling t he Adsorpti on ofMetal-EDTA Complexes onto Oxides. Environment ScienceTechnology,1996,30(7):2397-2405
    [228] Da vis A, Gree n D. Photoc ata lytic Oxidation of Cadmium-EDTA withTitanium Dioxide. Environment Science Technology,1999,33(4):609-617
    [229] Ya ng J K, Davis A P. Comp etitive Adsorption of Cu(II)–EDTA andCd(II)-EDTA ont o Ti O2. Journal of Colloid and Interface Science,1999,216(1):77-85
    [230] Arsl an G, Pehli van E. Batch removal of chromi um(Vi)from aqueoussoluti on by Turki s h brown coals. Bi oresource Technol ogy,2007,98(13):2836-2845
    [231] Cara velli A H, Zar i tzky N E. About the per for mance of Sphaer otil usnatans t o reduce hexa vale nt chromi um in batch and continuousreactor s. Jour nal of Hazar dous Mat erial s,2009,168(2-3):1346-1358
    [232] Song H X, Liu Y G, Xu W H, et al. Si multane ous Cr(VI) r e ducti on a ndphe nol degradation i n pur e c ultur e s of Pseudomonas aeruginosaCCTCCAB91095. Bioresource Technology,2009,100(21):5079-5084
    [233] Garavagli a L, Cerdeira S B, Vullo D L. Chr omi um (VI)biotra ns for mati on by β-and γ-Proteobacteria fr om nat ur al pol l ute denvironments: A combined biological and chemical treat ment forindustrial wast es. Jour nal of Haz ardous Materials,2010,175(1-3):104-110
    [234] Viamaj ala S, Peyt on B M, Pet ersen J N. Modeling chromate reductionin Shewanella oneidensis MR-1: de velopment of a novel dual-enzymekineti c model. Biotechnol ogy a nd Bioe ngi neeri ng,2003,83(7):790-797
    [235] Liu Y G, Xu W H, Ze ng G M. Cr(VI) reduction by Bacillus sp.isolated from chromi um landfill. Pr ocess Biochemistry,2006,41(9):1981-1986
    [236] Wa ng J L, Shi H C, Qian Y. The adva nces in bi odegrada tion ofrefr actory organic pollutants by immobilized mi crobial cells (inChi nese), Research of Environmental Sciences.1999,12(1):55-59.
    [237] Li H B, Li P J, Zha ng Y, et al. Re vie w on bi ore mediati on of i mmo bi l eor slow sur fac e waters wit h i mmobi lized mic robe te chniques (i nchine se), Chi nes e J ournal of Ecol ogy.2005,24(5):561-566
    [238] Wa ng Y T, Xia o C S. Factors a ffe cting hexavalent chromi umreduction in pure cultures of bacteri a. Wa ter Research,1995,29(11):2467-2474
    [239] Puzon G J, Roberts A G, Kr amer D M. Formation of solubleorgano-chromium(III) complexes after chroma te reduction in th epresence of cellul a r organics. Environment Science Technology,2005,39(8):2811-2817.
    [240] Xu W H, Liu Y G, Tang C F. Application of Pseudomonas aeruginosato reduction of Cr(VI)(i n chinese). Environment Science Technology,2005,28(5):76-80
    [241] Jeykumari D R S, Nara ya na n S S. A novel nanobiocomposite basedgluc ose biose nsor using ne utral r ed functionalized car bon nanotubes.Biosensor Bi oele ctr onic s,2008,23(9):1404-1411
    [242] Guo M, Chen J, Li J, et al. Carbon nanotube s-bas ed a mperome t ricchole ster ol bios ensor fabri cated through layer-by-layer techni que.Electr oanalysis,2004,16(23):1992-1998
    [243] Qiu J D, De ng M Q, Lia ng R P. Ferroce ne-modi fie d multi wall edcarbon na notubes a s buil ding block for construction of reagentlessenzyme-based bi os ensors. Se nsor Actuat B,2008,135(1):181-187
    [244] Hong, L J, Tong W L. Impact of the immobilization technology withsodi um al ginate a nd polyvinyl al cohol (PVA) on the dehydrogenaseactivit y of pur ple non-sul fur photosyntheti c bacteria (i n chine se).Sa fe y a nd Envir onme ntal Enginee ring,2009,16(2):54-56
    [245] Lozi ns ky V I, Pli eva F M. Poly(vi nyl a lcohol) c r yogels e mployed asmatrices for cell immobilization. Overview of recent research anddevel opments. Enz yme Micr obial Tec hnol ogy,1998,23(3-4):227-242
    [246] Koba yas hi M, Ka nekiyo M, Ando I. A study of molecular motion ofPVA/wate r sys te m by high-pressur e1H pul se-NM R me t hod. Pol ymerGels a nd Net works,1998,6(5):347-354
    [247] Hu J, Chen C L, Zhu X X. Remo val of chromi um fr om aqueoussolution by using oxidized multiwalled carbon nanotubes. Journal ofHazardous Mat erial s,2009,162(2-3):1542-1550
    [248] Ruparelia J P, Duttagupta S P, Chatterjee A K. Potential of carbonnanomate rials for r e moval of heavy me tals fr om water. Desalination,2008,232(1-3):145-156
    [249] Wa ng H J, Zhou A L, Peng F, et al. Adsorption characteristic ofacidi fied carbon nanotubes for heavy met al Pb(II) in aqueous solut ion.Material s Scie nce a nd Engi ne ering A,2007,466(1-2):201-206
    [250] Lazari dis N K, Asouhi dou D D. Kinetics of sorpti ve removal o fchromi um(VI) from a que ous sol uti ons by calcined Mg-Al-CO3hydr otal ci te. Water Research,2003,37(12):2875-2882
    [251] Barnhart J. Chro mi um chemi stry and implications for environmentalfat e a nd t oxicit y. J ourn al o f Soi l Cont a mi nati on,1997,6(6):561-568
    [252] Puz on G J, Pet erse n J N, Roberts A G. A bacterial flavin reductasesystem reduces chroma te to a soluble chromi um(III)-NAD+compl e x.Biochemi cal and Biophysical Research Communic at ions,2002,294(1):76-81
    [253] Mattagajasingh S N, Mi sr a H P. Mechanism of t he carcinogeni cchromi um(VI)-i nduced DNA-prote i n cross-l inking and t heircharacterization in cultured intact human c ells. Jour nal of biol ogi ca lchemistry,1996,271(52):33550-33560
    [254] Li Y R, Low G K C, Scott J A. Mi crobial reduction of hexavalentchromi um by landfi ll leachat e. Jour nal of Hazar dous Mat e rials,2007,142(1-2):153-159
    [255] Oht ake H, Fuji E, Toda K. A survey of effecti ve electron-donors forreduc tion of toxic he xa vale nt c hromi um by enterobact er cl oacae.Jour nal of Gener al and Appli ed M icrobiology,1990,36(2):198-206.
    [256] Wa ng Y J, Yang X J, Li H Y. Immobilization of acidithiobacillusferr ooxidans wit h complex of PVA and sodium alginate. PolymerDegradati on,2006,91(10):2408-2414
    [257] Peyt on G R, Hua ng F Y, Burle son J L, et al. Destruction of pollu tant sin water with ozone in combination with ultraviolet radiation:Ge neral principles and oxidation of t et rachl oroet hyl e ne. E nvir on me n tScience Technology,1982,16(8):448-453
    [258] Beltrá n F J, Ovej er o G, Ace do B. Oxi dation of atrazine i n water byultraviolet radiation combined wi t h hydr ogen peroxide. WaterRes earc h,1993,27(6):1013-1021
    [259] Kotr onarou A, Mil ls G, Hoffma nn M R. Ultrasonic irradiation ofp-nitr ophenol in a que ous s oluti on. J ournal of Physical Che mi str y,1991,95(9):3630-3638
    [260] Wa lling C. Fenton’s Reagent Revi sited. Accounts of ChemicalRes earc h,1975,8(4):125-131
    [261] Sa far zade h-Ami ri A, Bolton J R, Cater S R. The use of iron inadva nce d oxidati on pr oce sses. Journal of Adva nc ed Oxi di zeTechnology,1996,1:18-26
    [262] Cooper W J, Nickelsen M G, Meacham D E, et al. High-energyelectron-beam irradiation-an innovati ve process for the treatment ofaque ous base d organic haza rdous wa stes. J. Environ. Sci. Heal thA-Environ. Sci. Eng. Toxic Haz ard ous Substance Control1992, a27,219-244
    [263] Hsiao C Y, Lee C L, Ollis D F. Heterogene ous photocatalysis:Degradation of dilute solutions of dichloromethane (CH2Cl2),chloroform (CHCl3), and car bon te trachloride (CCl4) with illuminatedTi O2phot ocatal yst. Journa of Catalyst,1983,82(2):418-423
    [264] Kocha ny J, Lipzyns ka kochany E. Application of the EPRSpi n-trapping technique for the investigation of the reactions ofcarbonate, bi carbonate, and phos phat e Ani ons wi th hydr oxyl ra dical sgener ated by t he phot olysi s of H2O2. Che mosphe re1992,25(12)1769-1782
    [265] Madhava n J, Mar ut ha mut hu P, Mur uge san S. Ki netics of degra dati onof acid r e d88i n t he presence of Co2+/peroxomonosulphate reagent.Applied Catalysis A: General,2009,368(1-2):35-39
    [266] Hu L X, Yang X P, Da ng S T. An easil y recyclabl e Co/SBA-15catal yst:Heterogeneous activation of peroxymonosul fat e for t he degra dati onof phe nol in wat er. Appli ed Catal ysis B: Enviro n ment al,2011,102(1-2):19-26
    [267] Shukla P, Sun H Q, Wang S B, et al. Nanosized Co3O4/Si O2forheter oge neous oxidation of phe nolic conta mi na nts i n wa ste wat er.Separation and Purification Technology,2011,77(2):230-236
    [268] Ya ng Q J, Choi H, Che n Y J, et al. Heter oge neous activation ofperoxymo nos ul fate by suppor ted c oba lt catal ysts for t he degradationof2,4-di chlor ophe nol i n water: The effect of support, cobaltprecursor, and UV radiati on. Applied Catalysis B: Environmental,2008,77(3-4):300-307
    [269] Zhao J Q, Wang Y J, Luo G S. In situ synthesis of ma gneticme soporous silica via sol-gel process coupled withprecipitation andoxidation. Par ticuol ogy,2011,9(1):56-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700