用户名: 密码: 验证码:
基于仿生学的产品概念设计方法学探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在综合分析了计算机辅助概念设计研究的历史和现状后,针对当前计算机辅助概念设计研究存在的一些主要问题,借助仿生学,为建立基于遗传和重组的技术产品计算机辅助概念设计的新理论和方法,做了具有探索性的基础工作,主要进展体现在下列四个方面:
     一、基于产品基因的物料转换产品的原理方案设计。基于产品和生物之间的相似性,从生物遗传学得到启发,提出了物料转换产品原理方案设计中的产品基因概念。探讨了物料转换产品原理方案设计的中心法则,包括复制、转录、翻译和逆转录。在对基因工程和概念设计进行系统对比的基础上提出了基于基因工程的计算机辅助原理方案设计的方法。一种硬币分离装置的原理方案设计实例表明:基于产品基因的原理方案设计方法能帮助设计师在更广阔的解域内找到更多可行的原理解,从而提高了计算机辅助概念设计系统的求解能力。
     二、基于产品基因的能量转换产品的原理方案设计。从物料转换产品原理方案设计中的产品基因模型得到启发,提出了能量转换产品基因模型,借助基因中的求解特征和以函数形式表示的作用特征使CAD系统能在有限的原理解空间中实现高效的搜索求解。进而提出了基于产品基因的启发式搜索求解模型、基于最短路径知识的启发式搜索求解模型和基于产品基因的盲目搜索求解模型,以适用于多种类能量转换产品原理求解的需要和对求解质量与求解效率的不同需求。海浪发电及照明装置的创新概念设计的实例证明了这些方法的可行性。
     三、基于共生进化的辅助功能结构设计。从生物进化原理得到启发,探讨了基于共生进化原理的共生功能之间的关系,包括“提供作用条件”、“消除不利手段行为”、“消除有害副作用”和“消除环境有害影响”四类关系,为系统地解决创新设计中基于可行原理解的功能结构设计问题奠定了基础。提出了集成原理方案设计和功能结构设计的计算机辅助概念设计的进程模型。该进程模型能根据实际创新设计环境以及候选原理解的作用条件、手段行为、副作用和环境影响,在求解过程中动态地生成待求产品的可行功能结构,符合人类设计思维习惯,有助
    
    浙江大学博士学位论文
    摘要
    于提高设计成功率。一种木棒上料装置的概念设计表明了这一模型的可行性。
     四、基于仿生学的计算机辅助概念设计原型系统的研制。以上述思想为基础,
    首次研制了一个基于产品基因遗传和重组的计算机辅助概念设计的原型系统,它
    包含了三个子系统:基于产品基因的物料转换产品的原理方案设计子系统,基于
    产品基因的能量转换产品的原理方案设计子系统和基于共生进化的辅助功能结构
    设计子系统。该系统首次将辅助功能结构设计和原理方案设计集成在一起,提供
    了支持产品概念设计的平台。
    关键词:概念设计原理方案设计
    识基因工程共生进化
    功能设计功能结构设计智能CAD产品基因最短路径知
    进化设计
After a systematic analysis of the background and state-of-the-art of research in computer aided conceptual design (CACD), a bionics-based methodology is originally proposed for CACD of technical artifacts, aiming at solving some crucial issues in this research area. The primary contributions are as follows.First, a product gene based approach is proposed for principle conceptual design of material transforming products. Enlightened by organism genetics, the concept of product gene is proposed for principle conceptual design of products of such kind after the similarities between products and organisms is systematically analyzed. The central dogma of principle conceptual design is proposed, composed of the processes of copy, transcription, translation and reverse transcription of product genes. After a systematic comparison of genetic engineering with principle conceptual design, a novel approach based on genetic engineering is proposed for computer aided principle conceptual design. The principle conceptual design of a coins-assorting device demonstrates that the product gene based approach to principle conceptual design can assist designers in retrieving more feasible principle solutions in a wider solution space, which can therefore improve the problem-solving ability of CACD systems.Secondly, a product gene based approach is proposed for principle conceptual design of energy transforming products. With the product gene model for principle conceptual design of material transforming products as a blueprint, the product gene model for principle conceptual design of energy transforming products is proposed. The solving features and the function-based behavioral features of this kind of product genes make it possible for CACD systems to efficiently propose principle solutions to complex functions in a finite solution space. Thereafter, three solving approaches, i.e. a heuristic approach based on product gene, a heuristic approach based on the shortest route knowledge and an exhaustive approach based product gene, are proposed to meet the need of principle conceptual design dealing with the transformation of multiple different energy flows and different requirements on solving quality and efficiency. The
    
    creative conceptual design of a device for generating electrical power and light with sea wave is undertaken with the proposed approaches to demonstrate their feasibility.Thirdly, a symbiosis-based approach is proposed for evolutionary design of functional structure. Referring to the evolutionary method of organisms based on the symbiotic theory, the symbiotic relations between functions in conceptual design are summarized, i.e. the relations of supplying action conditions, removing adverse means behaviors, smoothing away harmful side effects and eliminating or prohibiting environmental influences. Such functional relations are the basis for generating auxiliary functional structures and their carriers for feasible principle solutions. Then a process model integrating principle conceptual design with functional structure design is proposed for CACD, which can dynamically generate the auxiliary functional structure of a feasible principle solution with respect to the differences between its action conditions, mean behaviors, side effects and environmental influences and existing design constraints and resources. The conceptual design of a wood stick supplying device demonstrates that the above process model is consistent with the cognitive model of design and prone to successful product development.Finally, a CACD platform based on bionics is developed. Based on the above researches, a CACD prototype system is developed based on the inheritance and reorganization of product genes, which is composed of three sub-systems, i.e. the product gene based prototype system for principle conceptual design of material transforming products, the product gene based prototype system for principle conceptual design of energy transforming products and the functional structure evolutionary design system based on the symbiotic theory. Thi
引文
[1 ] Pahl G & Beitz W. Konstruktionslehre. Springer-Verlag, Berlin, 1986.
    [2] Tomiyama T. From general design theory to knowledge-intensive engineering. AI EDAM, 8:319-333.
    [3] Finger S, Tomiyama T and Marti M. Knowledge Intensive CAD. Kluwer Academic Publishers, 1998.
    [4] Simon H A. The Sciences of the Artificial (3rd Edition). MIT Press, 1996.
    [5] Chakrabarti A & Blessing L. Special Issue: Representing functionality in design. AI EDAM,1996,4:251-253.
    [6] Umeda Y & Tomiyama T. Functional reasoning in design. IEEE Expert, 1997, 12(2): 42-48.
    [7] Chittaro L & Kumar A. Reasoning about function and its applications in engineering. Artificial Intelligence in Engineering, 1998, 12: 331-336.
    [8] Hsu W & Woon I M Y. Current research in the conceptual design of mechanical products.Computer-Aided-Design, 1998, 30(5): 377-389.
    [9] Hsu W & Liu B. Conceptual design: Issues and challenges. Computer-Aided Design, 2000, 32:849-850.
    [10] Wang L, Shen W, Xie H, et al. Collaborative conceptual design-state of the art and future trends. Computer-Aided Design, 2002, 34: 981-996.
    [11] Lindemann U, Birkhofer H, Meerkamm H, et al (Eds). Proceedings of ICED99, Munich,August, 1999.
    [12] Culley S J, Duffy A H B, McMahon C, et al (Eds). Proceedings of ICED01, Glasgow, August 2001, Professional Engineering Publications, Bury St Edmunds.
    [13] Folkeson A, Gralen K, Norell M, et al (Eds.) Proceedings of ICED03, Stockholm, August 2003, Design Society.
    [14] Proceedings of ASME DTC 1998, Atlanta, GA, September 1998.
    [15] Proceedings of ASME DETC 1999, Las Vegas, NV, September 1999.
    [16] Proceedings of ASME DETC 2000, Baltimore, Maryland, September 2000.
    [17] Proceedings of ASME DETC 2001, Pittsburgh, Pennsylvania, September 2001.
    
    [18] Proceedings of ASME DETC 2002, Montreal, CA, September 2002.
    [19] Proceedings of ASME DETC 2003, Chicago, IL, September 2003.
    [20] 邹慧君,汪利,王石刚,郭为忠.机械产品设计及其方法综述.机械设计与研究,1998,(2):4-8.
    [21] 舒慧林,刘继红,钟毅芳.计算机辅助机械产品概念设计研究综述.计算机辅助设计与图形学学报,2000,I2(12):947-954.
    [22] 张建明,魏小鹏,张德珍.产品概念设计的研究现状及其发展方向.计算机集成制造系统,2003,9(3):613-620.
    [23] French M J. Conceptual design for engineers (2~nd Edition). 1985, London: The esign Council.
    [24] Lipson H, Shpitalni M. A new interface for conceptual design based on object reconstruction from a single freehand sketch. Annals of the CIRP 1995, 44(1):133-136
    [25] Eggli L, Hsu C Y, Bruderlin B D, Elber G. Inferring 3D models from freehand sketches and constraints. Computer-Aided Design 1997, 29(2): 101-112.
    [26] Qin S F, Wright D K & Jordanov I N. From on-line sketching to 2D and 3D geometry: a system based on fuzzy knowledge. Computer-Aided Design, 2000, 32:851-866.
    [27] 沈晓红,刘璇,周细文,等.概念设计中的夹具几何特征识别.工程图学学报,2001,22(1):19-25.
    [28] 孙守迁,包恩伟,潘云鹤.基于组合原理的概念创新设计.计算机辅助设计与图形学学报,1999,11(3):128-132.
    [29] 孙守迁,黄琦,潘云鹤.计算机辅助概念设计研究进展.计算机辅助设计与图形学学报,2002,15(6):643-650.
    [30] 唐敦兵,郑力,李志忠.计算机辅助模具概念设计系统的研究.计算机集成制造系统,2001,7(4):52-57。
    [31] 徐志刚.几何缺席推理研究.计算机辅助设计与图形学学报,2000,12(12):881-886.
    [32] Takeda H, Veerkamp P, Tomiyama T, et al. Modeling design processes. AI Magazine, 1990,11(4): 37-48.
    [33] Shimomura Y, Yoshioka M, Takeda H, et al. Representation of design object based on the functional evolution process model. Journal of Mechanical Design, 1998, 120:221-229.
    
    [34] Suh N P. Axiomatic Design: Advances and applications. MIT Press, 2000.
    [35] Otto K N & Wood K L. Product evolution: A reverse engineering and redesign methodology. Research in Engineering Design, 1998, 10: 226-243.
    [36] Dierneder S, Scheidt R. Computerunterstuetztes Konzipieren auf der Basis einer "Funktionalen Zergliederung". Konstruktion, 2000, (7/8): 51-55
    [37] 潘双夏.组合化系列产品设计方法学的研究.浙江大学博士学位论文,1992。
    [38] 潘双夏,高飞,冯培恩.批量客户化生产模式下的模块划分方法研究.机械工程学报,2003,39(7):1-6.
    [39] Simpson T W. A concept exploration method for product family design. PhD Thesis, Georgia Institute of Technology, 1998.
    [40] Sturges R H, O'Shaughnessy K & Kilani M. Computational model for conceptual design based on extended function logic. AI EDAM, 10(4): 255-274.
    [41] Hubka V, Eder W E. Theory of Technical Systems—a Total Concept Theory for Engineering Design. Berlin: Springer-Verlag, 1988.
    [42] Finger S, Dixon J R. A review of research in mechanical engineering design. Part I: Descriptive, prescriptive, and computer-Based models of design processes. Research in Engineering Design, 1989, 1 (1): 51-67.
    [43] 林志航,宋慧军.公理化设计支持的概念设计产品模型.机械工程学报,2002,14(7):632-636.
    [44] 宋慧军,林志航.机械产品概念设计多层次混合映射功能求解框架.机械工程学报,2003,39(5):82-87.
    [45] Altshuller G S. Creativity as an Exact Science. Gordon and Breach, 1998, New York.
    [46] Sushkov V V, Mars N J I & Wognum P M. Introduction to TIPS: A theory for creative design. Artificial Intelligence in Engineering, 1995, 9:177-189.
    [47] 牛占文,徐燕申,林岳.发明创造的科学方法论——TRIZ.中国机械工程,1998,19(1):84-89.
    [48] 檀润华,苑彩云,张瑞红,等.基于技术进化的产品设计过程研究.机械工程学报,2002,38(12):60-65.
    [49] Gero J S. Design Prototypes: A Knowledge Representation Schema for Design. AI Magazine, 1990, 11(4): 26-36.
    [5
    
    [50] Rodenacker W. Methodisches Konstruieren. Springer-Verlag, 1971, Berlin.
    [51] Bobrow D G. Qualitative reasoning about physical systems: An introduction. Artificial Intelligence, 1984, 24: 1-5.
    [52] Tomiyama T, Umeda Y & Yoshikawa H. A CAD for functional design. Annals of the CIRP, 1993, 42(1): 143-146.
    [53] Umeda Y, Masaki I, Tomiyama T, et al. Supporting conceptual design based on the function-behavior-state modeler. AI EDAM, 1996, 10(4): 275~288.
    [54] Goel A K, Stroulia E. Functional device models and model-based diagnosis in adaptive design. AI EDAM, 1996, 10(4): 355~369.
    [55] Zavbi R, Duhovnik J. Conceptual design of technical systems using functions and physical laws. AI EDAM, 1997, 14: 69-83.
    [56] Zavbi R, Duhovnik J. Conceptual design chains with basic schematics based on an algorithmof conceptual design. Journal of Engineering Design. 2000, 12(2): 131-145.
    [57] Schank R & Abelson R P. Scripts, plans, goals and understanding. Erlbaum, Hillsdale, 1975, NJ.
    [58] Kolodner J. Improving human decision making through case-based decision aiding. AI Magazine, 1991, 12(2): 52-68.
    [59] Pu P. Issues in Case-Based Design Systems. AI EDAM, 1993, 7: 79-85.
    [60] Kirschman C F & Fadel G M. Classifying functions for mechanical design. Journal of Mechanical Design, 1998. 120: 475-482.
    [61] 蔡自兴,徐光佑.人工智能及其应用.清华大学出版社,北京,第二版.
    [62] Feng P E, Xu G R & Zhang M J. Feature modeling based on design catalogues for principle concentual design. AI EDAM. 1996. 10(4): 347-354.
    [63] 冯培恩,徐国荣.基于设计目录的原理方案及其求解过程的特征建模.机械工程学报,1998,34(2):79.86.
    [64] Brunetti G & Goiob B. A feature-based approach towards an integrated product model including conceptual design information. Computer-Aided Design, 2000, 32: 877-887.
    [65] Roy U, Pramanik N, Sudarsan R, et al. Function-to-form mapping: model, representation and applications in design synthesis. Computer-Aided Design, 2000, 33:699-719.
    [6
    
    [66] 毛权.基于实例原型的设计方法及设计支持系统的研究.华中理工大学,博士学位论文,1993.
    [67] Tham K W. A model of routine design using design prototypes. PhD Thesis, Department of Architectural and Design Science, University of Sydney, Australia, 1993.
    [68] Tham K W & Gero J S. PROBER—A design system based on design prototypes. Proceedings of AID'92. Kluwer Academic Publishers, 1992. The Netherlands.
    [69] Qian L & Gero J S. Function-behavior-structure paths and their role in analogy-based design. AI EDAM, 1996, 10(4): 289-312.
    [70] Iwasaki Y, Vescovi M, Fikes R, et al. Causal functional representation langh behavior-based semantics. Applied Artificial Intelligence, 1995, 9 (1): 5-31.
    [71] Roth K. Konstruieren mit Konstruktionskatalogen. 2 Auflage, 1994. Springer-Verlag.
    [72] 张明君.原理方案设计目录及知识基系统研究.浙江大学硕士学位论文,1994。
    [73] 师平,冯培恩,徐国荣.液-液分离原理方案设计目录的研制及应用.工程设计,1996,3:11-15.
    [74] 徐国荣.产品原理方案设计目录及设计自动化方法的研究.浙江大学硕士学位论文,1997.
    [75] 沈敏德,冯培恩,宋晔.基于力学效应的机械传动原理设计知识库的结构研究.工程设计,1999,6(2):11-15
    [76] Ulrich K & Seering W. Synthesis of Schematic Descriptions in Mechanical Design. Research in Engineering Design, 1989, 1(1): 3-18.
    [77] Joskowicz J & Sacks E P. Computational kinematics. Artificial Intelligence, 1991, 51:381-415.
    [78] Navinchandra D, Sycara K & Narasimhan S. A transformational approach to case-based synthesis. AI EDAM, 1991, 5(1): 31-45.
    [79] Horvath 1. Methodology for expert-system-based support of conceptual machine design. Engineering Applications of Artificial Intelligence, 1991, 4(6): 425-432.
    [80] Kota S & Chiou S J. Conceptual design of mechanisms based on computational synthesis and simulation of kinematic building blocks. Research in Engineering Design, 1992, 4: 75-87.
    
    [81] Chiou S J & Kota S. Automated conceptual design of mechanisms. Mechanism and Machine Theory, 1999, 34 (3): 467~495.
    [82] Welch R V & Dixon J R. Guiding conceptual design through behavioral reasoning. Research in Engineering Design, 1994, 6:169-188.
    [83] Chakrabarti A & Bligh T. An approach to functional synthesis of solutins in mechanical conceptual design. Part Ⅰ: Knowledge representation. Research in Engineering Design, 1994, 6(3): 127-141.
    [84] Chakrabarti A & Bligh T. An approach to functional synthesis of mechanical design concepts: Theory, applications, and emerging research issues. AI EDAM, 1996, 10(4): 313-33 I.
    [85] Chakrabarti A & Bligh T. An approach to functional synthesis of solutins in mechanical conceptual design. Part II: Kind synthesis. Research in Engineering Design, 1996, 8(1):52-62.
    [86] Chakrabarti A & Bligh T. An approach to functional synthesis of solutins in mechanical conceptual design. Part Ⅲ: Spatial synthesis. Research in Engineering Design, 1996, 8(3): 127-141.
    [87] Chakrabarti A & Bligh T. A scheme for functional reasoning in conceptual design. Design Studies, 2001, 22:493-517.
    [88] Bracewell R H & Sharpe J E E. Functional descriptions used in computer support for qualitative scheme generation - Schemebuilder. AI EDAM, 1996, 10(4): 333-346.
    [89] Li C L, Tan S T & Chan KW. A qualitative and heuristic approach to the conceptual design of mechanisms. Engineering Applications of Artificial Intelligence, 1996, 9(1): 17-3 I.
    [90] Li C L, Chan K W & Tan S T. A configuration space approach to the automatic design of multiple-state mechanical devices. Computer-Aided Design, 1999, 3 l(i 0): 621-653.
    [91] Zhang W Y, Tor S B & Britton G A. A heuristic state-space approach to the functional design of mechanical systems. International Journal of Advanced Manufacturing Technology. 2002, 19(4): 235-244.
    [92] Moon Y M & Kota S. Automated synthesis of mechanisms using dual-vector algebra. Mechanism and Machine Theory, 2002, 37(2): 143-166.
    [93] 陈泳,冯培恩,何斌,等.机械传动系统概念设计自动化的策略研究.自然科学进展。 2002,12(11):1227-1230.
    [9
    
    [94] 王德伦,张德珍,马雅丽.机械运动方案设计的状态空间法.机械工程学报,2003,39(3):21-27.
    [95] 梁庆华,郭为忠,王石刚,等.复杂运动需求机构自动化选型方法研究.机械工程学报,2003,39(8):37-43.
    [96] 曹东兴,檀润华,苑彩云,等.基于功能分解的机械产品概念设计.机械工程学报,2001,27(11):13-17.
    [97] McAdams D A, Stone R B & Wood K L. Functional Interdependence and Product Similarity Based on Customer Needs. Research in Engineering Design, 1999, 11(1): 1-19.
    [98] 韩晓建,邓家提.产品概念设计方案的评价方法.北京航空航天大学学报,26(2):210-212.
    [99] Sun J, Kalenchuk D K, Xue D, et al. Design candidate identification using neural network-based fuzzy reasoning. Robotics and Computer Integrated Manufacturing, 2000, 16: 383-396.
    [100] Deng Y M, Britton G A & Tor S B. Constraint-based functional design verification for conceptual design. Computer-Aided Design, 2000, 32: 889-899.
    [101] Al-Hakim L, Kusiak A & Mathew. A graph-theoretic approach to conceptual design with functional perspectives. Computer-Aided Design, 2000, 32: 867-875.
    [102] Wood Ⅲ W H & Agogino A M. Case-based conceptual design information server for concurrent engineering. Computer-Aided Design, 1996, 28(5): 361-369.
    [103] Huang G Q & Mak K L. Web-based collaborative conceptual design. Journal of Engineering Design, 1999, 10(2): 98-107.
    [104] Campbell M I, Cagan J & Kotovsky K. A-Design: An agent-based approach to conceptual design in a dynamic environment. Research in Engineering Design, 2000, 11: 172-192.
    [105] Campbell M I, Cagan J & Kotovsky K. The A-Design approach to managing automated conceptual synthesis. Research in Engineering Design, 2003, 14: 12-24.
    [106] Hicks B J & Culley S J. An integrated modeling environment for the embodiment of mechanical systems. Computer-Aided Design, 2002, 34: 435-451.
    [107] 宋玉银,蔡复之,张伯鹏,等.概念设计与结构设计的信息集成技术研究.清华大学学报, 1998,38(2):51-54.
    [1
    
    [108] 石纯一,黄昌宁,王家钦.人工智能原理,清华大学出版社,北京
    [109] Forbus K D. Qualitative process theory. Artificial Intelligence, 1984, 24: 85-168.
    [110] 贺淹才.简明基因工程原理.北京:科学出版社,1999.
    [111] 周希澄.遗传学,高等教育出版社,1989.
    [112] Saaty T L & Vargas L G. The analytic hierarchy process. New York: McGraw-Hill, 1980.
    [113] 李难.进化论教程.北京:高等教育出版社,1990.
    [114] Rosenberg R & Karnopp D. Introduction to Physical System Dynamics, McGraw-Hill, New York, 1983.
    [115] http://www.newenergy.com.cn
    [116] 刘全根.海洋能开发利用的现状、趋势和对策.中国科学院兰州能源研究所.
    [117] http://www.patent.com.cn/
    [118] 顾德兴.普通生物学.北京:高等教育出版社,2000.
    [119] Miles L D. Techniques of value analysis and engineering. McGraw-Hill, New York, 1972.
    [120] Freeman P & Newell A. A model for functional reasoning in design. In Proceedings of the Second International Joint Conference on Artificial Intelligence. London, 621-633, 1971.
    [121] 李建武.生物化学.北京:北京大学出版社,1990.
    [122] 周志雄.基于设计目录的概念设计自动化研究及其在新产品开发中的应用.浙江大学硕士论文,2003.
    [123] Ullman D G. Toward the ideal mechanical engineering design support system. Research in Engineering Design, 2003, 13: 55~64
    [124] Giarratano J & Riley G. Expert systems principles and programming. PWS Publishing Company, 1998.
    [125] 侯俊杰.深入浅出MFC(第二版).华中科技大学出版社
    [126] Kruglinski D J. Microsoft Visual C++ Programming技术内幕.Microsoft Press.
    [127] Richter J. WINDOWS高级编程指南.王书洪,刘光明译.清华大学出版社.
    [128] Bennett D. Visual C++开发人员指南.徐军等译.机械工业出版社.
    [129] Chandrasekaran B, Goel A K & Iwasaki Y. Functional representation as design rationale. IEEE Computer, 1993, 26(1): 48-56.
    
    [130] Chandarasekaran B & Josephson J R. Function in device representation. Engineering with computers, 2000, 16: 162-177.
    [131] Deng Y M, Tot S B & Britton G A. Abstracting and exploring functional design information for conceptual mechanical product design. Engineering with computers, 2001, 16: 36-52.
    [132] Iwasaki Y & Chandrasekaran B. Design verification through function and behavior-oriented representations: Bridging the gap between function and behavior. In Proceedings of the second International Conference of Artificial Intelligence in Design, Pittsburgh, 1992.
    [133] Iwasaki Y, Fikes R, Vescovi M, et al. How things are intended to work: Capturing functional knowledge in device design. Proceedings of IJCAI93', 1516-1522,1993. Morgan Kauffman.
    [134] 姚志扬,黄纯颖.机械传动原理方案设计目标结构模式的研究,中国机械工程,1998,9(6):93-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700