用户名: 密码: 验证码:
高性能G-M型单级脉管制冷机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型的小型低温制冷机,脉管制冷机由于冷头没有运动部件,具有制造简单、寿命长、自干扰震动小等突出优点,一直以来是研究的热点,在过去十多年取得了巨大进展。然而,由于脉管制冷机效率至今仍低于传统的低温制冷机(如G-M制冷机、斯特林制冷机等),从而限制了它的广泛应用。如何进一步提高制冷效率和可靠性是它得以广泛应用的首要前提。本文首先回顾了脉管制冷机的发展历史和最新研究进展,在此基础上从直流抑制和工质选取两个角度出发,开展了高性能G-M型单级脉管制冷机的研究工作。具体内容介绍如下:
     1.直流机理研究和抑制方法探讨
     双向进气脉管制冷机中存在的直流流动不仅造成了大量的冷损,限制了制冷机性能的进一步提高,同时还是引起制冷温度不稳定的根本原因。从流体网络理论出发,对直流形成机理和抑制方法进行了深入研究。
     2.直流抑制和脉管制冷特性实验研究
     在对各种直流抑制方法深入比较的基础上,积极利用双向进气调相结构具有调相和调幅的双重功能,采用了新型双阀双向进气结构对直流进行抑制。在2kW(RW2)和4kW(CP4000)压缩机驱动时分别获得了18.7K和14.7K的最低制冷温度,对应在30K时的制冷量为分别为11.5W和29.5W,突破了目前单级脉管制冷机最低制冷温度维持在20K附近的限制。
     3.回热器流阻对脉管制冷机稳定性的影响
     理论和实验研究了通过改变回热器流阻进行直流抑制的可行性,结果表明:适当增加回热器流阻,可以有效抑制直流,从而进一步改善了脉管制冷机性能,实现双向进气脉管制冷机在较高温区长时间地稳定工作,为目前采用双向进气结构存在的高温区性能不稳定提供了新的解决途径。
    
    浙江大学博士学位论文
    蒋彦龙:高性能G一M型单级脉管制冷机研究
    2003年5月
    4.氦氢混合工质脉管制冷特性实验研究
     利用氢工质优越的传热和流动特性,从氦氢混合工质对回热器流阻、冷端换热器传热
    性能和工质膨胀效率等因素的影响角度出发,开展了30K温区氦氢混合工质脉管制冷实
    验研究。实验结果表明,采用组分为O一25%的氦氢混合物能够在一定程度上提高脉管制
    冷机性能。其中,采用含氢10%的混合工质,可以获得高出纯氦5.2%的制冷量和4.9
    %的COP。此外,在一台二级脉管制冷机上的实验结果表明,采用氦氢混合物在30K
    温区的制冷量和COP明显高于相同条件下纯氦的值,工质对二级脉管制冷性能的积极
    影响大于单级机。
    5.脉管制冷氮液化器性能实验研究
     为了满足许多应用场合对少量低温液体的使用要求,开展了用脉管制冷的氮液化器
    性能实验研究,对不同工作模式下的系统液化速率、降温和复温特性进行了考察。结果
    表明,在实验的单级脉管制冷机中采用小孔和双向进气工作模式的系统氮液化率分别为
    7.68L/d和10.92L/d;此外,利用工质相变条件下温度维持不变的特性,可以实现在制冷
    机关机后相当长的时间内维持系统冷端温度不变,这一特性在超导器件冷却方面具有重
    要的应用价值。
Unlike the Stirling or Gifford-McMahon refrigerators, the pulse tube cooler (PTC) has no moving parts at the cold end. The lack of cold moving parts has allowed it to solve some of the problems associated with cryocoolers in many different applications, such as vibration and reliability. In the past ten years, great progress has been made on the development of the PTC. However, its efficiency is still lower than that of the traditional cryocoolers, which is one of the barriers to further development of this refrigeration method. To insure a commercial success of the PTC by replacement of conventional GM- or Stirling-coolers in most of their applications, it is of major importance to optimize the PTC and to demonstrate performances and efficiencies as close as possible to those known for the conventional cryocoolers. After a detailed review on the recent development of the pulse tube cooler, the present work focuses on the following objects:
    1) DC flow and its suppression
    The DC flow will appear for the introduction of the double-inlet in a pulse tube cooler. It greatly deteriorates the cooling capacity as well as leads to temperature instability under high heat load of the cooler. From the fluid network theory, the root of the DC flow in a double-inlet pulse tube cooler is theoretically investigated. Some suppression ways are briefly described.
    2) Experimental investigation on DC flow suppression and refrigeration characteristics
    Based on the detailed analysis and comparisons for all kinds of the suppression methods, two parallel-placed needle valves with opposite flow direction referred as two-valved configuration instead of traditional single-valved configuration as double-inlet are introduced in experiments to eliminate the DC flow and are proved to be a successful way. Driven by RW2 and CP4000, 18.4K and 14.7K no load temperature has been reached respectively and
    
    
    11. 5W and 29. 5W cooling-power at 30K could be obtained. Meanwhile, the effect of the regenerator matrix on the performance of the cooler under different operation modes has been extensively investigated.
    3) Influence of Regenerator Flow Resistance on Stability of the PTC
    The feasibility of an increased regenerator flow resistance to suppress the DC flow is experimentally and theoretically investigated. Results show that an increased flow resistance of the regenerator leads to a reduction and stabilization of the disturbing DC-flow in the cooler under high heat load.
    4) Experimental Investigation on pulse tube refrigeration with He-H2 mixture
    The excellent heat transfer and flow characteristics of the hydrogen may contribute to a better performance of the PTC. Based on effect of He-Ha mixtures on the regenerator flow resistance, cold heat-exchanger performance, cooling capacity and efficiency (COP) at 3 OK with He-H2 mixtures is experimentally studied. The experimental results show, properly rationing He-H2 mixtures the cooling power and COP could be improved by several percent at a temperature near 30K. Besides, the effect of the He-Hi mixture on the performance of a two-stage pulse tube is also undertaken in order to reveal the operation mechanism of the gas mixture on the cooler. Experimental results in a two- stage pulse tube cooler show that the performance of the PTC could be greatly improved at 3 OK with He-Hj mixture and its positive effect is much larger than that of the single-stage cooler.
    5) PULSE TUBE NITROGEN LIQUEFIER
    A small-scale cryogenic liquid is widely used in a number of applications. A high-performance single-stage G-M pulse tube cooler was rebuilt into a nitrogen liquefier. The liquefaction rate, cool-down and warm-up characteristics of the liquefier operating under different modes were experimentally investigated.
引文
1. Chan, C. K., Tward, E., and Burt, W. W. Overview of Cooler Technologies for Space-based Electronics and Sensors. Adv. Cry. Eng., 1990, 35: 1239
    2. Radebaugh, R. A Review of Pulse Tube Refrigeration. Adv. Cry. Eng., 1990, 35(B):.l 191
    3. Radebaugh, R. Recent Developments in Cryocoolers. 19th. Int. Con. Refrig., 1995: 973
    4. Radebaugh, R. Advances in Cryocoolers. Proc. of the ICEC16/ICMC, Japan, 1996: 33
    5. Chan, C. K., Jaco, C., and Nguyen, T. Advanced Pulse Tube Head Development. Cryocoolers 9, 1997: 203
    6. Johnson, D. L., and Ross, W. G. Jr. Electromagnetic Compatibility Characterization of a BAe Stirling cycle Cryocooler for Space Applications. Adv. Cry. Eng., 1991, 37: 1045
    7. Johnson, D. L., Mon, G.R., and Ross, R.G. Jr. Spacecraft Cooler Characterization. Proc. 7th. Int. Cry. Con., Santa Fe, USA, Air Force Phillips Laboratory Report PL-CP-93-1001, 1993: 73
    8. Johnson, D. L. et al. Cryocooler Electromagnetic Compatibility. Cryocoolere 8, Plenum Press, New York, 1995: 209
    9. Johnson, D. L. and Ross, R. G. Jr. Cryocooler Coldfinger Heat Interceptor. Cryocoolers 8, Plenum
    
    Press, New York, 1995:709
    10. Ross, R.G. Jr. JPL Cryocooler Development and Test Program Overview. Cryocoolers 8, Plenum Press, New York, 1995:173
    11. Walker, G. Miniature Refrigerators for Cryogenics Sensors and Cold Electronics. Oxford University Press, Oxford, 1989
    12.蔡京辉,王俊杰等.用于红外探测器件冷却的新型微型制冷机——脉冲管制冷研究进展.低温工程,1992,70:48
    13.王俊杰,周远.用于红外探测器的新冷源——脉冲管制冷机.激光与红外,1992,22(1):60
    14. Mon, G.R. Smedley, G.T. et al. Vibration Characteristics of Stirling-Cycle Cryocoolers for Space Application. Cryocoolers 8, Plenum Press, New York, 1995:197
    15. Ross, R. G. Jr., Johnson, D. L., Mon, G. R., and Smedley, G. Cryocooler Resonance Characterization. Cryogenics, 1994, 34:435
    16. Ross, R.G. Jr., and Johnson, D. L. Design and Test of a Comprehensive Facility for Life Testing Space Cryocoolers. Proc. 7th. Int. Cry. Con., Santa Fe, USA, Air Force Phillips Laboratory Report PL-CP-93-1001, 1993:748
    17. Radebaugh, R. Development of the pulse tube refrigerator as an efficient and reliable cryocooler. Proc. Institute of Refrigeration (London)1999-2000
    18. Radebaugh, R. Pulse Tube Cryocoolers for Cooling Infrared Sensors. Proceedings of SPIE, The International Society for Optical Engineering, Infrared Technology and Applications ⅩⅩⅥ, Vol. 4130,pp. 363-379 (2000)
    19. Walker, G. Cryocoolers, Plenum Press, New York, 1983.
    20. Radebaugh, R. Advances in Cryocoolers, Proc. ICEC16/ICMC, Japan, 1966, Elsevier Science, Oxford (1997) p. 33-44.
    21. Longsworth, R. C., Boiarski, M. J., and L. A. Klusmier, 80 K closed-cycle throttle refrigerator, Cryocoolers 8, Plenum Press, NY (1995) p. 537.
    22. Marquardt, E. D., Radebaugh, R., Dobak, J. A cryogenic catheter for treating heart arrhythmia. Adv. in Cryogenic Engineering, Plenum Press, New York, 1998; 43: 903-910.
    23.边绍雄.低温制冷机,第二版.北京:机械工业出版社,1991
    24.张祉祐,石秉三.低温技术原理与装置.北京:机械工业出版社,1986
    25.罗志昌.流体网络理论.北京:机械工业出版社,1988
    26.陈国邦等著.最新制冷低温技术(第二版).北京:机械工业出版社,2003
    27. See The Engineer 1917; Finklestein, T. Air Engines, The Engineer 207, 492-497, 522-527, 568-571, 720-723 (1959).
    28. Herschel, J. The Athenaeum (1834).
    
    
    29. Kirk, A. On the Mechanical Production of Cold, Proc. Inst. Civil Eng. (London) 37,244-315 (1874)
    30. Kohler, J. W. L. and Jonkers, C. O. Fundamentals of the Gas Refrigeration Machine, Philips Tech. Rev. 16(3) , 69-78, 1954; see also, Construction of the Gas Refrigerating Machine, Philips Tech. Rev. 16(5) , 105-115,1954.
    31. McMahon, H. O. and Gifford, W. E. A New Low-Temperature Gas Expansion Cycle-Part I. Adv. in Cryogenic Engineering, Plenum Press, New York,1960; 5:354-366
    32. Wheatley, J. C., Hofler, T., Swift, G. W. and Migliori, A. An Intrinsically Irreversible Themoacoustic Heat Engine. J. Acoust. Soc. Am., 1983, 74: 153
    33. Wheatley, J., Hofler, T., Swift, G. W. and Migliori, A. Understanding some simple phenomena in thermoacoustics with applications to acoustical heat engines. Am. J. Phys. 1985; 53: 147
    34. Swift, G. W. Thermoacoustic engines. J. Acoust. Soc. Am., 1988;84: 1145-1180
    35. Swift, G. W. Thermoacoustic engines and refrigerators. Physics today, 1995:22-28
    36. Ceperley, P. H. A pistonless Stirling engine-the traveling wave heat engine. J. Acoust. Soc. Am., 1979; 66:1508-1513
    37. Swift, G. W. Thermoacoustic natural gas liquefier. Proc. of the DOE Natural Gas Conference, Houston TX, March 1997.
    38. Backhaus, S. and Swift, G. W. A thermoacoustic-stirling heat engine. Nature 1999; 399: 335-338
    39. Backhaus, S., Swift, G.W. A thermoacoustic-Stirling engine: detailed study. J. Acoust Soc Am, 2000; 107(6) :3148-3166
    40. Swift, G.W. Thermoacoustics: A Unifying Perspective for some Engines and Refrigerators. Textbook on Thermoacousitcs(Fourth draft ), Los Alamos National Laboratory, Web site: http:// www.lanl.gov/projects/thermoacoustics/,1999
    41. Gifford, W. E., and Longsworth, R. C. Pulse tube refrigeration. Trans. of the ASME, Journal of Engineering for Industry, paper No. 63-WA-290, August 1964.
    42. Radebaugh, R., Zimmerman, J., Smith, D. R., and Louie, B. A comparison of three types of pulse lube refrigerators: New methods for reaching 60 K. Adv. in Cryogenic Engineering, Plenum Press, New York,1986 ;31:779
    43. Mikulin, E. I., Tarasov,A. A., and Shkrebyonock, M. P. Low temperature expansion pulse tubes. Adv. in Cryogenic Engineering, Plenum Press, New York,1984; 29:629-637
    44. 曾丹苓等编.工程热力学.北京:人民教育出版社, 1980
    45. 苏长荪等编.高等工程热力学.北京:高等教育出版社, 1987
    46. 吴沛宜,马元.变质量系统热力学及其应用.北京:高等教育出版社, 1983
    47. Storch, P. J. and Radebaugh, R. Development and experimental test of an analytical model of the orifice pulse tube refrigerator. Adv. in Cryogenic Engineering, Plenum Press, New York, 1988;33:
    
    851-859
    48. Storch, P. J., Radebaugh, R., and Zimmerman, J. E. Analytical Model for the Refrigeration Power of the Orifice Pulse Tube Refrigerator. NIST Technical Note, 1990:1343
    49. Gary, J., Daney, D. E., and Radebaugh, R. A computational model for a regenerator. Proc. Third Cryocooler Conf., NIST Special Publication 698, 1985: 199-211.
    50. Gary, J., and Radebaugh, R. An improved model for calculation of regenerator performance (REGEN3. 1) . Proc. Fourth Interagency Meeting on Cryocoolers, David Taylor Research Center Technical Report DTRC-91/003 January, 1991: 165-176.
    51. Xiao, J. H. Thermoacoustic theory for regenerative cryocoolers: A case study for a pulsetube refrigerator, Proc. 7th Int'l Cryocooler Conf., Air Force Report PL-CP-93-1001, 1993:305; Thermoacoustic heat transportation and energy transformation, Part 1: Formulation ofthe problem. Cryogenics 1995;35: 15; Part 2: Isothermal wall thermoacoustic effects. Cryogenics 1995;35: 21; Part 3: Adiabatic wall thermoacoustic effects. Cryogenics 1995;35: 27
    52. Tominaga, A. Basic notion of thermoacoustic theory and some results of simulations. Proc. 4th Joint Sino-Japanese Seminar on Cryocoolers and Concerned Topics, Chinese Academy of Sciences, 1993: 79
    53. Rawlins, W., Radebaugh, R., Bradley, P. E., and Timmerhaus, K. D. Energy flows in an orifice pulse tube refrigerator. Adv. in Cryogenic Engineering, Plenum Press, New York, 1994;39: 1449-1456.
    54. Swift, G. W., Allen, M. S., and Wollan, J. J. Performance of a tapered pulse tube. Cryocoolers 10, Kluwer Academic/Plenum Press, NY, 1999: 315-320.
    55. Zhu, S., Wu, P., and Chen, Z. Double inlet pulse tube refrigerators: an important improvement, Cryogenics,1990;30: 514
    56. Chan, C. K., Jaco, C. B., Raab, J., Tward, E., and Waterman, M. Miniature pulse tube cooler. Proc.7th Int'l Cryocooler Conf., Air Force Report PL-CP-93-1001,1993: 113-124.
    57. 陈登科.双阀双小孔脉管制冷机低温与超导. 1996, 24(1) : 1-4
    58. Matsubara,Y. et al. Four-Valve Pulse Tube Refrigerator. JSJS-4, Beijing, 1993:54
    59. Cai, J. H., Wang, J. J., Zhu, W. X., and Zhou Y. Experimental Analysis of the Multi-Bypass Principle in Pulse Tube Refrigerators. Cryogenics, 1994; 34: 713
    60. Ju, Y.L., Wang, C., Zhou, Y. Dynamic experimental investigation of a multi-bypass pulse tube refrigerator. Cryogenics, 1997;37: 357-361
    61. Zhu, S. W., Kakimi, Y. et al. Active-buffer Pulse Tube Refrigerator. Proceeding ofthe ICEC16/lCMC, Japan, 1996:291
    62. Zhu, S. W., Kakimi, Y. et al. Investigation of Active-buffer Pulse Tube Refrigerator. Cryogenics, 1997;37: 461-471
    63. 许名尧等.变截面脉管制冷机--一种新结构脉管制冷机.工程热物理学报, 1996, 17(2) : 153
    
    
    64. Kuriyama, F. and Fukasaku, Y. Increase in Reservoir Pressure of Orifice Pulse Tube Refrigerators. Proceeding of the ICEC16/ICMC, Japan, 1996:279
    65. Chen, G.B, Qiu, L.M. et al. Experimental study on a double-orifice two-stage pulse tube refrigerator. Cryogenics, 1997; 37:217
    66. Yang, Luwei, Zhou, Yuan, Liang, Jingtao. DC flow analysis and second orifice version pulse tube refrigerator. Cryogenics, 1999; 39:187-192
    67. Gedeon, D. DC gas flows in Stirling and pulse tube refrigerators. Cryocoolers 9, Plenum Press, NY, 1997: 385-392.
    68. Swift, G. W., Gardner, D. L., Backhaus, S. Acoustic recovery of lost power in pulse tube refrigerators. J. Acoust. Soc. Am.,1999,105:711-724
    69. de Waele, A.T.A.M., Xu, M.Y.., Ju, Y.L. Nonideal-gas e.ect in regenerators. Cryogenics, 1999; 39:847-851
    70.费祥麟.高等流体力学.西安:西安交通大学出版社,1989
    71. Godshalk, K. M., Jin, C., Kwong, Y. K., Hershberg, E. L., Swift, G. W., and Radebaugh, R. characterization of 350 Hz thermoacoustically driven orifice pulse tube refrigerator with measurements of the phase of the mass flow and pressure. Adv. in Cryogenic Engineering, Plenum Press, NY,1996; 41: 1411-1418.
    72. Zhu, S. W., Zhou, S. L., Yoshimura, N., and Matsubara, Y. Phase shift effect of the long neck tube for the pulse tube refrigerator. Cryocoolers 9, Plenum Press, NY, 1997:269-278
    73. Gardner, D. L., and Swift, G. W. Use of inertance in orifice pulse tube refrigerators. Cryogenics, 1997; 37:117-121
    74.赵莉,陈国邦,余建平.混合工质在脉管制冷机中的可能应用,低温工程 1996;5:15-20
    75. Chen, G.B., Gan, Z.H., Yu, J.P., Jin, T., and Yan, P.D. Study on Two-Component Gas Mixture in Regenerative Refrigerators. ICEC 17, England, 1998:197-200
    76. Yu, J., Chen, G., Gan, Z., Jin, T., and Yan, P. Discussion on Regenerator Performance lmprovement with Binary Gas Mixture. ICEC17, England, 1998: 117-122,
    77. Chen, G.B., Gan, Z.H., Thummes., G., and Heiden, C. Thermodynamic Performance Prediction of Pulse Tube Refrigeration with Mixture Fluids. Cryogenics, 2000; 40:261-267
    78. Gan, Z.H., Chen, G.B., Thummes, G., and Heiden, C. Experimental Study on Pulse Tube Refrigeration with Helium and Nitrogen Mixtures. Cryogenics, 2000; 40:333-339
    79. Chen, G.B., Jiang, Y.L., Gan, Z.H. Investigation on a near 63k isothermal in pulse tube refrigerator with He-N_2 mixture. Advance in Cryogenic Engineering, Melville, New York, 2002; 47: 855-862.
    80.甘智华.混合工质脉管制冷特性理论和实验研究.浙江大学博士学位论文,2000
    81.陈国邦,蒋彦龙,甘智华.氦氮混合工质脉管制冷中的温度平台研究.低温与特气,2001;6:6-10
    
    
    82. 甘智华,陈国邦,余建平.氢氦二元混合工质脉管制冷机实验研究.低温与超导,1999;27(2) : 6-10
    83. Daney, D.E. Regenerator Performance with Noble Gas Mixtures. Cryogenics, 1991, 10:854
    84. 余建平,陈国邦,甘智华.采用混合工质的回热器性能研究.低温工程, 1998, 6: 6-11
    85. Walker, G. Stirling-Cycle Cooling Engine with Two-Phases, Two-Components Working Fluid. Cryogenics, 1974, 14(8) : 459
    86. Patwardhan, K.P., and Bapat, S.L. Cyclic Simulation of Stirling Cycle Cryogenerator Using Two Component Two Phase Working Fluid Combinations. Proceedings, of ICCR'98, Hangzhou, International Academic Publishers, 1998: 397
    87. Chen, Guobang, Gan, Zhihua Jiang,Yanlong. Discussion on refrigeration cycle for regenerative cryocoolers. Cryogenics, 2002;42:133-139
    88. Jiang, N., Gan, Z.H., et al. Experimental study on Two-stage Pulse Tube Refrigeration with Mixtures of Helium and Hydrogen. 12th International Cryocooler Conference, Cambridge, Massachusetts, June 18-20,2002
    89. Gan, Z.H., Jiang, N., Chen, G.B., Qiu, L.M., Jiang, Y.L., He, Y.L., Li, N. Investigation on a two-stage pulse tube refrigerator with helium and hydrogen mixture. 19n International Cryogenic Engineering Conference Grenoble, France22-26 July 2002:419-422
    90. Ravex, A., et al. Development of low frequency pulse tube refrigerators. Advances in Cryogenics Engineering, Plenum, New York ,1998; 43:1935
    91. Thummes, G., Schreiber, R., and Heiden, C. Convective Heat Losses in Pulse Tube Coolers: Effect of Pulse Tube Inclination. Cryocooler 9, Plenum Press, New York, 1997: 393
    92. Seki, N., et al. Temperature stability of pulse tube refrigerators. Proceedings of the Sixteenth International Cryogenic Engineering Conference, 1996:267-270
    93. Kotsubo, V., Huang, P., and Nast, T.C. Observation of DC Flows in a Double Inlet Pulse Tube. Cryocooler 10, 1999:299-306
    94. Shiraishi, M., et al. Visualization of DC flow in a double-inlet Pulse tube refrigerator with second orifice valve. Cryocooler 11, 2001:371-379
    95. Siegel, A., Haefner, H.U. Investigation to the long-term operational behavior of GM-Pulse tube cryocooler. Adv. Cryog. Eng., Melville, New York, 2002; 47: 903-910
    96. Swift, G.W., Gardner, D. L., and Backhaus S. Acoustic recovery of lost power in pulse tube refrigerators. J. Acoust. Soc. Am., 1999; 105(2) : 711-724
    97. Wang, C., Thummes, G. and Heiden, C. Control of DC gas flow in a single-stage double-inlet pulse tube cryocooler. Cryogenics, 1998; 38:843
    98. Wang, C., Thummes, G, Heiden, C. Effects of DC gas flow on performance of two-stage 4K pulse tube
    
    coolers.Cryogenics,1998;38:689
    99.邱利民.液氦温区脉管制冷机的理论与实验研究.浙江大学博士学位论文,1997
    100.颜鹏达.双小孔型二级脉管制冷机实验与理论研究.浙江大学硕士学位论文,1999
    101.蒋彦龙,石静蕾,陈国邦.低温制冷机和热声机中直流问题的研究.低温与超导,2001;3:1-7
    102.邱利民,蒋彦龙,甘智华,陈国邦.可能用于超导系统冷却的脉管制冷技术.第七届低温超导会议,合肥,2003年4月9-11日
    103. Marquardt, E. D., and Radebaugh, R. Pulse tube oxygen liquefier. Adv. in Cryogenic Engineering, Plenum Press, New York, 2000;45:457-464
    104. Chan, C. K., Nguyen, T., Colbert, R., Raab, J., Ross, R. G. Jr., and Johnson, D. L. IMAS pulse tube cooler development and testing, Cryocoolers 10, Kluwer Academic/Plenum Press, NY, 1999:139-147.
    105. Wang C. Helium liquefaction with a 4 K pulse tube cryocooler. Cryogenics, 2001,41:491-496

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700