用户名: 密码: 验证码:
掺混二甲醚点燃式内燃机燃烧与排放性能的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着交通运输行业中能源消耗量的持续增加,环境污染和能源紧缺等问题越来越成为了人们关注的焦点,也成为了社会发展亟待解决的问题之一,而汽车又是造成能源消耗和环境污染的主要源头之一。为了更好的保护环境并实现可持续发展,发掘新的可持续利用的燃料就成为了目前车用内燃机的主要研究方向。经过近些年的研究和发展,代用清洁燃料以其低排放、环境友好、可再生、可持续发展以及储量较大而成为了车用内燃机燃料的主要选择方向。
     为了降低使用成本并扩大内燃机转速及负荷的使用范围,目前车用内燃机普遍使用固定辛烷值的燃料,例如93#汽油等。然而,为了更加优化点燃式内燃机的运转状况,提高内燃机的热效率并降低排放,根据不同运转工况下的需求就需要对燃料的辛烷值进行调整。例如,在冷起动时就要适当降低燃料的辛烷值以便于内燃机起动,而在高负荷时就需要提高内燃机的辛烷值以避免爆震。综上,为了更好的满足内燃机在不同区间工况下的使用要求,本研究首次提出了利用高十六烷值燃料与高辛烷值燃料进行实时混合的燃料与工况协同控制策略。
     在本研究中首次将二甲醚(DME)作为高十六烷值燃料与汽油、醇类燃料等其它高辛烷值燃料进行不同比例的实时现场混合并在点燃式内燃机中燃烧,实现了内燃机的变辛烷值燃料,以满足车用内燃机在不同运转工况下的需求,提高热效率并拓宽内燃机的运转范围。相对其它车用内燃机代用燃料,DME的各方面理化特性都能更满足内燃机的运转需求。此外,DME有较宽的燃料来源,可以从天然气、煤、石油、废料及生物质能中获取。较高的十六烷值及气态燃料较低的沸点使DME可以缩短点火延迟并实现低温自燃,且在喷入缸内后快速混合雾化。此外,DME无毒对人体无害且对环境没有影响。DME较低的C/H比、较高的氧含量以及分子结构中没有C-C键等特性使其可以实现无碳烟排放和清洁燃烧。
     本试验在一台四缸点燃式内燃机上进行,对进气歧管进行改造并将DME喷嘴安装在靠近进气道处以满足DME可以和其它燃料在进气道进行混合。一台单独开发的电控单元HECU用于控制内燃机的点火时刻及DME和其它燃料的喷射时刻和脉宽。HECU通过原机ECU读取内燃机的信号数据并由工控机进行调整,实现对DME能量混合分数和体积混合分数进行控制。利用Horiba MEXA-7100DEGR尾气排放分析仪对NOx、HC和CO排放进行采集和分析。缸压和曲轴转角信号输入DEWETRON燃烧分析仪,并通过DEWE-CA燃烧分析软件进行后期处理,分析缸压、放热率、热效率、燃烧持续期、循环变动等燃烧参数。
     本文试验主要分为冷起动、怠速和1400r/min稳态三个工况以及DME与汽油、醇类等不同燃料进行混合试验,在试验过程中对DME能量混合分数及体积混合分数进行调整,每个工况下分为理论当量比混和气和稀燃工况两类试验。
     根据冷起动试验的相关结果,点燃式DME内燃机可以成功实现冷起动并稳定运转。相比较点燃式汽油原机,点燃式DME内燃机的运转特性和排放水平有了较大的提升,HC排放降幅达到75%,在冷起动20秒之后NOx和CO排放只有汽油内燃机的30%。此外,燃用DME时的能量流量只是传统汽油内燃机的50%。综上,DME作为点燃式内燃机冷起动工况下的燃料不仅是一种创新,更被证明是一种有效的可以改善内燃机效率和性能的方式。
     怠速工况的试验包括了纯DME、DME/汽油、DME/甲醇和DME/乙醇四种燃料。根据试验结果看出,DME可以单独用于点燃式内燃机,同时也可以与汽油或醇类燃料进行混合使用。试验证明, DME可以提高怠速工况下点燃式内燃机的热效率,缩短火焰发展期并实现内燃机的稳定运转,特别是DME单独作为燃料时的改善效果更明显。点燃式DME内燃机的指示热效率较汽油原机提高了30%,在理论当量比时,NOx排放只有20310-6,仅为原机的40%,而CO排放也在λ<1.20之后小于原机。综上,在怠速工况下,无论将DME单独使用还是与其它高辛烷值燃料混合使用均可以有效的改善内燃机的运转稳定性,降低燃料消耗并减少排放,实现对点燃式内燃机在怠速工况下整体性能的提升。
     稳态试验工况包括DME/汽油、DME/甲醇和DME/乙醇三种混合燃料,基于理论当量比混合下的DME/乙醇试验可以看出,随着内燃机负荷的增加,混合燃料内燃机的指示热效率呈现先上升后下降的变化趋势,当αDME=2%时平均提高幅度达到5.5%。此外,随着DME的混合还可以降低COVimep并缩短燃烧持续期。在排放方面,DME的添加可以有效降低HC排放,平均降幅达到40%。综上,基于不同燃料及不同工况的试验结果,在稳态情况下混合DME可以有效提高内燃机的性能并改善其存在的问题,特别是在中高负荷和转速情况下。
With the tremendous increase of transportation energy consumption, theenvironmental pollution and energy shortage have emerged as a main societalproblem and a focus for more and more people. In order to protect the environmentand realize the sustainable development, finding better substitutes for fossil fuels hasbecome a major work for most of the researchers studying internal combustion (IC)engines. Due to the low emissions, environmental friendliness, alternative fuels havebeen considered as one of the best choices for future IC engines.
     Nowadays, SI engines use a fixed octane rating fuel such as#93gasoline under awide range of torques and speeds. However, to produce the possibly highest thermalefficiency and lowest emissions, SI engines should be fueled with the variable octanerating fuels for various engine operating conditions, e.g. at cold start, the low octanerating fuel is used to facilitate the engine start, and at high loads, the high octanerating fuel is utilized to avoid the engine knock. Thus, for the sake of improving theperformance of SI engines, the fuel and operating condition coordinative strategy isproposed in this paper.
     As a high cetane number fuel, DME is introduced into the SI engine to widen theoperational range and improve the performance of SI engines. DME can be producedfrom a variety of feedstocks such as natural gas, coal, crude oil, residual oil, wasteproducts and biomass. The high cetane number and low boiling point of DMEsymbolize the short ignition delay, low auto-ignition temperature and almostinstantaneous vaporization. Moreover, as DME is non-toxic and environmentallybenign, whenever at low or high mole fractions (percent by volume) in air, it hardlyhas any odor and causes no negative health effects. The DME has a lowcarbon-to-hydrogen ratio (C:H), a high oxygen content (around35%by mass) and noC-C bonds in its molecular structure, which help realize the smoke-free combustion.
     A four-cylinder SI engine is used in this experiment. The engine intake manifoldsis modified with four DME injectors mounted near the intake port of each cylinder, sothat DME and different high octane rating fuels can be injected and mixed in theintake ports online. A hybrid electronic control unit (HECU) is developed and adoptedto govern the spark timings, injection timings and durations of DME and differenthigh octane rating fuels. The HECU acquires the engine sensor data from the originalECU (OECU) and communicates with a calibration computer. The injection durationsof fuels can be adjusted freely through the commands from the calibration computer.The exhaust emissions of NOx, HC and CO from the test engine are measured andanalyzed by a Horiba MEXA-7100DEGR emissions analyzer. Cylinder pressure andcrank angle signals are sampled and treated via a DEWE-CA combustion analysissoftware embedded in the DEWETRON combustion analyzer to obtain profiles of cylinder pressure, heat release rate, indicated thermal efficiency, CA0-10, CA10-90,COVimep, COVnand so on.
     The tests are carried out at cold start, idle and1400r/min conditions. Differenthigh octane number fuels blended with DME under different addition levels are tested.The investigated mixture conditions include stoichiometric excess fuel air ratio andlean combustion. The main conclusions are as follows.
     At the cold start condition, the SI DME engine could be started successfully andrealize the stabile running. Meanwhile, compared with the original SI gasoline engine,the operating performance and emissions level of the SI DME engine are improvedunder the cold start condition. About the emissions performance, HC emissions of theSI DME engine are reduced by75%compared with the original SI gasoline engine,NOxand CO emissions of the SI DME engine obviously drop to only about30%ofthose of the SI gasoline engine after20s. Furthermore, the SI DME engine only needsabout50%fuel energy flow rate of the SI gasoline engine. Thus, based on the testresults, adding DME is found to be a quite innovative application way, as well as aneffective and economical measure for improving the cold start performance oftraditional gasoline engines.
     Under idle conditions, the performances of SI engines fueled with four fuels,including pure DME, DME/gasoline, DME/methanol and DME/ethanol mixtures, aretested. DME can be used independently as well as blended with other high octanerating fuels to enhance the idle performance for SI engines. DME addition to the SIengine could improve the indicated thermal efficiency, shorten the flame developmentperiod and meliorate the running stability, especially when it is used independently.The indicated thermal efficiency of the SI DME engine is increased by about30%compared with that of the SI gasoline engine. Under the stoichiometric condition, theNOxemissions of the SI DME engine are20310-6and only40%of those of thegasoline engine. The CO emission of the DME engine is also less than that of thegasoline engine when fuel/air ratio is less than1.2. In conclusion, whenever the SIengine is fueled with pure DME or DME-blended fuel, it is helpful for realizing thestable operation, decreasing the fuel consumption and reducing the emissions, whichcould effectively improvethe overall performance of SI engines at idle.
     Experiments on the SI engines fueled with DME/gasoline, DME/methanol, andDME/ethanol mixtures are performed to investigate the performance ofDME-enriched SI engines under steady operating conditions. The results of the enginefueled with DME/ethanol blends show that, under the stoichiometric condition, theindicated thermal efficiency is firstly increased and then decreased with the increaseof engine load. Meanwhile, DME addition obviously increases indicated thermalefficiency at all tested engine loads. The indicated thermal efficiency after DMEenrichment is averagely enhanced by about5.5%in comparison with that of the original engine at αDME=2%. Furthermore, the enrichment of DME also avails thereduction of COVimepand the shortened combustion duration. Moreover, DMEaddition could obviously decrease HC emissions at all test engine loads, which aredecreased by nearly40%on average. All in all, the test results indicate that DMEblending to high octane number fuels is a suitable way to overcome the shortcomingsof single fuel SI engines at low to mid engine speeds and loads.
引文
[1]郭孔辉.中国汽车工业发展道路:回顾与展望-合作与自主问题[J].中国工程科学.2004,6(8):17-20.
    [2]赵英.中国汽车工业发展发展趋势及对策.中国工业经济.2003,4(4):18-24.
    [3]曾耀明.扶持新能源汽车产业发展的政策研究[D],江西财经大学.2012.
    [4]李增辉.中国汽车产业多维评价模型构建与创新路径选择研究[D],武汉理工大学.2012.
    [5]李黎.中国汽车产业国际竞争力研究[D],吉林大学.2012.
    [6] T.Blume, M.Walther. The End-of-life Vehicle Ordinance in the German automotive industry–corporate sense making illustrated. Journal of Cleaner Production, In Press,2012.http://dx.doi.org/10.1016/j.jclepro.2012.05.020.
    [7] R. Sharma, C. Manzie, M. Bessede, M.J. Brear, R.H. Crawford. Conventional, hybrid andelectric vehicles for Australian driving conditions–Part1: Technical and financial analysis [J].Transportation Research Part C: Emerging Technologies,2012,(25):238-249.
    [8] S.Baker, W.A. Schaudt, J.C. Freed, L.Toole. A survey of light-vehicle driver educationcurriculum on sharing the road with heavy vehicles [J]. Journal of Safety Research,2012,(43)3:187-194.
    [9] C.Ting, D.Tsai, C.Hsiao. Developing a mechanical roadway system for waste energy capture ofvehicles and electric generation [J]. Applied Energy,2012,(92):1-8.
    [10]中国汽车技术研究中心,中国汽车工业协会.中国汽车工业年鉴.中国汽车技术研究中心出版社,2013.
    [11] Y.Liu, A.Kokko. Who does what in China’s new energy vehicle industry?[J] Energy Policy, InPress,2012. http://dx.doi.org/10.1016/j.enpol.2012.05.046.
    [12]朱劲松.基于国家竞争优势理论的我国新能源汽车发展战略研究[J].湖北社会科学.2012,8:77-80.
    [13]郭焱,孙田.汽车用代用燃料CO2和有害排放生命周期分析[J].小型内燃机与摩托车.2012,2:27-29.
    [14]姚云宾,曹玮斌,李秀梅等.论汽车内燃机柴油化的发展趋势[J].现代制造技术与装备.2012,4:5-7.
    [15]王松.对我国汽车节能减排的思考[J].科技资讯.2012,7:143.
    [16]林维奇,陈启杰.关于新能源汽车的文献综述[J].特区经济.2012,11:301-304.
    [17]完么才让.关于我国新能源汽车的发展分析[J].科技信息.2012,28:354.
    [18]王轶闻,李军伟.新能源电动汽车的发展现状[J].科技信息.2012,31:258.
    [19] A.Cavanagh, S.Freeman. The development of subsidiary roles in the motor vehiclemanufacturing industry [J]. International Business Review,2012,(21)4:602-617.
    [20] H.Pohl, M. Yarime. Integrating innovation system and management concepts: The developmentof electric and hybrid electric vehicles in Japan [J]. Technological Forecasting and SocialChange,2012,(79)8:1431-1446.
    [21]杨宇.基于汽车产业的新能源多层次发展研究[D].中国地质大学(北京).2011.
    [22]中国应对气候变化的政策与行动.中华人民共和国国务院新闻办公室.2008.10.
    [23]许光清,邹骥,杨宝路等.控制中国汽车交通燃油消耗和温室气体排放的技术选择与政策体系[J].气候变化研究进展.2009,(5)3:167-173.
    [24] X.Yan, R J.Crookes, Reduction potentials of energy demand and GHG emissions in China sroad transport sector [J]. Energy Policy,2009,(37)2:658-668.
    [25]《乘用车燃料消耗量评价方法及指标》 GB27999-2011.
    [26]《乘用车燃料消耗量限值》 GB19578-2004.
    [27]吴憩棠.乘用车第三阶段燃料消耗量限值和评价方法[J].产业经济报告.2009,(50)6:38-39.
    [28] St. Pateraki, D.N. Asimakopoulos, H.A. Flocas, et al. The role of meteorology on differentsized aerosol fractions (PM10, PM2.5, PM2.5–10)[J]. Science of The Total Environment,2012,(419)1:124-135.
    [29] E. Dabek-Zlotorzynska, T.F. Dann, P. K.Martinelango, et al. Canadian National Air PollutionSurveillance (NAPS) PM2.5speciation program: Methodology and PM2.5chemicalcomposition for the years2003–2008[J]. Atmospheric Environment,2011,(45)3:673-686.
    [30]黄震.燃油品质、汽车尾气与PM2.5.文汇报.2012年3月8日第5版.
    [31]孙乾.环保部部长周生贤:北京治理PM2.5重在控制汽车尾气[J].北京人大.2012.5:17-18.
    [32] S. Kermani, S. Delprat, T.M. Guerra, et al. Predictive energy management for hybrid vehicle [J].Control Engineering Practice,2012,(20)4:408-420.
    [33] S. Amjad, S. Neelakrishnan, R. Rudramoorthy. Review of design considerations andtechnological challenges for successful development and deployment of plug-in hybridelectric vehicles [J]. Renewable and Sustainable Energy Reviews,2010,(14)3:1104-1110.
    [34] C.Manzie, T.S. Kim, R. Sharma. Optimal use of telemetry by parallel hybrid vehicles in urbandriving [J]. Transportation Research Part C: Emerging Technologies,2012,(25):134-151.
    [35] H.Sun, L.Yang, J.Jing, Y.Luo. Control strategy of hydraulic/electric synergy system in heavyhybrid vehicles [J]. Energy Conversion and Management,2011,(52)1:668-674.
    [36] K.T. Chau, Y.S. Wong. Overview of power management in hybrid electric vehicles [J]. EnergyConversion and Management,2002(43):1953–1968.
    [37] P.Chen. Configuration of solar-hydrogen mild hybrid fuel cell power systems for electricvehicles [J]. Journal of Power Sources,2012(201):243–252.
    [38] E.Karden, S.Ploumen, B. Fricke, et al. Energy storage devices for future hybrid electricvehicles [J]. Journal of Power Sources2007(168):2–11.
    [39]卫耀东. NSK新能源汽车新技术[J]. MC现代零部件.2012,10:70-71.
    [40]肖九梅.低碳引领新能源汽车未来[J].汽车工业研究.2012,9:15-24.
    [41] J.A.Caton. The thermodynamic characteristics of high efficiency, internal combustion engines[J]. Energy Conversion and Management,2012,(58):84-93.
    [42] Y.Liu, M.Jia, M.Xie, et al. Improvement on a skeletal chemical kinetic model of iso-octane forinternal combustion engine by using a practical methodology [J]. Fuel,2013,(103):884-891.
    [43] B. Piriou, G. Vaitilingom, B. Veyssière, et al. Potential direct use of solid biomass in internalcombustion engines [J]. Progress in Energy and Combustion Science,2013,(39)1:169-188.
    [44] B.Sun, D.Zhang, F.Liu. Investigation of the characteristics of hydrogen injector usingexperiment and simulation in hydrogen internal combustion engine [J]. International Journalof Hydrogen Energy,2012,(37)17:13118-13124.
    [45]周洲.―节能减排‖背景下内燃机燃料的发展现状分析[J].内燃机与动力装置.内燃机与动力装置.2012,(130)4:50-53.
    [46] E.Galloni, G.Fontana, R. Palmaccio. Numerical analyses of EGR techniques in a turbochargedspark-ignition engine [J]. Applied Thermal Engineering,2012,(39):95-104.
    [47] A.Boretti. Towards40%efficiency with BMEP exceeding30bar in directly injected,turbocharged, spark ignition ethanol engines [J].Energy Conversion and Management,2012,(57):154-166.
    [48]黄安华,霍枫,杨世轶.浅谈汽车内燃机的增压技术[J].汽车零部件,2012,3:23-26.
    [49]张晋东,李洪武.车用柴油机涡轮增压技术的新发展[J].车用发动机,2002,1:1-4.
    [50]王桂华,李国祥,张小印等.浅谈内燃机增压中冷技术[J].山东内燃机.1994,4:1-16.
    [51]姚春德,陈绪平,杨建军等.柴油/乙醇组合燃烧降低增压中冷内燃机排放的研究.内燃机学报.2009(27)4:314-321.
    [52]李艳丽.废气再循环增压中冷柴油机氮氧化物排放的仿真研究[D].天津大学.2009.
    [53] R.Mobasheri, Z. Peng, S.M. Mirsalim. Analysis the effect of advanced injection strategies onengine performance and pollutant emissions in a heavy duty DI-diesel engine by CFDmodeling [J].International Journal of Heat and Fluid Flow,2012,(33)1:59-69.
    [54] C. Cinar,. Can, F. Sahin, et al. Effects of premixed diethyl ether (DEE) on combustion andexhaust emissions in a HCCI-DI diesel engine [J]. Applied Thermal Engineering,2010,(30)4:360-365.
    [55] S. E. Mohammed, M.B. Baharom, A. Aziz, et al. The effects of fuel-injection timing at mediuminjection pressure on the engine characteristics and emissions of a CNG-DI engine fueled by asmall amount of hydrogen in CNG [J]. International Journal of Hydrogen Energy,2011,(36)18:11997-12006.
    [56]武和全,姜水生,高国珍.汽油机缸内直喷的研究现状与发展[J].江西能源,2005.3:9-11.
    [57]王燕军,王建昕,帅石金,等.缸内直接喷射汽油机的新技术[J].小型内燃机与摩托车,2002.(31)2:36-40.
    [58]马乔林.汽油机缸内直喷技术的研究现状及技术难点[J].北京汽车2008,6:1-4.
    [59] A-F.M. Mahrous, A. Potrzebowski, M.L. Wyszynski, et al. A modelling study into the effects ofvariable valve timing on the gas exchange process and performance of a4-valve DIhomogeneous charge compression ignition (HCCI) engine [J]. Energy Conversion andManagement,2009,(50)2:393-398.
    [60] T.Leroy, J. Chauvin, N. Petit. Motion planning for experimental air path control of avariable-valve-timing spark ignition engine [J]. Control Engineering Practice,2009,(17)12:1432-1439.
    [61] M.Torii, T.Mizuta, Y. Sugiura. Development of new turbocharged1JZ-GTE engine with―Intelligent variable valve timing system‖. JSAEReview,1997,(18)2:208.
    [62]崔靖晨.内燃机可变驱动气门系统的研究[D].大连理工大学.2011.
    [63] A. Cairns, H. Zhao, A. Todd, et al. A study of mechanical variable valve operation withgasoline–alcohol fuels in a spark ignition engine [J]. fuel, In press.2012.http://dx.doi.org/10.1016/j.fuel.2012.10.041.
    [64] S. Verhelst, J. Demuynck, R. Sierens, et al. Impact of variable valve timing on power,emissions and backfire of a bi-fuel hydrogen/gasoline engine [J]. Int. J of Hydrogen Energy.2010,(35)9:4399–4408.
    [65] K. Nagaya, H. Kobayashi, K. Koike. Valve timing and valve lift control mechanism for engines[J]. Mechatronics,2006,(16)2:121–129.
    [66] R.Maurya, A.Agarwal. Statistical analysis of the cyclic variations of heat release parameters inHCCI combustion of methanol and gasoline [J]. Applied Energy,2012,(89)1:228-236.
    [67] A. Singh, A. Agarwal. Combustion characteristics of diesel HCCI engine: An experimentalinvestigation using external mixture formation technique [J]. Applied Energy,2012,(99)116-125.
    [68] R.K. Maurya, A. K.Agarwal. Investigations on the effect of measurement errors on estimatedcombustion and performance parameters in HCCI combustion engine [J]. Measurement,2013,(46)1:80-88.
    [69] S. Visakhamoorthy, T.Tzanetakis, D. Haggith, et al. Numerical study of a homogeneous chargecompression ignition (HCCI) engine fueled with biogas. Applied Energy,2012,(92):437-446
    [70]尧命发.―均质压燃、低温燃烧‖新一代内燃机燃烧技术[J].内燃机.2012,2:1-2.
    [71]虞卫飞,谢辉,李乐等.废气再循环和进气加热实现汽油机HCCI燃烧的性能对比[J].燃烧科学与技术,2012,(18)3:265-271.
    [72]刘欣,蒋炎坤,张建平等.甲烷HCCI燃烧反应机理简化与分析[J].武汉理工大学学报,2012,(34)1:71-74.
    [73] J.Zhang,X.Qiao,Z.Wang et al. Experimental Investigation of Low-Temperature Combustion(LTC) in an Engine Fueled with Dimethyl Ether (DME)[J]. Energy&Fuels2009(23):170–174.
    [74]管伟,孙付胜,王肇胤.商用车柴油机DOC+POC后处理技术介绍[J].内燃机与配件.2012,11:32-35.
    [75]贺泓,翁端,资新运.柴油车尾气排放污染控制技术综述[J].环境科学2007(28),6:1169-1178.
    [76]龚为佳,沈卫东,徐嘉峰等.通用小型汽油机尾气后处理技术研究[J].小型内燃机与摩托车2010(39)1:78-81.
    [77] M. Koebel, M. Elsener, G.Madia. Recent advances in the development of Urea-SCR forautomotive applications [J]. SAE,2001-01-3625.
    [78] K.Nagashima, M. Nagata, K. Katou,et al. Development of NOx catalyst based onAg/Al2O3catalyst for diesel applications [J]. SAE,2002-01-1724.
    [79] C.Beatrice, S.D.Iorio, C.Guido, et al. Detailed characterization of particulate emissions of anautomotive catalyzed DPF using actual regeneration strategies. Experimental Thermal andFluid Science.2012,(39):45–53.
    [80]百川.内燃机的SCR与EGR的技术之争[J]. MC现代零部件.2012,2:46-49.
    [81]彭雪竹.国内外双燃料内燃机发展状况分析[J].船舶物资与市场.2012,3:16-21.
    [82]徐富水,秦江涛,李静波等. CNG—柴油双燃料电控内燃机试验研究[J],车用发动机.2012,1:60-62.
    [83]宋建桐,张春化,吴晗等.替代率对柴油引燃天然气内燃机性能的影响[J].甘肃农业大学学报.2012,(47)6:151-155.
    [84]秦鹤年,郑鹏宇.车用气体燃料的发展现状及展望[J].石油商技.2012,5:8-11.
    [85] J.D.Dale, J.D. Wilson, J.Santiago, et al. Low temperature starting of diesel engines using timedspark discharge [J], SAE paper850049,1985.
    [86] J.R.Dawe, P.R.Smy, R.F. Haley, et al. Plasma jet ignition of methanol at subzero temperatures. J.of Automobile Engineering1994(208):153-160.
    [87] D.P. Gardiner, V. K. Rao, M.F. Bardon, et al. Sub-zero cold starting of a port injected Ml00engine using plasma jet ignition and prompt EGR [J]. Trans. SAE, Paper930331,1993.
    [88]顾安忠,鲁雪生,汪荣顺等.液化天然气技术[M].北京:机械工业出版社,275-280.
    [89]王霞,朱宪良.浅谈清洁燃料LNG替代传统汽车燃料柴油的优越性[J].资源节约与环保,2011,6:50-51.
    [90]张辉.甲醇汽油燃烧过程及排放特性的研究[D].吉林大学.2004.
    [91]韩立伟.甲醇均质压燃燃烧特性的研究[D].吉林大学.2006.
    [92]陈韬,何邦全,谢辉.HCCI甲醇内燃机的燃烧与排放特性[J],燃烧科学与技术,2002,2(13):177~182.
    [93]韩立伟,洪伟,张纪鹏.进气温度对甲醇均质压燃燃烧特性的影响[J],吉林大学学报(工学版),2009,1(39):17~20.
    [94]梁鹏,林嵬.乙醇产业将进入黄金发展期[J],中国石油与化工,2005,11:47~48.
    [95]贾莉伟.乙醇汽油机动车排放特性与尾气净化催化剂研究[D].天津大学.2006.
    [96]杜志良,申江华,朱自航.车用乙醇汽油试验研究[J],现代化工,2003,1:6~8.
    [97] T. S. Leong, S. Muttamara, P. Laortanakul. Applicability of gasoline containing ethanol asThailand′s alternative fuel to curb toxic VOC pollutants from automobile emission [J],Atmosphenrich Environment,2002,(36):3495~3497.
    [98] B.Q. He, J.X. Wang, J.M. Hao,et al,A study on emission characteristics of an EFI engine withethanol blended gasoline fuels [J],Atmospheric Environment,2003,(37):953-956.
    [99] D. Chiaramonti, G. Lidén, J. Yan, Advances in sustainable biofuel production and use: The XIXinternational symposium on alcohol fuels [J], Applied Energy,2013,(102):1-4.
    [100] U. Desideri, J. Yan, Clean energy technologies and systems for a sustainable world [J],Applied Energy,2012,(97)1-4.
    [101] J. Yan, T. Lin, Biofuels in Asia [J], Applied Energy,2009,(87) S1-S10.
    [102] X. Ou, X. Yan, X. Zhang, et al. Life-cycle analysis on energy consumption and GHG emissionintensities of alternative vehicle fuels in China [J], Applied Energy,2012,(90)1:218-224.
    [103]崔心存.车用替代燃料与生物质能[M],北京:中国石化出版社,2007.
    [104]刘凯,傅茂林,许维达.单一燃料液化石油气内燃机的开发[J],汽车技术,2002,10:12~14.
    [105]彭雪飞. CNG单燃料多点喷射内燃机电控系统开发及性能研究[D],吉林大学,2008.
    [106]苑士军等.汽车史话[M],百花文艺出版社,2003.
    [107]王忠恕,刘忠长,窦慧莉.点燃式CNG内燃机燃烧过程研究[J],车用发动机,2007(172)6:5~11.
    [108]郭林福,张欣,李国岫.点火能量对电控单燃料CNG内燃机性能的影响[J],车用发动机,2005(161)1:25~28.
    [109] D. Silvin, G. H. Philip. Effects of Injection Changes on Efficiency and Emissions of a DieselEngine Fueled by Direct Injection of Natural Gas[J].SAE Paper2000-01-1805,2000.
    [110]李西秦,刘冰.国内外燃气汽车内燃机研究动向[J],车用发动机,2008(176)6:8~11.
    [111] M. Y. Kim, S.H. Yoon, et al. Combustion and emission characteristics of DME as analternative fuel for compression ignition engines with a high pressure injection system [J],Fuel,2008(87):2779–2786.
    [112] A.M. Pourkhesalian, A.H. Shamekhi, F.Salimi, Alternative fuel and gasoline in an SI engine: Acomparative study of performance and emissions characteristics [J], Fuel,2009,(89):1056-1063.
    [113] C. Arcoumanis, C. Bae, R. Crookes, E. et al. The potential of di-methyl ether (DME) as analternative fuel for compression-ignition engines: a review [J]. Fuel2007. doi:10.1016/j.fuel.2007.06.007.
    [114] T.A. Semelsberger, R.L. Borup, H.L. Greene, Dimethyl ether (DME) as an alternative fuel [J],J. Power Sources2006(156):497–511.
    [115] R.P. Verbeek, D.A. Van, M. Walwijk. Global assessment of di-methyl ether as an automotivefuel [M]. Second ed.,96.OR.VM.029.1/RV, TNO Road-Vehicles Research Institute;1996.
    [116] C.Arcoumanis, The second European Auto-Oil program (AOLII)[J]. European Commission,vol.2. Alternative Fuels for Transportation;2000.
    [117] C.Sorenson,et al. Performance and Emissions of a0.273Liter Direct Injection Diesel EngineFueled with Neat Dimethyl Ether[J].SAE paper950064.
    [118] Theo Fleisch,et al. A New Clean Diesel Technology: Demonstration of ULEV Emissions on aNavistar Diesel Engine Fueled with Dimethyl Ether [J]. SAE paper950061.
    [119]王贺武,周龙保,陈鸿雁.柴油机燃用二甲醚的燃烧特性[J],燃烧科学与技术,2002,3(6):200~204.
    [120]黄锦成,张全长,黄华.二甲醚均质压燃燃烧特性的试验研究[J],车用发动机,2007,3:25~28.
    [121]周立迎.氢能源在汽车行业中的应用及进展[J].移动电源与车辆,20062:35~38.
    [122]纪常伟.氢内燃机在汽车上的应用[J].商用汽车,2008,7:124-125.
    [123] G.Matthew et al, Investigation of A Hydrogen-assisted Combustion System For A Light-dutyDiesel Vehicle [J]. International Journal of Hydrogen Energy,2008,(33)23:7237~7244.
    [124] H. May, D.Gwinner. Possibilities of improving exhaust emissions and energy consumption inmixed hydrogen-gasoline operation[J].International Journal of Hydrogen Energy,1983,(8)2:121-129.
    [125] F. Ma, et al. Combustion and emission characteristics of a port-injection HCNG engine undervarious ignition timings [J]. Int. J of hydrogen energy2008(33):816-822.
    [126] F. Ma, J. Wang, Y. Wang, et al. An investigation of optimum control of a spark ignition enginefueled by NG and hydrogen mixtures [J]. Int. J of Hydrogen Energy,2008(33):7592-7606.
    [127] C.Ji, S. Wang, B. Zhang, Performance of a hybrid hydrogen-gasoline engine under variousoperating conditions [J], Applied Energy,2012(97):584-589.
    [128] M.S.Kumar, A.Ramesh, B. Nagalingam. Use of hydrogen to enhance the performance of avegetable oil fuelled compression ignition engine [J]. International Journal of HydrogenEnergy,2003(28):1143–1154.
    [129]董荣芬,田松柏,吴王锁.柴油十六烷值改进剂的使用性能与应用[J].内燃机车,2004.(368)10:16-19.
    [130]解方喜,孙万臣,李国良等.燃料十六烷值对小型柴油机排放特性的影响[J].吉林大学学报(工学版),2008.(38)5:24-28.
    [131] J.F. Griffiths, A. J. Pappin, M.A.R. Al-Rubaje. et al. Fundermental studies related in dieselengines [J]. Proc. I. Mech. E. C433/018Internal Combustion Engine Research,1991:151.
    [132] T. Inomata, J. F. Griffiths, A. J. Pappin. The role of additives as sensitizer for the spontaneousignition of hydrocarbons [C]. The Proceedings of Twenty-Third Symposium (International) onCombustion, Pitsburge: The Combustion Institute,1990:1759.
    [133]焦清介, J.F. Griffiths.甲醇自发点火特性研究[J].北京理工大学学报,1994,14(4):347-354.
    [134]焦清介, J.F. Griffiths.二叔丁基过氧化物热点火试验研究[J].兵工学报,1995,3(8):36-39
    [135]李德刚,黄震,乔信起,等.压缩比、CO2和LPG对DME HCCI燃烧的影响研究[J],燃烧科学与技术,2005,4(11):345-349.
    [136] Z.Huang, D.Li, X.Qiao, et al. New Control Method for HCCI Combustion by OptimizingDME/LPG Fuel Blending Proportion [J], Transactions of CSISE,2006,4(24):289-294.
    [137] M.F. Yao, Z.Q. Zheng, J. Qin, Experimental study on homogeneous charge compressionignition combustion with fuel of dimethyl ether and natural gas[J], J. Eng. Gas Turb. Power.2006,(128)2:414–420.
    [138] M.F. Yao, Z. Chen, Z.Q. Zheng, B. Zhang, Y. Xing, Study on the controlling strategies ofhomogeneous charge compression ignition combustion with fuel of dimethyl ether andmethanol[J], Fuel,2006,(85)14–15:2046–2056.
    [139] Z.Huang, G.Chen, C. Chen, et al. Experimental Study on Premixed Combustion of DimethylEther–Hydrogen–Air Mixtures[J], Energy&Fuels2008,(22):967–971.
    [140] S.Lee, S.Oh, Y.Choi. Performance and emission characteristics of an SI engine operated withDME blended LPG fuel[J], Fuel,2009(88):1009–1015.
    [141] E. Sukjit, J. M. Herreros, K. D. Dearn, et al. The effect of the addition of individual methylesters on the combustion and emissions of ethanol and butanol-diesel blends [J]. Energy2012;(42):364-374.
    [142] C. Gong, B. Deng, S. Wang, et al. Investigation on firing behavior of the spark-ignition enginefueled with methanol, liquefied petroleum gas (LPG), and methanol/LPG during cold start [J].Energy&Fuels2008;(22):3779-3784.
    [143] G.A. Karim. Hydrogen as a spark ignition engine fuel [J]. International Journal of HydrogenEnergy,2003,(28):569–577.
    [144]刘世文,汪洋等.天然气加氢改性对柴油引燃气体内燃机排放特性和经济性影响的研究[J].燃烧科学与技术,2003,9(6):539-545.
    [145]王金华,黄佐华等.直喷内燃机燃用天然气掺氢混合燃料的性能与排放[J].西安交通大学学报,2006,(40)5:522-526.
    [146]莫春兰.基于化学反应动力学的DME内燃机燃烧与排放特性研究[D],华中科技大学,2007.
    [147] T. A. Semelsberger, R.L. Borup. Howard L. Greene, Dimethyl ether (DME) as an alternativefuel [J], Journal of Power Sources,2006(156):497–511.
    [148] T.H. Fleischa, A. Basub, R.A. Sills. Introduction and advancement of a new clean global fuel:The status of DME developments in China and beyond [J]. Journal of Natural Gas Science andEngineering,2012,(9):94–107.
    [149] H. J.Curran, W. J. Pitz, C. K.Westrook, et al. A wide range modelling study of dimethyl etheroxidation [J]. Int. J. Chem. Kinetics1998,(30)3,229-241.
    [150] S.L. Fischer, F. L. Dryer, H. J. Curran. The reaction kinetics of dimethyl ether. I:High-temperature oxidation in flow reactors [J]. Int.J.Chem.Kinetics2000(32)12:713-740.
    [151] H. J. Curran, S.L. Fischer, F. L. Dryer. The reaction kinetics of dimethyl ether II: Lowtemperature oxidation in flow reactors [J]. Int.J.Chem.Kinetics2000,(32)12,741-759.
    [152] Z. Zhao, A. Kazakov, F. L. Dryer. Laminar Flame Speed Study of Dimethyl Ether/AirMixtures by Using Particle Image Velocimetry [J]. Combustion and Flame,2004,(139):52-60.
    [153] C. A. Daly, J. M. Sfmmie, J. Wtirmel, et al. Burning velocities of dimethyl ether and air [J].Combustion and Flame,2001,(125)4:1329-1340.
    [154] T. Shudo, H. Yamada. Hydrogen as an ignition-controlling agent for HCCI combustion engineby suppressing the low-temperature oxidation[J], International Journal of Hydrogen Energy32(2007)3066–3072.
    [155]罗马吉,黄震。DME/LPG混合燃阿廖HCCI燃烧模拟[J].工程热物理学报。2006,6(27):1060-1062.
    [156]梁霞,尧命发,郑尊清.二甲基醚/甲醇双燃料均质压燃低温氧化反应机理数值模拟[J],燃烧科学与技术,2005,11(2):149~154.
    [157]黄晨.二甲基醚/甲醇双燃料均质压燃燃烧机理多维数值研究[D],天津大学,2006.
    [158]郑尊清,尧命发,陈征.二甲醚/甲醇均质压燃性能和排放特性的试验研究[J],内燃机学报,2005,(23)1:32-36.
    [159]陈征,尧命发,郑尊清.废气再循环对二甲醚/甲醇均质压燃燃烧过程影响的试验研究[J],内燃机学报,2006,(24)2:116-121.
    [160] S. Lee, S. Oh,Y. Choi, et al. Effect of n-Butane and propane on performance and emissioncharacteristics of an SI engine operated with DME-blended LPG fuel [J]. Fuel2011,(90):1674–1680.
    [161] S. Lee, S. Oh, Y. Choi, et al. Performance and emission characteristics of a CI engine operatedwith n-Butane blended DME fuel [J]. Applied Thermal Engineering2011,(31):1929-1935.
    [162] D. Hrovat,et al. Models and Control Methodologies for IC Engine Idle Speed Control Design[J],Control Eng.Practice,1997.5(8).
    [163]宁智,张振顺,资新运,等.怠速条件下汽车排气污染物在排气尾流中扩散特性的试验研究[J].环境科学学报,2005,25(9):1151–1155.
    [164] Rankin DD. Lean combustion technology and control. Elsevier;2008.p103-110
    [165] C.R. Ferguson, A.T. Kirkpatrick. Internal Combustion Engines Applied Thermosciences [M].John Wiley&Sons, Inc;2001.
    [166] S.R. Turns. An introduction to combustion: concepts and applications [M].2nd ed. New York:McGraw-Hill;2000.
    [167] NIST-JANAF. Thermochemical Tables, http://kinetics.nist.gov/janaf/.
    [168] M. Canakci, A, Erdil, E, Arcaklio lu. Performance and exhaust emissions of a biodieselengine [J]. Applied Energy,2006(83):594-605.
    [169] C. Ji, C. Liang, S. Wang. Investigation on combustion and emissions of DME/gasolinemixtures in a spark-ignition engine [J]. Fuel2011(90):1133–1138.
    [170] K. Yeom, C, Bae. Gasoline-Di-methyl Ether Homogeneous Charge Compression IgnitionEngine [J]. Energy&Fuels2007(21):1942-1949.
    [171] C. Ji, S. Wang. Effect of hydrogen addition on the idle performance of a spark ignited gasolineengine at stoichiometric condition [J], Hydrogen Energy.2009(34):3546-3556.
    [172] C.K. Westbrook, F.L. Tryer. Predicition of Laminar Flame properities of Methanol-airMixtures [J]. Combustion and Flame,1980(37):171-192.
    [173] C.K Westbrook, F.L Tryer. A Comprehensive mechanism for Methanol Oxidation [J].Combustion and Technology.1979(20):125-140.
    [174] J.B. Heywood. Internal combustion engine fundamentals [M]. McGraw-Hill Book Co;1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700