用户名: 密码: 验证码:
不饱和醛及双环芳烃的选择性催化加氢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不饱和醛和双环芳烃的选择性加氢是有机合成重要的单元反应,本论文系统研究了羰基、碳碳双键和芳环选择性加氢的反应规律。
     以3,4,5-三甲氧基苯甲醛(TMB)为模型底物,系统研究了骨架Ni催化芳香醛C=O键选择性脱羰基和加氢脱氧的反应规律。以骨架Ni为催化剂,在四氢呋喃溶剂中,在190℃、3.0MPa条件下反应4h,当TMB转化率达100%时,得到的是脱羰基产物1,2,3-三甲氧基苯,其选择性可达83.1%,且在反应过程中未检测到苯环加氢的产物;而以Mo改性骨架Ni为催化剂,在环己烷溶剂中,165℃、6.5MPa条件下反应90min,当TMB转化率达100%时,得到的是羰基加氢脱氧产物3,4,5-三甲氧基甲苯(TMT),其选择性达98.6%;XPS分析结果显示零价Ni活性中心对加氢脱羰基反应具有促进作用,Mo的加入可与零价Ni形成强烈的相互作用,从而抑制了脱羰基副反应。
     以肉桂醛为模型底物,系统研究了C=O键和C=C键选择性加氢的反应规律。结果表明,在Co-B合金中添加Mo组分对催化C=O键的选择性加氢具有明显的促进作用。在120℃、1.0MPa条件下反应120min,当肉桂醛的转化率为98.8%时,肉桂醇的选择性可达86.3%;而采用K2CO3处理后的Pd/C催化剂,可显著提高对C=C键加氢的选择性。在40℃、0.5MPa条件下反应80min,当肉桂醛的转化率为95.0%时,苯丙醛的选择性达98.6%。
     以4,4'-二氨基二苯基甲烷(MDA)和4,4'-二羟基二苯基丙烷(BPA)为模型底物,研究了双环芳烃立体选择性加氢的反应规律。采用胶体法制备的纳米Ru/C催化剂,在160℃、8.0MPa条件下,当MDA的转化率达100%时,产物4,4'-二氨基-二环己基甲烷(H12MDA)的选择性达99.2%,反-反异构体含量低于25%,且催化剂使用寿命长,连续循环30次,仍能维持原料100%转化;而纳米Ru/C催化BPA的选择性加氢,在110℃、6.0MPa条件下,当BPA的转化率达100%时,产物4,4’-二羟基二环己基丙烷(H12BPA)的选择性达98.4%。
The selective hydrogenation of unsaturated aldehydes and diaromatics is an important reaction for organic synthesis. In this thesis, the selective hydrogenation of C=O, C=C bond and benzene ring were systematicly investigated.
     The selective hydrogenation of3,4,5-trimethoxybenzaldehyde (TMB) to3,4,5-trimethoxytoluene (TMT) was studied over skeletal nickel catalyst. The hydrogenation of TMB was investigated over skeletal Ni catalyst without any additives, and1,2,3-trimethoxybenzene was obtained via directly cleavaging C-C bond. Under190℃and3.0MPa, the selectivity of1,2,3-trimethoxybenzene was as high as83.1%and no by-products for the hydrogenation of aromatic ring were detected during the whole reaction process. In addition, under the optimized reaction condtions of165℃,6.5MPa, the selectivity of TMT was up to98.6%at100%conversion of TMB over Mo modified skeletal nickel catalyst. It is found that Mo as modified components play a key role in controlling the selectivity for the hydrodeoxygenation of C=O bond. XPS analysis demonstrated that the peak for metallic Ni disappeared after skeletal Ni catalyst was modified by Mo componetent. The possible reason for high selectivity of TMT was attributed to the effective inhibition for the side reaction of decarbonylation.
     The selective hydrogenation of α,β-unsaturated aldehydes were investigated and cinnamaldehyde (CAL) was chosen as a model substrate for the study of reaction mechanism. Results showed that Co-Mo-B alloy catalyst exhibited good performance for the hydrogenation of C=O bond. Under the optimal reaction conditions, the selectivity of cinnamic alcohol was up to86.3%when the conversion of CAL was98.8%. On the other hand, K2CO3has played a significant role in improving the selectivity of hydrocinnamicaldehyde (HCAL) over Pd/C catalyst. Under the optimal reaction conditions, the selectivity of HCAL was as high as98.6%with95.0%conversion of CAL.
     Supported nano-Ru catalyst was employed for the selective hydrogenation of MDA and BPA to corresponding aliphatic compounds. The selectivity of H12MDA can be as high as99.2%and trans-trans isomer was lower than25%under160℃,8.0MPa with100%conversion of MDA. The conversion of MDA can still reach100%even after recycling for thirty times. Similarly, the selectivity of H12BPA can be up to98.4%at110℃,6.0MPa with100%conversion of BPA.
引文
[1]Brewster J H. Mechanisms of reductions at metal surfaces. I. A general working hypothesis [J]. Journal of the American Chemical Society,1954,76(24):6361-6363.
    [2]Wolff L. Chemischen Institut der Universitat Jena:Methode zum ersatz des sauerstoff-atoms der ketone und aldehyde durch wasserstoff [J]. Justus Liebigs Annalen der Chemie,1912,394:86-108.
    [3]Huang M L. A simple modification of the Wolff-Kishner reduction [J]. Journal of the American Chemical Society,1946,68(12):2487-2488.
    [4]Bachmann W E. The reaction of aromatic ketones with sodium. I. The structure of the so-called metal ketyls [J]. Journal of the American Chemical Society,1933,55(3):1179-1188.
    [5]Conover L H, Tarbell D S. Hydrogenolysis of certain substituted aromatic acids and carbonyl compoun-ds by lithium aluminum hydride [J]. Journal of the American Chemical Society,1950,72(8):3586-3588.
    [6]Breuer E. The hydrogenaolysis of some cyclopropyl ketones and cyclopropyl carbinols with diborane and borontrifluoride [J]. Tetrahedron Letters,1967,8(20):1849-1854.
    [7]Kursanov D N, Parnes Z N, Loim N M. Applications of ionic hydrogenation to organic synthesis [J]. Synthesis,1974,9:633-651.
    [8]Letsinger R L, Jamison J D. Synthesis of pyranones and benzofluorenones from ketones and carboxylic acids [J]. Journal of the American Chemical Society,1961,83(3):193-198.
    [9]Papa D, Schwenk E, Whitman B. Reductions with nickel-aluminum alloy and aqueous alkali [J]. Journal of Organic Chemistry,1942,7(6):587-590.
    [10]Ishimoto K, Mitoma Y, Nagashima S, et al. Reduction of carbonyl groups to the corresponding methy-lenes with Ni-Al alloy in water [J]. Chemical Communications,2003,4:514-515.
    [11]Saadi A, Merabti R, Rassoul Z, et al. Benzaldehyde hydrogenation over supported nickel catalysts [J]. Journal of Molecular Catalysis A:Chemical,2006,253(1-2):79-85.
    [12]Liu S, Fan X P, Yan X L, et al.Catalytic reduction of benzaldehyde to toluene over Ni/γ-Al2O3 in the presence of aniline and H2 [J]. Applied Catalysis A:General,2011,400(1-2):99-103.
    [13]Pinna F, Menegazzo F, Signoretto M, et al. Consecutive hydrogenation of benzaldehyde over Pd catalysts:Influence of support and sulfur poisoning [J]. Applied Catalysis A:General,2001,219(1-2) :195-200.
    [14]Prochazkova D, Zamostny P, Bejblova M, et al. Hydrodeoxygenation of aldehydes catalyzed by supported palladium catalysts [J]. Applied Catalysis A:General,2007,332(1):56-64.
    [15]Saadi A, Rassoul Z, Bettahar M M. Gas phase hydrogenation of benzaldehyde over supported copper catalysts [J]. Journal of Molecular Catalysis A:Chemical,2000,164(1-2):205-216.
    [16]Vannice M A, Poondi D. The effect of metal-support interactions on the hydrogenation of benzaldehyde and benzyl alcohol [J]. Journal of Catalysis,1997,169(1):166-175.
    [17]Wang W Y, Yang Y Q, Luo H A, et al. Amorphous Co-Mo-B catalyst with high activity for the hydrodeoxygenation of bio-oil [J]. Catalysis Communications,2011,12(6):436-440.
    [18]Ausavasukhi A, Sooknoi T, Resasco D E. Catalytic deoxygenation of benzaldehyde over gallium-modified ZSM-5 zeolite [J]. Journal of Catalysis,2009,268(1):68-78.
    [19]Peralta M A, Sooknoi T, Danuthai T, et al. Deoxygenation of benzaldehyde over CsNaX zeolites [J]. Journal of Molecular Catalysis A:Chemical,2009,312(1):78-86.
    [20]冀亚飞,许忻,宗志敏,等.钯/碳催化的3,4,5-三甲氧基苯甲醛还原反应[J].中国医药工业杂志,2002,53(2):207-211.
    [21]Xing L X, Wang X Y, Cheng C J, et al. A solvent-controlled highly efficient Pd-C catalyzed hydrogenolysis of benzaldehydes to methylbenzenes via a novel'acetal pathway'[J].Tetrahedron, 2007,63(38):9382-9386.
    [22]Bottke N, Fischer R-H, N□bel T, et al. Method for producing toluol derivatives [P].US 7230141,2007.
    [23]Keane M A. Gas phase hydrogenation/hydrogenolysis of benzaldehyde and o-tolualdehyde over Ni/SiO2 [J]. Journal of Molecular Catalysis A:Chemical,1997,118(2):261-269.
    [24]傅献彩,沈文霞,姚天扬.物理化学(第四版)(上册)[M].北京:高等教育出版社,1989,66.
    [25]范成有.香料及其应用[M].北京:化学工业出版社,1990.
    [26]Muller A J, Bowers J S J, Eubanks J R 1, et al. Processes for preparing hydrocinnamic acid:W1PO, WO 9908989,1999.
    [27]王广宏.肉桂醛选择性氢化合成苯丙醛工业技术研究[J].林产化工通讯,2005,39(4):20-23.
    [28]李杰,李玲,江大好,等.α,β-不饱和醛/酮中C==C双键选择性加氢催化剂的研究进展[J].工业催化,2012,20(8):13-19.
    [29]Galletti A M R, Antonetti C, Venezia A M, et al. An easy microwave-assisted peocess for the synthesis of nanostructured palladium catalysts and their use in the selective hydrogenation of cinnamaldehyde [J]. Applied Catalysis A:General,2010,386(1-2):124-131.
    [30]Galletti A M R, Toniolo L, Antonetti C, et al. New palladium catalysts on polyketone prepared through different smart methodologies and their use in the hydrogenation of cinnamaldehyde [J]. Applied Catalysis A:General,2012,447-448:49-59.
    [31]Kume Y, Qiao K, Tomida D, et al. Selective hydrogenation of cinnamaldehyde catalyzed by palladium nanoparticles immobilized on ionic liquids modified-solica gel [J]. Catalysis Communications,2008,9 (3):369-375.
    [32]Bhogeswararao S, Srinivas D. Chemoselective hydrogenation of cinnamaldehyde over Pd/CeO2-ZrO2 catalysts [J]. Catalysis Letters,2010,140(1-2):55-64.
    [33]Zhu J, Jia Y, Li M S, et al. Carbon nanofibers grown on anatase washcoated cordierite monolith and its supported palladium catalyst for cinnamaldehyde hydrogenation [J]. Industrial & Engineering Chemistry Reasearch,2013,52(3):1224-1233.
    [34]Shi H, Xu N, Zhao D, et al. Immobilized PVA-stabilized gold nanoparticles on silica show an unusual selectivity in the hydrogenation of cinnamaldehyde [J]. Catalysis Communications,2008,9(10):1949-1954.
    [35]Tian Z M, Xiang X, Xie L S, et al. Liqiud-phase hydrogenation of cinnamaldehyde:Enhancing selectivity of supported gold catalysts by incorporation of cerium into the support [J]. Industrial & Engineering Chemistry Research,2013,52(l):288-296.
    [36]Ni X J, Zhang B S, Li C, et al. Microwave-assisted green synthesis of uniform Ru namoparticles supported on non-functional carbon nanotubes for cinnamaldehyde hydrogenation [J]. Catalysis Communications,2012,24:65-69.
    [37]Bertolini G R, Cabello C I, Munoz M, et al. Catalysts based on Rh(Ⅲ)-hexamolybdate/y-AlO3 and their application in the selective hydrogenation of cinnnamaldehyde to hydrocinnamaldehyde [J]. Journal of Molecular Catalysis A:Chemical,2013,366:109-115.
    [38]李辉,马春景,李和兴Ni-Co-B非晶态合金催化肉桂醛常压加氢制3-苯丙醛的研究[J].化学学报,2006,64(19):1947-1953.
    [39]施介华,王玉斌,陈楹.肉桂醛选择性催化氢化制备3-苯丙醛[J].浙江工业大学学报,2009,37(3):271-275.
    [40]Wang H, Shu Y, Zheng M. Selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde over SiO2 supported Nickel phosphide catalysts [J]. Catalysis Letters,2008,124(3-4):219-255.
    [41]Chen X, Li M, Guan J C, et al. Nickel-Silicon intermetallics with enhanced selectivity in hydrogenation reactions of cinnamaldehyde and phenylacetylene [J]. Industrial & Engineering Chemistry Research,2012,51(9):3604-3611.
    [42]Marchi A J, Gordo D A, Trasarti A F, et al. Liquid phase hydrogenation of cinnamaldehyde on Cu-based catalysis [J]. Applied Catalysis A:General,2003,249(1):53-67.
    [43]Reddy B M, Kumar G M, Ganesh I, et al. Vapour phase hydrogenation of cinnamaldehyde over silica supported transition metal-based bimetallic catalysts [J]. Journal of Molecular Catalysis A:Chemical, 2006,247(1-2):80-87.
    [44]徐克勋.精细有机化工原料及中间体手册[M].北京:化学工业出版社,1986.
    [45]许莉勇,张新波,张斌,等.肉桂醛多相催化选择性加氢制肉桂醇的研究进展[J].中国现代应用药学,2010,27(7):599-603.
    [46]Hajek J, Kumar N, Francova D, et al. Hydrogenation of cinnamaldehyde over Pt-modified molecular sieve catalysts [J]. Chemical Engineering Technology,2004,27(12):1290-1295.
    [47]Handjani S, Marceau E, Blanchard J, et al. Influence of the support composition and acidity on the catalytic properties of mesoporous SBA-15, Al-SBA-15 and Al2O3-supported Pt catalysts for cinnamaldehyde hydrogenation [J]. Journal of Catalysis,2011,282(1):228-236.
    [48]Lashdaf M, Lahtinen J, Lindblad M, et al. Platinum catalysts on alumina and silica prepared by gas and liquid phase deposition in cinnamaldehyde hydrogenation [J]. Applied Catalysis A:General,2004, 276(1-2):129-137.
    [49]Prashar A K, Mayadevi S, Devi R N. Effect of particle size on selective hydrogenation of cinnamaldehyde by Pt encapsulated in mesoporous silica [J]. Catalysis Communications,2012,28:42-46.
    [50]Giroir-Fendler A, Richard D, Gallezot P. Chemioselectivity in the catalytic hydrogenation of cinnamaldehyde. Effect of metal particle morphology [J]. Catalysis Letters,1990,5(2):175-182.
    [51]Plomp A J, Vuori H, Krause A O I, et al. particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde [J]. Applied Catalysis A: General,2008,351(1):9-15.
    [52]Zhao B H, Chen J G, Liu X, et al. Selective hydrogenation of cinnamaldehyde over Pt and Pd supported on multiwalled carbon nanotubes in a CO2-expanded alcoholic medium [J]. Industrial & Engineering Chemistry Research,2012,51 (34):11112-11121.
    [53]Machado B F, Morales-Torres S, Perez-Cadenas A F, et al. Preparation of carbon aerogel supported platinum catalysts for the selective hydrogenation of cinnamaldehyde [J]. Applied Catalysis A: General,2012,425-426:161-169.
    [54]Bhogeswararao S, Srinivas D. Intramolecular selective hydrogenation of cinnamaldehyde over CeO2-ZrO2-supported Pt catalysts [J]. Journal of Catalysis,2012,285(1):31-40.
    [55]Samant P V, Pereira M F R, Figueiredo J L. Mesoporous carbon supported Pt and Pt-sn catalysts for hydrogenation of cinnamaldehyde [J]. Catalysis Today,2005,102-103:183-188.
    [56]李涛,李光进,徐奕德.Sn对肉桂醛加氢催化剂Pt/Al2O3的修饰作用[J].催化学报,1999,20(3):219-223.
    [57]Merlo A B, Machado B F, Vetere V, et al. Pt-Sn/SiO2 catalysts prepared by surface controlled reactions for the selective hydrogenation of cinnamaldehyde [J]. Applied Catalysis A:General,2010, 383(1-2):43-49.
    [58]Plomp A J, van Asten D M P, van der Eerden A M J, et al. Catalysts based on platinum-tin and platinum-gallium in close contant for the selective hydrogenation of cinnamaldehyde [J]. Journal of Catalysis,2009,263(1):146-154.
    [59]Ramos-Fernandez E V, Ferreira A F P, Sepulveda-Escribano A, et al. Enhancing the catalytic performance of Pt/ZnO in the selective hydrogenation of cinnamaldehyde by Cr addition to the support [J]. Journal of Catalysis,2008,258(1):52-60.
    [60]Ramos-Fernandez E V, Ruiz-Martinez J, Serrano-Ruiz J C, et al.Effect of the support, Al2O3 or SiO2, on the catalytic behaviour of Cr-ZnO promoted Pt catalysts in the selective hydrogenation of cinnamaldehyde [J]. Applied Catalysis A:General,2011,402(1-2):50-58.
    [61]Hajek J, Kumar N, Maki-Arvela P, et al. Ruthenium-modified MCM-41 mesoporous molecular sieve and Y zeolite catalysts for selective hydrogenation of cinnamaldehyde [J]. Applied Catalysis A: General,2003,351(2):385-396.
    [62]Hajek J, Kumar N, Maki-Arvela P, et al. Selective hydrogenation of cinnamaldehyde over Ru/Y zeolite [J]. Journal of Molecular Catalysis A:Chemical,2004,217(1-2):145-154.
    [63]Ghosh A, Kumar R. Synthesis, characterization and catalytic application of Ru II ethylenediamine complex mesoporous silica as heterogeneous catalyst system in chemo-selective hydrogenation of α,β-unsaturated carbonyl compounds [J]. Microporous and Mesoporous Materials,2005,87(l):33-44.
    [64]Dongil A B, Bachiller-Baeza B, Guerrero-Ruiz A, et al. Chemoselective hydrogenation of cinnamaldehyde:a comparison of the immobilization of Ru-phosphine complex on graphite oxide and on graphitic surfaces [J]. Journal of Catalysis,2011,282(2):299-309.
    [65]Claus P. Heterogeneously catalysed hydrogenation using gold catalysts [J]. Applied Catalysis A: General,2005,291 (1-2):222-229.
    [66]Bus E, Prins R, Bokhoven J A V. Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts [J]. Catalysis Communications,2007,8(9):1397-1402.
    [67]刘迎新,孟令富,魏作君,等.La203助剂对Au/TiO2催化肉桂醛选择性加氢性能的影响[J].催化学报,2011,32(7):1269-1274.
    [68]Rojas H, Diaz G, Martinez J J, et al. Hydrogenation of α,β-unsaturated carbonyl compounds over Au and Ir supported on SiO2 [J]. Journal of Molecular Catalysis A:Chemical,2012,363-364:122-128.
    [69]Milone C, Ingoglia R, Schipilliti L, et al. Selective hydrogenation of α,β-unsaturated ketone to α,β-unsaturated alcohol on gold-supported iron oxide catalysts:Role of the support [J]. Journal of Catalysis,2005,236(1):80-90.
    [70]Lenz J, Campo B C, Alvarez M, et al. Liqiud phase hydrogenation of α,β-unsaturated aldehydes over gold supported on iron oxides [J]. Journal of Catalysis,2009,267(1):50-56.
    [71]刘百军,潘秀莲,熊国兴,等.Co/γ-AI2O3催化剂上肉桂醛的选择加氢——反应性能的考察[J].分子催化,1999,13(6):424-428.
    [72]刘百军,熊国兴,潘秀莲,等.贵金属对钻基催化剂上肉桂醛的选择加氢反应的影响[J].催化学报,2002,23(5):481-484.
    [73]黄朋勉,刘自力.La对选择性加氢催化剂Co/γ-Al2O3的改性研究[J].分子催化,2005,19(6):444-447.
    [74]刘自力,黄朋勉.Fe对肉桂醛选择性加氢为肉桂醇的Co/γ-Al2O3催化剂的改性研究[J].精细化工,2005,22(6):447-450.
    [75]李万伟,刘自力.Fe对肉桂醛选择性加氢催化剂Co/硅藻土的修饰作用[J].工业催化,2008,16(1):62-66.
    [76]Raj K J A, Prakash M G, Elangovan T, et al. Selective hydrogenation of cinnamaldehyde over cobalt supported on alumina, silica and titania [J]. Catalysis letters,2012,142(1):87-94.
    [77]Wu Z J, Zhao J S, Zhang M H, et al. Synthesis of a stable and porous Co-B nanoparticle catalyst for selective hydrogenation of cinnamaldehyde to cinnamic alcohol [J]. Catalysis Communicaitons,2010, 11(11):973-976.
    [78]陈兴凡,徐叶平,蔡霞,等.Co-B非晶态合金催化肉桂醛液相选择性加氢制备肉桂醇的研究[J].化学研究与应用,2002,14(3):269-273.
    [79]Li H, Liu J, Xie S H, et al. Highly active Co-B amorphous alloy catalyst with uniform nanopariticles prepared in oil-in-water microemulsion [J]. Journal of Catalysis,2008,259(1):104-110.
    [80]Li H, Yang H X, Li H X. Highly active mesoporous Co-B amorphous alloy catalyst for cinnamaldehyde hydrogenation to cinnamyl alcohol [J]. Journal of Catalysis,2007,251(1):233-238.
    [81]刘其海,廖列文,刘自力.非晶态合金Co-Fe-B催化剂上肉桂醛选择加氢制肉桂醇[J].石油化工,2010,39(4):426-430.
    [82]裴燕,田莉,乔明华,等.非晶态CoFeB催化剂上肉桂醛选择加氢[J].石油化工,2011,40(7):705-711.
    [83]刘自力,刘其海,汪鹏华,等.锌对非晶态Co-B合金的改性及催化肉桂醛加氢为肉桂醇的研究[J].分子催化,2007,21(2):115-121.
    [84]孟琦,李和兴.稀土Th修饰的Co-B非晶态合金催化肉桂醛选择性加氢制肉桂醇[J].分子催化,2009,23(1):57-61.
    [85]裴燕.αβ-不饱和醛选择加氢新型催化剂的设计和研究[D].上海:复旦大学,2006.
    [86]Tong D G, Chu W, Luo Y Y, et al. Effect of crystallinity on the catalytic performance of amorphous Co-B particles prepared from cobalt nitrate and potassium borohydride in the cinnamaldehyde hydrogenation [J]. Journal of Molecular Catalysis A:Chemical,2007,265(1-2):195-204.
    [87]Valange S, Gabelica Z. Preparation of novel mixed [Cu, Zn, Al] hexagonal and lamellar mesophases [J]. Studies in Surface Science and Catalysis,1998,117:95-102.
    [88]Liu Z, Yang Y, Mi J H, et al. Synthesis of copper-containing ordered mesoporous carbons for selective hydrogenation of cinnamaldehyde [J]. Catalysis Communications,2012,21:58-62.
    [89]Gutierrez V, Alvarez M, Volpe M A. Liquid phase selective hydrogenation of cinnamaldehyde over copper supported catalysts [J]. Applied Catalysis A:General,2012,413-414:358-365.
    [90]盛茂桂,邓桂琴.新型聚氨酯树脂涂料生产技术与应用[M].广州:广东科技出版社,2001:1-2.
    [91]从树枫,喻露如.聚氨酯涂料[M].北京:化学工业出版社,2003:12-14.
    [92]Farrissey W J, Frulla F F. Catalytic hydrogenation process for preparing di(4-aminocyclohexyl)Meth-ane[P]. US 3591635,1971.
    [93]Chung T, Dillon M, Lines G. Process for hydrogenation of di(4-aminophenyl)methane with a rhodium catalyst [P]. US 3856862,1974.
    [94]Vedage G A, Henderson W W, Toseland B A, et al. Hydrogenation of aromatic amines to produce their ring hydrogenated counterparts [P]. US 4960941,1989.
    [95]Vedage G A, Armor J N. Hydrogenation of aromatic amines to produce their ring hydrogenated counterparters [P]. US 5360934,1994.
    [96]Vedage G A, Armor J N. Hydrogenation of aromatic amines using mixed metal oxide support [P]. US 5545756,1996.
    [97]Ding H, Armor J N, Emig L A. Lithium aluminate as a catalyst support for hydrogenation of aromatic amines [P]. US 6184416,2001.
    [98]Kirk W, Whitman G M. Bis(4-aminocyclohexyl)methane [P]. US 2494563,1950.
    [99]Whitman G M.4-[(Para-aminophenyl)-alkyl]cyclohexylamine [P]. US 2511028,1950.
    [100]Whitman G M. Bis(4-aminocyclohexyl)methane [P]. US 2606924,1952.
    [101]Whitman G M. Ruthenium catalyzed hydrogenation process for obtaining amino-cyclohexyl compo-unds [P]. US 2606925,1952.
    [102]Barkdoll A E, Gray H W, Krik W. The gerometric isomers of bis-(4-aminocy-clohexl)methane [J]. Journal of the American Chemical Society,1951,73(2):741-746.
    [103]Barkdoll A E, Graef E R. Preparation of amino alicyclic compounds [P]. US 2606928,1952.
    [104]Barkdoll A E, England D C, Gray H W, et al. Preparation of Bis(4-aminocyclohexyl)methane [J]. Journal of the American Chemical Society,1953,75(8):1156-1159.
    [105]Brake L D. Catalytic hydrogenation of aromatic nitrogen containing compounds over alkali moderated ruthenium [P]. US 3636108,1972.
    [106]Brake L D, Stiles A B. Catalytic hydrogenation of nitrogen containing compounds over supported ruthenium catalysts [P]. US 3644522,1972.
    [107]Brake L D. Alkali moderation of supported ruthenium catalysts [P]. US 3697449,1972.
    [108]Allen G F. Catalytic hydrogenation of di(4-aminophenyl)methane [P]. US 4394523,1983.
    [109]Allen G F. Catalytic hydrogenation of di(4-aminophenyl)methane [P]. US 4448995,1984.
    [110]Schmelzer G H, Allen G F, Bub G K H, et al. Process for the production of 4,4'-diaminodicyclohexylmethane with a low trans-trans isomer content by the catalytic hydrogenation of 4,4'-diamino-diphenylmethane [P]. US 5196594,1993.
    [111]Dietrich M, Gerhard T. Catalyst for preparing bis-para-aminocyclohexylmethane containing a low proportion of trans-trans isomer by hydrogenation of methylnediamine [P]. US 5578546,1996.
    [112]Kim H S, Park K Y, Kwon Y S, et al. Method for preparation of cyclocliphatic diamines from aromatic diamines [P]. US 6075167,2000.
    [113]弗达格,丁皓,恩格尔,等.用铝酸锂基催化剂将芳胺氢化为脂环胺[P].CN 1970528,2007.
    [114]Casey J P, Fasolka M J. Hydrogenation of methylenedianiline to produce bis(para-aminocyclohexyl)-methane [P]. US 4754070,1988.
    [115]Casey J P, Fasolka M J. Hydrogenation of methylenedianiline to produce bis(para-aminocyclohexyl)-methane [P]. US 4946998,1990.
    [116]苏文庭,陈丰秋,方和良,等.MDA催化加氢制备低反-反异构体PACM的实验研究[J].化学反应工程与工艺,2005,21(1):12-15.
    [117]丁皓,维达格,马蒂,等.含杂质的二苯氨基甲烷的氢化[P].CN 1699329,2005.
    [118]丁皓,卡托拉诺,德霍拉基亚.亚甲基双苯胺的氢化反应[P].CN 1740139,2006.
    [119]戢俊,郭鲲,丁一刚,等.固相聚合法合成双酚A型聚碳酸酯[J].武汉工程大学学报,2010,32(3):5-8.
    [120]冯兆昌,杨桂成,容敏智,等.固体双酚A型环氧树脂的合成与表征[J].热固性树脂,2010,25(6):33-36.
    [121]陈立新,赵庆贺,王汝敏,等.线型双酚A酚醛树脂的合成[J].粘接,2006,27(4):14-16.
    [122]李洪春,张广成,陈挺,等.氢化双酚A型环氧树脂的合成与表征[J].西安石油大学学报(自然科学版),2008,23(1):85-88.
    [123]Morikawa K, Hirayama S, Ishimura Y et al. Metal raney catalysts and preparation of hydrogenated compounds therewith [P]. US 6245920,2001.
    [124]Frakenthal T R, Breitsccheidel B B, Mannheim J H. Precess for reacting an organic compound in the presence of supported ruthenium catalyst [P]. US 6248924,2001.
    [125]王开林,张英杰,张磊,等.双酚A催化加氢制备氢化双酚A[J].精细石油化工,2007,24(5):39-44.
    [126]Maegawa T, Akashi A, Yaguchi K et al. Efficient and practical arene hydrogenation by heterogene-ous catalysts under mild conditions [J]. Chemistry-A European Joumal,2009,15(28):6953-6963.
    [127]Nishimura S. Handbook of heterogeneous catalytic hydrogenation for organic synthesis, Wiley, New York,2001,p414.
    [128]赵智全.一种二羟基二环己基丙烷的制备方法[P].CN 102093161,2010.
    [129]Yen C H, Lin H W, Tan C S. Hydrogenation of bisphenol A-using a mesoporous silica based nano ruthenium catalyst Ru/MCM-41 and water as the solvent [J]. Catalysis Today,2011,174(1):121-126.
    [130]Carrieres J G, Villepreux C L. Process for manufacturing dicyclohexanol propane by hydrogenating diphenol propane [P]. US 4001343,1977.
    [131]Herblay G H, Villepreux C L. Process for manufacturing dicyclohexanol propane by hydrogenating diphenol propane [P]. US 4192960,1980.
    [132]Takehiro S, Mikio N, Munehito N. Hydrogenation of bisphenol-A over nichel catalysts. Effects of alkaline earth metal-doping and solvent effects [J]. Aromatikkusu,1998,50(5-6):171-174.
    [133]吕连海,郭方,辛俊娜,等.一种高活性加氢催化剂纳米Ru/C的制备方法[J].CN 1970143,2007.
    [134]孙家强,杨健.辅酶Qo的制备和结构表征[J].光谱实验室,2010,27(2):565-567.
    [135]陈冬恩,王博,王艳辉.艾地苯醌的工艺改进[J].中国医药工业杂志,2007,38(2):82-83.
    [136]许忻,齐祥明,冀亚飞,等.3,4,5-三甲氧基甲苯合成工艺的改进[J].中国医药工业杂志,2002,33(1):8 -22.
    [137]Nishimura, S. Handbook of heterogeneous catalytic hydrogenation for organic synthesis; John Wiley & Sons:New York, NY,2001,Chapter 5.
    [138]王文浩,张欣,徐萍.曲美他嗪合成方法的改进[J].中国药物化学杂志,2003,13(4):219-221.
    [139]董燕敏,郝永兵,赵燕,等.1,2,3-三甲氧基苯的绿色合成工艺研究[J].化学工程,2011,39(8):69-73.
    [140]Bejblova M, Cerveny L. Hydrodeoxygenation of aromatic ketones and aldehydes [J]. Chemicke Listy,2004,98(11):981-984.
    [141]Lansink-Rotgerink H, Scholz M, Freund A, et al. Process for the hydrogenaolysis of C-O and C=O bonds in organic substances [P]. US 5773677,1998.
    [142]Rachmady M, Vannice M A. Acetic acid reduction by H2 over supported Pt catalysts:A DRIFTS and TPD/TPR study [J]. Journal of Catalysis,2002,207(2):317-330.
    [143]Pardillos-Guindet J, Metais S, Vidal S, et al. Electrode potential of a dispersed Raney nickel electrode during acetone hydrogenation:Influence of the promoters [J]. Applied Catalysis,A: General,1995,132(1):61-75.
    [144]Gallezot P, Cerino P J, Blanc B, et al. Glucose hydrogenation on promoted Raney-nickel catalysts [J]. Journal of Catalysis,1994,146(1):93-102.
    [145]Mikhailenko S D, Fasman A B, Maksimova N A, et al. Influence of preparation conditions on structure and physicochemical properties of multicomponent Raney nickel catalysts [J]. Applied Catalysis A:General,1984,12(2):141-150.
    [146]Klein J C. Surface analysis by x-ray photoelectron spectroscopy and Auger electron spectroscopy of molybdenum-doped Raney nickel catalysts [J]. Analytical Chemistry,1984,56:685-689.
    [147]Belatel H, Al-Kandari H, Al-Khorafi F, et al. Catalytic reactions of methylcyclohexane (MCH) on partially reduced MoO3 [J]. Applied catalysis A:General,2004,275(1-2):141-147.
    [148]Wang W Y, Yang Y Q, Bao J G, et al. Characterization and catalytic properties of Ni-Mo-B amorphous catalysts for phenol hydrodeoxygenation [J]. Catalysis Communications,2009,11(2):100-105.
    [149]Zhang Y, Liao S, Xu Y, et al. Catalytic selective hydrogenation of cinnamaldehyde to hydrocinnam aldehyde [J]. Applied Catalysis A:General,2000,192(2):247-251.
    [150]孟令富.负载型Au催化剂的制备及其在肉桂醛选择性加氢反应中的应用研究[D].杭州:浙江工业大学,2011.
    [151]Nitta Y, Hiramatsu Y, Imanaka T. Effects of preparation variables of supported-cobalt catalysts on the selective hydrogenation of α,β-unsaturated aldehydes[J]. Journal of Catalysis,1990,126(1):235-245.
    [152]Tin K C, Wong N B, Li R X, et al. Studies on catalytic hydrogenation of citral by water-soluble palladium complex [J]. Journal of Molecular Catalysis A:Chemical,1999,137(1-3):113-119.
    [153]Tin K C, Wong N B, Li R X, et al. Hydrogenation of crotonaldehyde and cinnamaldehyde catalyzed by water-soluble palladium complex [J]. Journal of Molecular Catalysis A:Chemical,1999,137(1-3): 121-125.
    [154]吕连海,胡爽,袁忠义,等.一种高活性加氢催化剂骨架钌的制备和应用方法[P].CN 1775353,2005.
    [155]胡爽.骨架结构钌、镍、铜的催化活性研究[D].大连:大连理工大学,2006.
    [156]Dandekar A, Baker R T K, Vannice M A. Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and DRIFTS [J]. Carbon,1998,36(12):1821-1831.
    [157]Xie Y C, Tang Y Q. Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports: applications to heterogeneous catalysis [J]. Advances in Catalysis,1990,37:1-43.
    [158]Lim D H, Lu L H, Kim D B, et al. Binary-surfactant (Brij 35+Tween 20) assisted preparation of highly dispersed Pt nanoparticles on carbon [J]. Journal of Nanoparticle Research,2008,10(7):1215-1220.
    [159]Hochdorf-Assenheim H, Frankenthal T R. Hydrogenation of aromatic compoundes in which at least one hydroxy group is bounded to an aromatic ring [P]. US 5942645,1999.
    [160]Koln R W, Butscheid M J. Process for the preparation of six-membered ring carbocycles [P]. US 6255530,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700