用户名: 密码: 验证码:
生物质基资源催化转化制备油类烃反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不断增长的全球能源消耗与随之而来的大量C02温室气体的排放已经成为21世纪全球能源及环境的两个主要问题。化石燃料有限的存储量及全球能源需求量不断攀升使得各国政府开始注重寻找可持续性能源发展技术。生物质作为全球最大的唯一可以转变为液态烃类的能源材料,已经引起各国学者重视。生物质能源也被视为可以替代化石燃料的新一代能源。生物质包含以木质纤维素为基础的植物类原料及以甘油三酯为基础的动植物油脂类原料,这类化合物原料在自然界中大量及广泛存在,其最本质能源起点就是太阳能、是一种可再生性的能源。但是,生物质原料中往往有高含量的氧,而不利于直接作为燃料燃烧,这与液化石油类液体燃料性质差距很大,因此生物质原料并不能直接用于现代内燃机,也不能作为汽油,柴油添加物进入内燃机使用。然而基于木质纤维素及甘油三酯类的材料,其主要由C、H及O组成,通过特定的手段将其中的O脱除,就会形成C、H组成的烃类物质,从而便会提高生物质材料的燃烧特性。通过脱氧技术得到的烷烃含有约5-20个碳源子,这与柴油所含碳原子数(10~22)重叠。其中部分轻质原料(碳原予数小于10)则可以通过碳链增长反应转变为重质的原料,再经过脱氧反应得到与柴油含有相同的碳原子数(10-22个碳原子)的烷烃。因此,基于生物质原材料通过催化脱氧的方法是可以转变为高品质的柴油类烃的。
     本论文以基于甘油三酯类及木质纤维素的模型化合物为原材料,制备了一系列的贵金属催化剂,并考察了这些催化剂对生物质基模型化合物的加氢脱氧反应影响。通过对催化剂的表征、活性测试及脱氧反应机理的研究,得出了以下主要研究结果:
     (1)以各种氧化物MOx负载金属Pd为催化剂、硬脂酸作为模型化合物,通过对比不同氧化物对硬脂酸加氢脱氧反应的影响,表明硬脂酸的深度加氢反应选择性与催化剂的酸性成正比,强酸性载体会影响的贵金属电子云结构,造成其对H2的解离能力变强,更容易发生还原反应。因此在相对高酸性的Pd/Al2O3上,部分硬脂酸则进行深度还原反应,生成了C18。而在Pd/TiO2上,硬脂酸主要进行一步加氢脱氧反应,在Pd/TiO2上,对反应温度、初始氢压及溶剂用量的考察表明适当温度及溶剂量条件下,高压氢气利于减少副反应的发生,增大液态烃类的选择性,因此,在贵金属催化剂上实现脂肪酸类向液态烃类高效,高选择性的转化,氢气气氛是必需的。
     (2)以HZSM-5为载体制备得到的双功能Pd型催化剂在葵花籽油加氢脱氧反应中表现出高的活性,但是Pd/HZSM-5催化剂过强酸性会导致C-C键裂解反应的发生,长链烷烃经裂解后变成的小分子的液态及气态烃类,降低液态长链烷烃的选择性,而大分子的副产物也会发生裂解反应。由于HZSM-5孔道与甘油三酯分子大小匹配效果与三甲苯分子一致,导致其在HZSM-5孔道内的发生芳构化反应,生成部分芳香族化合物,也降低了长链液态烃类的得率,因此HZSM-5并不适合葵花籽油加氢脱氧体系,而具有一定中强酸中心及介孔的分子筛载体则更加适合脂肪酸酯类加氢脱氧体系。
     (3)介孔的Pd/Al-SBA-15催化剂在相对低温250℃条件下表现出了对葵花籽油加氢脱氧反应优异的催化性能。C17及C18直链烷烃是葵花籽油加氢脱氧反应的主要产物,载体的酸性对C=O双键的还原有重要的影响。在250℃下,通过C=O双键的深度加氢反应得到C18的收率随着载体的中强酸位点含量增加而增加,而在高温300℃条件下,载体的强酸性会引起生成部分C17及C18烃类中C-C键的断裂从而降低柴油类链烃的收率,这与HZSM-5载体类似。因此葵花籽油的加氢脱氧反应需要在适当的温度(250℃),适合的载体孔道大小及含有中强酸位点的催化剂上才能高效的进行。
     (4)在基于木质纤维素材料的模型化合物山梨醇的加氢脱氧反应中,晶态的TiO2及ZrO2载体表现出了高的水热稳定性,而通过加入Si及P并不能阻止非晶态TiO2及ZrO2的结晶过程。山梨醇的加氢脱氧反应中,在低空速下烃类收率可以达到24%,而在高空速下条件下,主要产物则为水相产物如甲醇,乙醇及二元醇等等。合成的Pt-ReOx/TiO2双金属催化剂则表现出很高的催化活性,山梨醇在Pt-ReOx/TiO2催化剂上的转化频率(TOF)值是在Pt-ReOx/C催化剂上的10倍,表明载体TiO2在山梨醇加氢脱氧反应中可能参入了反应。虽然具有很高的催化活性,但是Pt-ReOx/TiO2催化剂上山梨醇的加氢脱氧反应产物随着反应时间的延长会有变化,其中C3类物质的选择性上升,而C6类物质选择性下降,但是山梨醇的转化却保持,而经过焙烧-还原处理过程后,该催化剂上C3及C6类物质的选择性均会恢复到原有水平,因此Pt-ReOx/TiO2是可以通过焙烧还原处理再生的,这一点则优于不能通过焙烧而再生的Pt-ReOx/C,具有一定的应用前景。
     (5)对基于甘油三酯的模型化合物的研究及基于木质纤维素模型化合物初探,表明Ti02载体均能用作在这两种不同体系(非水及水体系)中的载体,可见后续研究中Ti02载体在生物质基材料加氢脱氧反应体系中具有一定的研究价值。
The increasing of global energy demanding and the amount of CO2released become the two major problems in the worldwide. The limited stocks of fossil fuels required the governments to develop technology in finding new alternatives for fossil fuels. As we all know, biomass is a kind of widely restored and clean energy resource. It is considered as an effective alternative for fossil fuels, which makes biomass conversion technology a hot domain all over the world. Biomass-based energy contains both lignocelluloses-based and triglyceride-based materials. It has large amount of oxygen in it resulting in a low energy value. Before direct application in modern engines, biomass needs to be upgraded. One technology in upgrading biomass called "deoxygenation process" allows us remove the oxygen in biomass-based materials, resulting in liquid alkanes. These alkanes have around5-20carbon numbers which is similar to that of real diesel. Another technology called "carbon chain elongation process" converts the light carbon containing materials to high carbon chain-based diesel precursors. Through these two technology, biomass-based materials can be selectively converted to diesel-like hydrocarbons.
     In the present dissertation, we investigated selective hydrodeoxygenation of triglyceride-based and lignocelluloses-based model compounds over a series of palladium-based catalysts. Catalyst screening includes activity tests, characterizations and mechanism study. Some conclusions drawn from the research are provided as follows:
     (1) Metal oxides (MOx) supported Pd catalyst reveals high activity in conversion of stearic acid to liquid hydrocarbons. The deep hydrogenation of stearic acid was related to the acidity of the catalyst. Catalyst with higher amount of medium and strong acid site favors the hydrogenation of stearic acid, resulting in C18alkane yield. The experimental parameters study over Pd/TiO2reveals that hydrogen was required in efficient conversion of stearci acid to liquid alkanes and reducing the by-products.
     (2) HZSM-5supported Pd catalyst showed high activity in conversion of sunflower oil. However the yield of liquid long chain alkanes was low. The strong acid sites of HZSM-5was considered as active sites in cracking C-C bonds of the triglycerides, resulting in low yield of long chain alkanes but high yield of smaller liquid and gas products. The liquid products contain amount of aromatics produced from aromatization of triglycerides in the pore of HZSM-5. The comparison study of Pd/HZSM-5and Pd/Hbeta catalysts revealed that suitable amount of medium and strong acid sites and pores are more favorable in conversion of triglycerides to liquid diesel-like hydrocarbons.
     (3) Hydrodeoxygenation of sunflower oil was performed in an autoclave over5.0wt.%Pd/Al-SBA-15(Si/Al molar ratios from22to300) and Pd/HZSM-5(22). The effects of acidity of the catalysts and the reaction temperatures on the activity of the catalysts were investigated. Pd/Al-SBA-15(Si/Al=300) showed a high activity as74.4%liquid yield and72.9%C15-C18diesel-like hydrocarbons yield at250℃. At300℃, the higher activity over Pd/Al-SBA-15(Si/Al=50,100and300) catalysts compared with that over Pd/Al-SBA-15(22) and Pd/HZSM-5(22) indicated that strong acidity of the catalysts was not favorable for converting sunflower oil into C15-C18diesel-like hydrocarbons at a high temperature.
     (4) The hydrothermal stability of TiO2-and ZrO2-based materials was studied by exposing the samples to liquid water at523K for60h in a batch reactor. No phase transformation or loss in BET surface area was observed for TiO2-based materials that had initial BET surface area of less than52m2/g. In contrast, the BET surface area decreased and the primary crystallite size increased for all ZrO2-based materials tested. The BET surface area decreased and the primary crystallite size increased for high BET surface area TiO2(156m2/g) and ZrO2(246m2/g). Silica-containing TiO2only lost30%of its high BET surface area (from128to90m2/g). In contrast a material composed of silica-phosphate-ZrO2lost56-72%of its BET surface area. Using the crystalline TiO2as a support, we prepared and tested a Pt-ReOx/TiO2catalyst for hydrodeoxygenation of sorbitol. Pt-ReOx/TiO2was almost2times more active on a total Pt basis than Pt-ReOx/C catalyst. Between0.1and0.9wt%of coke formed on the catalyst surface after reaction depending on the reaction conditions. The coke could be removed and the catalyst activity completely regenerated by an oxidation-reduction treatment. The catalyst showed only minimal change in BET surface area, TiO2phase and TiO2crystallite size after more than163h of time on stream. The CO chemisorption of Pt—ReOx/TiO2increased after reaction which was probably due to migration of ReOx species away from the Pt during the reaction. The results shows that Pt-ReOx/TiO2catalyst can be regenerated though an calcination-reduction process while Pt-ReOx/C catalyst was hard to be regenerated.
     (5) Investigation on conversion of triglyceride-based and lignocelluloses-based model compounds showed that TiO2was suitable support in both nonaqueous and aqueous conditions. It's possible to design a process to convert triglyceride-based and lignocelluloses-based materials simultaneously over TiO2supported catalysts.
引文
1. Martinot, E.; Chaurey, A.; Lew, D.; Moreira, J. R.; Wamukonya, N. Renewable energy markets in developing countries. Annu Rev Energ Env 2002,27,309-348.
    2. Hall, D. O. Biomass energy in industrialised countries - A view of the future. Forest Ecol Manag 1997,91 (1),17-45.
    3. Omer, A. M. Biomass energy potential and future prospect in Sudan. Renew Sust Energ Rev 2005,9 (1),1-27.
    4. Cook, J.; Beyea, J. Bioenergy in the United States:progress and possibilities. Biomass Bioenerg 2000,18 (6),441-455.
    5. Hamakawa, Y. Solar Photo-Voltaic Program and Present Status of the Sunshine-Project in Japan. JElectrochem Soc 1980,127 (8), C368-C368.
    6. Geller, H.; Schaeffer, R.; Szklo, A.; Tolmasquim, M. Policies for advancing energy efficiency and renewable energy use in Brazil. Energ Policy 2004,32 (12), 1437-1450.
    7. Eswarlal, V. K.; Dey, P. K.; Budhwar, P.; Shankar, R. Analysis of interactions among variables of renewable energy projects: A case study on renewable energy project in India. JSci Ind Res India 2011,70 (8),713-720.
    8. Huber, G.W.;Iborr a, S.; Corma, A. Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering. Chem Rev 2006,106 (9),4044-4098.
    9. Zhou, C. H.; Xia, X.; Lin, C. X.; Tong, D. S.; Beltramini, J. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 2011,40 (11), 5588-5617.
    10. Bridgwater, A. V. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catal Today 1996,29 (1-4),285-295.
    11. Mohan, D.; Pittman, C. U.; Steele, P. H. Pyrolysis of wood/biomass for bio-oil:A critical review. Energ Fuel 2006,20 (3),848-889.
    12. Bridgwater, A. V.; Cottam, M. L. Opportunities for Bio mass Pyrolysis Liquids Production and Upgrading. Energ Fuel 1992,6 (2),113-120.
    13. Czernik, S.; Bridgwater, A. V. Overview of applications ofbiomass fast pyrolysis oil. Energ Fuel 2004,18 (2),590-598.
    14. Zaldivar, J.; Nielsen, J.; Olsson, L. Fuel ethanol production from lignocellulose:a challenge for metabolic engineering and process integration. Appl Microbiol Biot 2001,56(1-2),17-34.
    15. Lynd, L. R.; Cushman, J. H.; Nichols, R. J.; Wyman, C. E. Fuel Ethanol from Cellulosic Biomass. Science 1991,251 (4999),1318-1323.
    16. Carvalheiro, F.; Duarte, L. C.; Girio, F. M. Hemicellulose biorefineries:a review on biomass pretreatments. J Sci Ind Res India 2008,67(11),849-864.
    17. Hsu, T. A.; Ladisch, M. R.; Tsao, G. T. Alcohol from Cellulose. Chemtech 1980, 10 (5),315-319.
    18. Ayerbe, L.; Funes, E.; Tenorio, J. L.; Ventas, P.; Mellado, L. Euphorbia-Lathyris as an Energy Crop.2. Hydrocarbon and Sugar Productivity. Biomass 1984,5 (1), 37-42.
    19. Chareonlimkun, A.; Champreda, V.; Shotipruk, A.; Laosiripojana, N. Reactions of C-5 and C-6-sugars, cellulose, and lignocellulose under hot compressed water (HCW) in the presence of heterogeneous acid catalysts. Fuel 2010,89 (10), 2873-2880.
    20. Wang, K. Y.; Hawley, M. C.; Furney, T. D. Mechanism Study of Sugar and Sugar Alcohol Hydrogenolysis Using 1,3-Diol Model Compounds. Ind Eng Chem Res 1995,34 (11),3766-3770.
    21. Li, N.; Huber, G. W. Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2-Al2O3:Identification of reaction intermediates. J Catal 2010,270 (1),48-59.
    22. Vauhkonen, V.; Niemi, S.; Hiltunen, E.; Salminen, H. J.; Pasila, A. The first generation biodiesel:the effects of raw material on physical properties, oxidation stability and emissions.2009 International Conference on Clean Electrical Power (Iccep 2009), Vols 1 and 2 2009,117-123.
    23. Mikulec, J.; Cvengros, J.; Jorikova, L.; Banic, M.; Kleinova, A. Second generation diesel fuel from renewable sources. J Clean Prod 2010,18 (9),917-926.
    24. Mikulec, J.; Cvengros, J.; Jorikova, L.; Banic, M.; Kleinova, A. Diesel production technology from renewable sources - second generation biofuels. Chem Engineer Trans 2009,18,475-480.
    25. Duan, J. Z.; Han, J. X.; Sun, H.; Chen, P.; Lou, H.; Zheng, X. M. Diesel-like hydrocarbons obtained by direct hydrodeoxygenation of sunflower oil over Pd/Al-SBA-15 catalysts. Catal Commun 2012,17,76-80.
    26. Han, J. X.; Duan, J. Z.; Chen, P.; Lou, H.; Zheng, X. M.; Hong, H. P. Carbon-Supported Molybdenum Carbide Catalysts for the Conversion of Vegetable Oils. Chemsuschem 2012,5 (4),727-733.
    27. Han, J. X.; Duan, J. Z.; Chen, P.; Lou, H.; Zheng, X. M. Molybdenum Carbide-Catalyzed Conversion of Renewable Oils into Diesel-like Hydrocarbons. Adv Synth Catal 2011,353(14-15),2577-2583.
    28. Han, J. X.; Duan, J. Z.; Chen, P.; Lou, H.; Zheng, X. M.; Hong, H. P. Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils. Green Chem 2011, 13 (9),2561-2568.
    29. Martens, J. A.; Souverijns, W.; Verrelst, W.; Parton, R.; Froment, G. F.; Jacobs, P. A. Selective Isomerization of Hydrocarbon Chains on External Surfaces of Zeolite Crystals. Angewandte Chemie-International Edition in English 1995,34 (22), 2528-2530.
    30. Busto, M.; Vera, C. R.; Grau, J. M. Optimal process conditions for the isomerization-cracking of long-chain n-paraffins to high octane isomerizate gasoline over Pt/SO42--ZrO2 catalysts. Fuel Process Technol 2011,92 (9),1675-1684.
    31. Schlaf, M. Selective deoxygenation of sugar polyols to alpha,omega-diols and other oxygen content reduced materials - a new challenge to homogeneous ionic hydrogenation and hydrogenolysis catalysis. Dalton T2006, (39),4645-4653.
    32. Sakai, N.; Usui, Y.; Moriya, T.; Ikceda, R.; Konakahara, T. One-Pot Sequential Synthesis of Ethers from an Aliphatic Carboxylic Acid and an Alcohol by Indium-Catalyzed Deoxygenation of an Ester. Eur J Org Chem 2012, (24), 4603-4608.
    33. Hollak, S. A. W.; Bitter, J. H.; van Haveren, J.; de Jong, K. P.; van Es, D. S. Selective deoxygenation of stearic acid via an anhydride pathway. Rsc Adv 2012,2 (25),9387-9391.
    34. Simakova, I.; Simakova, O.; Maki-Arvela, P.; Simakov, A.; Estrada, M.; Murzin, D. Y. Deoxygenation of palmitic and stearic acid over supported Pd catalysts:Effect of metal dispersion. Appl Catal a-Gen 2009,355 (1-2),100-108.
    35. Viola, E.; Blasi, A.; Valerio, V.; Guidi, I.; Zimbardi, F.; Bracio, G.; Giordano, G. Biodiesel from fried vegetable oils via transesterification by heterogeneous catalysis. Catal Today 2012,179 (1),185-190.
    36. Demirbas, A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog Energ Combust 2005,31 (5-6),466-487.
    37. Demirbas, A. Biodiesel from vegetable oils via transesterification in supercritical methanol. Energ Convers Manage 2002,43 (17),2349-2356.
    38. Idem, R. O.; Katikaneni, S. P. R.; Bakhshi, N. N. Catalytic conversion of canola oil to fuels and chemicals:Roles of catalyst acidity, basicity and shape selectivity on product distribution. Fuel Process Technol 1997,51 (1-2),101-125.
    39. Katikaneni, S. P. R.; Adjaye, J. D.; Bakhshi, N. N. Catalytic Conversion of Canola Oil to Fuels and Chemicals over Various Cracking Catalysts. Can J Chem Eng 1995,73 (4),484-497.
    40. Maher, K. D.; Kirkwood, K. M.; Gray, M. R.; Bressler, D. C. Pyrolytic decarboxylation and cracking of stearic acid. Ind Eng Chem Res 2008,47 (15), 5328-5336.
    41. Snare, M.; Kubickova, I.; Maki-Arvela, P.; Eranen, K.; Murzin, D. Y. Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind Eng Chem Res 2006,45 (16),5708-5715.
    42. Hasan, M. A.; Zaki, M. I.; Pasupulety, L. Oxide-catalyzed conversion of acetic acid into acetone:an FTIR spectroscopic investigation. Appl Catal a-Gen 2003,243 (1),81-92.
    43. Hendren, T. S.; Dooley, K. M. Kinetics of catalyzed acid/acid and acid/aldehyde condensation reactions to non-symmetric ketones. Catal Today 2003,85 (2-4), 333-351.
    44. Dooley, K. M.; Bhat, A. K.; Plaisance, C. P.; Roy, A. D. Ketones from acid condensation using supported CeO2 catalysts:Effect of additives. Appl Catal α-Gen 2007,320,122-133.
    45. Do, P. T.; Chiappero, M.; Lobban, L. L.; Resasco, D. E. Catalytic Deoxygenation of Methyl-Octanoate and Methyl-Stearate on Pt/Al2O3. Catal Lett 2009,130 (1-2), 9-18.
    46. Degnan, T. F. Applications of zeolites in petroleum refining. Top Catal 2000,13 (4),349-356.
    47. Dejaifve, P.; Vedrine, J. C.; Bolis, V.; Derouane, E. G. Reaction Pathways for the Conversion of Methanol and Olefins on H-Zsm-5 Zeolite. J Catal 1980,63 (2), 331-345.
    48. Lestari, S.; Maki-Arvela, P.; Eranen, K.; Beltramini, J.; Lu, G. Q. M.; Murzin, D. Y. Diesel-like Hydrocarbons from Catalytic Deoxygenation of Stearic Acid over Supported Pd Nanoparticles on SBA-15 Catalysts. Catal Lett 2010,134 (3-4), 250-257.
    49. Kugler, E. L.; Gardner, T. H.; Panpranot, J. Hydro thermal deactivation kinetics of FCC catalysts containing usy zeolite. Abstr Pap Am Chem S 1999,218, U233-U233.
    50. Erofeev, V. I.; Riabov, I. V.; Bolshakov, G. F. The Influence of Coke Formation and Hydrothermal Treatment on the Deactivation of Zeolite Catalysts in the Conversion of Methanol. Dokl Akad Nauk Sssr+ 1987,293 (6),1400-1403.
    51. Vennestrom, P. N. R.; Janssens, T. V. W.; Kustov, A.; Grill, M.; Puig-Molina, A.; Lundegaard, L. F.; Tiruvalam, R. R.; Concepcion, P.; Corma, A. Influence of lattice stability on hydrothermal deactivation of Cu-ZSM-5 and Cu-IM-5 zeolites for selective catalytic reduction ofNOx by NH3. J Catal 2014,309,477-490.
    52. Nguyen, T. H.; Ngo, P. T.; Tran, T. V.; Nguyen, S.; Vu, D. M.; Ha, Q. L. M.; Dao, X. T. T.; Dang, T. T. Effect of hydrothermal conditions on the catalytic deactivation of a fluid cracking catalyst. React Kinet Mech Cat 2013,109 (2), 563-574.
    53. Fu, J.; Lu, X. Y.; Savage, P. E. Catalytic hydrothermal deoxygenation of palmitic acid. Energ Environ Sci 2010,3 (3),311-317.
    54. Sun, H.; Ding, Y. Q.; Duan, J. Z.; Zhang, Q. J.; Wang, Z. Y.; Lou, H.; Zheng, X. M. Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst Bioresource Technol 2010,101 (3),953-958.
    55. Ding, Y. Q.; Sun, H.; Duan, J. Z.; Chen, P.; Lou, H.; Zheng, X. M. Mesoporous Li/ZrO2 as a solid base catalyst for biodiesel production from transesterification of soybean oil with methanol. Catal Commun 2011,12 (7),606-610.
    56. Sun, H.; Han, J. X.; Ding, Y. Q.; Li, W.; Duan, J. Z.; Chen, P.; Lou, H.; Zheng, X. M. One-pot synthesized mesoporous Ca/SBA-15 solid base for transesterification of sunflower oil with methanol. Appl Catal a-Gen 2010,390 (1-2),26-34.
    57. Sun, H.; Duan, J. Z.; Chen, P.; Lou, H.; Zheng, X. M. Room temperature transesterification of soybean oil to biodiesel catalyzed by rod-like CaxSiOx+2 solid base. Catal Commun 2011,12 (11),1005-1008.
    58. Hartyanszky, I.; Kalasz, H.; Adeghate, E.; Gulyas, Z.; Hasan, M. Y.; Tekes, K.; Adem, A.; Sotonyi, P. Active Metabolites Resulting from Decarboxylation, Reduction and Ester Hydrolysis of Parent Drugs. Curr Drug Metab 2012,13 (6),835-862.
    59. Anderson, T. J.; Scott, J. R.; Millett, F.; Durham, B. Decarboxylation of 2,2 '-bipyridinyl-4,4'-dicarboxylic acid diethyl ester during microwave synthesis of the corresponding trichelated ruthenium complex. Inorg Chem 2006,45 (10),3843-3845.
    60. Li, J.; Brill, T. B. Spectroscopy of hydrothermal reactions 16:Kinetics of decarboxylation/hydrolysis of methyl propiolate ester and decarboxylation of propiolic acid at 150-210 degrees C and 275 bar. J Phys Chem A 2001,105 (25), 6171-6175.
    61. Vanheyningen, E. The Acyloin Condensation.2. Free Radical Formation Accompanying the Decarbonylation of an Aliphatic Ester by Sodium. JAm Chem Soc 1955,77 (15),4016-4019.
    62. Graham, P. M.; Mocella, C. J.; Sabat, M.; Harman, W. D. Dihapto-coordinated amide, ester, and aldehyde complexes and their role in decarbonylation. Organometallics 2005,24 (5),911-919.
    63. Lu, Y. Q.; Li, X. Y.; Wang, L.; Sun, H. J. C-O bond activation and subsequent decarbonylation of ester promoted by Fe(PMe3)(4). Inorg Chem Commun 2014,41, 51-53.
    64. Qin, Y.; Chen, P.; Duan, J. Z.; Han, J. X.; Lou, H.; Zheng, X. M.; Hong, H. P. Carbon nanofibers supported molybdenum carbide catalysts for hydrodeoxygenation of vegetable oils. RscAdv 2013,3 (38),17485-17491.
    65. Senol, O. I.; Viljava, T. R.; Krause, A. O. I. Hydrodeoxygenation of methyl esters on sulphided NMo/gamma-Al2O3 and CoMo/gamma-Al2O3 catalysts. Catal Today 2005,100 (3-4),331-335.
    66. Turpeinen, E. M.; Sapei, E.; Uusi-Kyyny, P.; Keskinen, K. I.; Krause, O. A. I. Finding a suitable thermodynamic model and phase equilibria for hydrodeoxygenation reactions of methyl heptanoate. Fuel 2011,90 (11),3315-3322.
    67. Kubickova, I.; Snare, M.; Eranen, K.; Maki-Arvela, P.; Murzin, D. Y. Hydrocarbons for diesel fuel via decarboxylation of vegetable oils. Catal Today 2005, 106 (1-4),197-200.
    68. Lobban, C. S.; Pennesi, C. Two new Mastogloia species (Bacillariophyceae), M. parlibellioides and M. lyra, from coral reefs in Guam, Western Pacific. Bot Mar 2014, 57(1),41-54.
    69. Rozmyslowicz, B.; Maki-Arvela, P.; Tokarev, A.; Leino, A. R; Eranen, K.; Murzin, D. Y. Influence of Hydrogen in Catalytic Deoxygenation of Fatty Acids and Their Derivatives over Pd/C. Ind Eng Chem Res 2012,51 (26),8922-8927.
    70. Han, J. X.; Sun, H.; Ding, Y. Q.; Lou, H.; Zheng, X. M. Palladium-catalyzed decarboxylation of higher aliphatic esters:Towards a new protocol to the second generation biodiesel production. Green Chem 2010,12 (3),463-467.
    71. Han, J. X.; Sun, H.; Duan, J. Z.; Ding, Y. Q.; Lou, H.; Zheng, X. M. Palladium-Catalyzed Transformation of Renewable Oils into Diesel Components. Adv Synth Catal 2010,352 (11-12),1805-1809.
    72. Murata, K.; Liu, Y. Y.; Inaba, M.; Takahara, I. Production of Synthetic Diesel by Hydrotreatment of Jatropha Oils Using Pt-Re/H-ZSM-5 Catalyst Energ Fuel 2010, 24,2404-2409.
    73. Morgan, T.; Grubb, D.; Santillan-Jimenez, E.; Crocker, M. Conversion of Triglycerides to Hydrocarbons Over Supported Metal Catalysts. Top Catal 2010,53 (11-12),820-829.
    74. Onyestyak, G.; Harnos, S.; Szegedi, A.; Kallo, D. Sunflower oil to green diesel over Raney-type Ni-catalyst. Fuel 2012,102,282-288.
    75. Madsen, A. T.; Ahmed, E.; Christensen, C. H.; Fehrmann, R.; Riisager, A. Hydrodeoxygenation of waste fat for diesel production:Study on model feed with Pt/alumina catalyst Fuel 2011,90 (11),3433-3438.
    76. Peng, B. X.; Yao, Y.; Zhao, C.; Lercher, J. A. Towards Quantitative Conversion of Microalgae Oil to Diesel-Range Alkanes with Bifunctional Catalysts. Angew Chem Int Edit 2012,51 (9),2072-2075.
    77. Peng, B. X.; Yuan, X. G.; Zhao, C.; Lercher, J. A. Stabilizing Catalytic Pathways via Redundancy:Selective Reduction of Microalgae Oil to Alkanes. J Am Chem Soc 2012,134 (22),9400-9405.
    78. Santillan-Jimenez, E.; Morgan, T.; Lacny, J.; Mohapatra, S.; Crocker, M. Catalytic deoxygenation of triglycerides and fatty acids to hydrocarbons over carbon-supported nickel. Fuel2013,103,1010-1017.
    79. Morgan, T.; Santillan-Jimenez, E.; Harman-Ware, A. E.; Ji, Y. Y.; Grubb, D.; Crocker, M. Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts. Chem Eng J 2012,189,346-355.
    80. Yakovlev, V. A.; Khromova, S. A.; Sherstyuk, O. V.; Dundich, V. O.; Ermakov, D. Y.; Novopashina, V. M.; Lebedev, M. Y.; Bulavchenko, O.; Parmon, V. N. Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel. Catal Today 2009,144 (3-4),362-366.
    81. Song, W. J.; Zhao, C.; Lercher, J. A. Importance of Size and Distribution of Ni Nanoparticles for the Hydrodeoxygenation of Microalgae Oil. Chem-Eur J 2013,19 (30),9833-9842.
    82. Levy, R. B.; Boudart, M. Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis. Science 1973,181 (4099),547-549.
    83. Hwu, H. H.; Chen, J. G. G. Surface chemistry of transition metal carbides. Chem Rev 2005,105(1),185-212.
    84. Bouchy, C.; Pham-Huu, C.; Heinrich, B.; Chaumont, C.; Ledoux, M. J. Microstructure and characterization of a highly selective catalyst for the isomerization of alkanes:A molybdenum oxycarbide. J Catal 2000,190 (1),92-103.
    85. Biscardi, J. A.; Meitzner, G. D.; Iglesia, E. Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts.J Catal 1998,179 (1), 192-202.
    86. Biscardi, J. A.; Iglesia, E. Non-oxidative reactions of propane on Zn/Na-ZSM5. Phys Chem Chem Phys 1999,1 (24),5753-5759.
    87. Waku, T.; Biscardi, J. A.; Iglesia, E. Active, selective, and stable Pt/Na-[Fe]ZSM5 catalyst for the dehydrogenation of light alkanes. Chem Commun 2003, (14),1764-1765.
    88. Cortright, R. D.; Davda, R. R.; Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002,418 (6901),964-967.
    89. Davda, R. R.; Shabaker, J. W.; Huber, G. W.; Cortright, R. D.; Dumesic, J. A. Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts. Appl Catal B-Environ 2003,43 (1),13-26.
    90. Shabaker, J. W.; Davda, R. R.; Huber, G. W.; Cortright, R. D.; Dumesic, J. A. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts. J Catal 2003,215 (2),344-352.
    91. Huber, G. W.; Cortright, R. D.; Dumesic, J. A. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angew Chem Int Edit 2004, 43(12),1549-1551.
    92. Moreno, B. M.; Li, N.; Lee, J.; Huber, G. W.; Klein, M. T. Modeling aqueous-phase hydrodeoxygenation of sorbitol over Pt/SiO2-Al2O3. Rsc Adv 2013,3 (45),23769-23784.
    93. Li, N.; Tompsett, G. A.; Huber, G. W. Renewable High-Octane Gasoline by Aqueous-Phase Hydrodeoxygenation of C-5 and C-6 Carbohydrates over Pt/Zirconium Phosphate Catalysts. Chemsuschem 2010,3 (10),1154-1157.
    94. Kim, Y. T.; Dumesic, J. A.; Huber, G. W. Aqueous-phase hydrodeoxygenation of sorbitol:A comparative study of Pt/Zr phosphate and Pt-ReOx/C. J Catal 2013,304, 72-85.
    95. Kunkes, E. L.; Simonetti, D. A.; West, R. M.; Serrano-Ruiz, J. C.; Gartner, C. A.; Dumesic, J. A. Catalytic conversion of biomass to mono functional hydrocarbons and targeted liquid-fuel classes. Science 2008,322 (5900),417-421.
    96. Pieck, C. L.; Marecot, P.; Barbier, J. Preparation of Pt-Re/Al2O3 catalysts by surface redox reactions.2. Influence of the acid medium on Re deposition and Pt-Re interaction. Appl Catal α-Gen 1996,143 (2),283-298.
    97. Pieck, C. L.; Marecot, P.; Barbier, J. Preparation of Pt-Re/Al2O3 catalysts by surface redox reactions.2. Influence of the acid medium on Re deposition and Pt-Re interaction. Appl Catal α-Gen 1996,141 (1-2),229-244.
    98. Pieck, C. L.; Marecot, P.; Barbier, J. Preparation of Pt-Re/A12O3 catalysts by surface redox reactions.1. Influence of operating variables on Re deposit in the presence of hydrochloric acid. Appl Catal a-Gen 1996,134 (2),319-329.
    99. Santos, M. C. S.; Grau, J. M.; Pieck, C. L.; Parera, J. M.; Fierro, J. L. G.; Figoli, N. S.; Rangel, M. C. The effect of the addition of Re and Ge on the properties of Pt/A12O3. Catal Lett 2005,103 (3-4),229-237.
    100. Kirilin, A. V.; Tokarev, A. V.; Manyar, H.; Hardacre, C.; Salmi, T.; Mikkola, J. P.; Murzin, D. Y. Aqueous phase reforming of xylitol over Pt-Re bimetallic catalyst: Effect of the Re addition. Catal Today 2014,223,97-107.
    101. Duan, J. Z; Kim, Y. T.; Lou, H.; Huber, G. W. Hydrothermally stable regenerable catalytic supports for aqueous-phase conversion of biomass. Catal Today (Accepted).
    102. Mascal, M.; Nikitin, E. B. Direct, high-yield conversion of cellulose into biofuel. Angew Chem Int Edit 2008,47 (41),7924-7926.
    103. Roman-Leshkov, Y.; Barrett, C. J.; Liu, Z. Y.; Dumesic, J. A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 2007,447 (7147),982-U5.
    104. Barrett, C. J.; Chheda, J. N.; Huber, G. W.; Dumesic, J. A. Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Appl Catal B-Environ 2006,66 (1-2),111-118.
    105. Chheda, J. N.; Barrett, C. J.; Huber, G. W.; Dumesic, J. A. Production of large, water-soluble intermediates from carbohydrate-derived compounds by sequential condensation/hydrogenation. Abstr Pap Am Chem S 2006,231.
    106. Huber, G. W.; Chheda, J. N.; Barrett, C. J.; Dumesic, J. A. Renewable liquid alkanes from aqueous-phase processing of biomass-derived carbohydrates. Abstr Pap Am Chem S 2006,231.
    107. West, R M.; Liu, Z. Y.; Peter, M.; Gartner, C. A.; Dumesic, J. A. Carbon-carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a bipasic system. Mol Catal a-Chem 2008,296 (1-2),18-27.
    108. Liu, H. H.; Xu, W. J.; Liu, X. H.; Guo, Y.; Guo, Y. L.; Lu, G. Z.; Wang, Y. Q. Aldol condensation of furfural and acetone on layered double hydroxides. Kinet Catal+ 2010,51(1),75-80.
    109. Shen, W. Q.; Tompsett, G. A.; Hammond, K. D.; Xing, R.; Dogan, F.; Grey, C. P.; Conner, W. C.; Auerbach, S. M.; Huber, G. W. Liquid phase aldol condensation reactions with MgO-ZrO2 and shape-selective nitrogen-substituted NaY. Appl Catal α-Gen 2011,392 (1-2),57-68.
    110. Kusema, B. T.; Faba, L.; Kumar, N.; Maki-Arvela, P.; Diaz, E.; Ordonez, S.; Salmi, T.; Murzin, D. Y. Hydrolytic hydrogenation of hemicellulose over metal modified mesoporous catalyst. Catal Today 2012,196 (1),26-33.
    111. Faba, L.; Diaz, E.; Ordonez, S. Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides. Appl Catal B-Environ 2012,113,201-211.
    112. Faba, L.; Diaz, E.; Ordonez, S. Improvement on the Catalytic Performance of MgZr Mixed Oxides for FurfuralAcetone Aldol Condensation by Supporting on Mesoporous Carbons. Chemsuschem 2013,6 (3),463-473.
    113. Huber, G. W.; Chheda, J. N.; Barrett, C. J.; Dumesic, J. A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 2005,308 (5727),1446-1450.
    114. West, R. M.; Liu, Z. Y.; Peter, M.; Dumesic, J. A. Liquid Alkanes with targeted molecular weights from biomass-derived carbohydrates. Chemsuschem 2008, 1(5),417-424.
    115. Chatterjee, M.; Matsushima, K.; Ikushima, Y.; Sato, M.; Yokoyama, T.; Kawanami, H.; Suzuki, T. Production of linear alkane via hydrogenative ring opening of a furfural-derived compound in supercritical carbon dioxide. Green Chem 2010,12 (5),779-782.
    116. Climent, M. J.; Corma, A.; Iborra, S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem 2014,16 (2), 516-547.
    117. Corma, A.; de la Torre, O.; Renz, M. Production of high quality diesel from cellulose and hemicellulose by the Sylvan process:catalysts and process variables. Energ Environ Sci 2012,5 (4),6328-6344.
    118. Corma, A.; de la Torre, O.; Renz, M.; Villandier, N. Production of High-Quality Diesel from Biomass Waste Products. Angew Chem Int Edit 2011,50 (10),2375-2378.
    119. Corma, A.; de la Torre, O.;Renz, M. High-Quality Diesel from Hexose- and Pentose-Derived Biomass Platform Molecules. Chemsuschem 2011,4 (11), 1574-1577.
    1. Liu, D.; Choi, W. C.; Lee, C. W.; Kang,N. Y.; Lee, Y. J.; Shin, C. H.; Park, Y. K. Steaming and washing effect of P/HZSM-5 in catalytic cracking of naphtha. Catal Today 2011,164(1),154-157.
    2. Yue, Y. H.; Gedeon, A.; Bonardet, J. L.; Melosh, N.; D'Espinose, J. B.; Fraissard, J. Direct synthesis of A1SBA mesoporous molecular sieves:characterization and catalytic activities. Chem Commun 1999, (19),1967-1968.
    3. Kamiya, Y.; Sakata, S.; Yoshinaga, Y.; Ohnishi, R.; Okuhara, T. Zirconium phosphate with a high surface area as a water-tolerant solid acid. Catal Lett 2004,94 (1-2),45-47.
    4. Nakagawa, Y.; Tomishige, K. Total hydrogenation of furan derivatives over silica-supported Ni-Pd alloy catalyst. Catal Commun 2010,12 (3),154-156.
    5. Imai, H.; Morimoto, H.; Tominaga, A.; Hirashima, H. Structural changes in sol-gel derived SiO2 and TiO3 films by exposure to water vapor. J Sol-Gel Sci Techn 1997,10(1),45-54.
    6. Ravenelle, R. M.; Copelnd, J. R.; Kim, W. G.; Crittenden, J. C.; Sievers, C. Structural Changes of gamma-A12O3-Supported Catalysts in Hot Liquid Water. Acs Catal 2011,1(5),552-561.
    7. Ravenelle, R. M.; Copeland, J. R.; Van Pelt, A. H.; Crittenden, J. C.; Sievers, C. Stability ofPt/gamma-A12O3 Catalysts in Model Biomass Solutions. Top Catal 2012, 55(3-4),162-174.
    8. Vilcocq, L.; Cabiac, A.; Especel, C.; Lacombe, S.; Duprez, D. Study of the stability of Pt/SiO2-A12O3 catalysts in aqueous medium:Application for sorbitol transformation. Catal Commun 2011,15 (1),18-22.
    1. Maki-Arvela, P.; Kubickova, I.; Snare, M.; Eranen, K.; Murzin, D. Y. Catalytic deoxygenation of fatty acids and their derivatives. Energ Fuel 2007,21 (1),30-41.
    2. Snare, M.; Kubickova, I.; Maki-Arvela, P.; Eranen, K.; Murzin, D. Y. Continuous deoxygenation of ethyl stearate:A model reaction for production of diesel fuel hydrocarbons. Chem Indust 2007,115,415-425.
    3. Maki-Arvela, P.; Snare, M.; Eranen, K.; Myllyoja, J.; Murzin, D. Y. Continuous decarboxylation of lauric acid over Pd/C catalyst. Fuel 2008,87 (17-18),3543-3549.
    4. Han, J. X.; Sun, H.; Ding, Y. Q.; Lou, H.; Zheng, X. M. Palladium-catalyzed decarboxylation of higher aliphatic esters:Towards a new protocol to the second generation biodiesel production. Green Chem 2010,12 (3),463-467.
    5. Peng, B. X.; Yao, Y.; Zhao, C.; Lercher, J. A. Towards Quantitative Conversion of Microalgae Oil to Diesel-Range Alkanes with Bifunctional Catalysts. Angew Chem Int Edit 2012,51 (9),2072-2075.
    6. Miller, J. T.; Meyers, B. L.; Barr, M. K.; Modica, F. S.; Koningsberger, D. C. Hydrogen temperature-programmed desorptions in platinum catalysts:Decomposition and isotopic exchange by spillover hydrogen of chemisorbed ammonia. J Catal 1996, 159(1),41-49.
    7. Miller, J. T.; Meyers, B. L.; Modica, F. S.; Lane, G. S.; Vaarkamp, M.; Koningsberger, D. C. Hydrogen Temperature-Programmed Desorption (H-2 Tpd) of Supported Platinum Catalysts. JCatal 1993,143 (2),395-408.
    8. Han, J. X.; Duan, J. Z.; Chen, P.; Lou, H.; Zheng, X. M. Molybdenum Carbide-Catalyzed Conversion of Renewable Oils into Diesel-like Hydrocarbons. Adv Synth Catal 2011,353 (14-15),2577-2583.
    9. Ramaker, D. E.; de Graaf, J.; van Veen, J. A. R.; Koningsberger, D. C. Nature of the metal-support interaction in supported Pt catalysts:Shift in Pt valence orbital energy and charge rearrangement. J Catal2001,203 (1),7-17.
    10. Roland, U.; Braunschweig, T.; Roessner, F. On the nature of spilt-over hydrogen. J Mol Catal a-Chem 1997,127(1-3),61-84.
    11. Huizinga, T.; Prins, R. Behavior of Ti-3+ Centers in the Low-Temperature and High-Temperature Reduction of Pt-Tio2, Studied by Electron-Spin-Resonance. JPhys Chem-Us 1981,85 (15),2156-2158.
    12. Sermon, P. A.; Bond, G. C. Hydrogen Spillover. Catal Rev 1973,8 (2),211-239.
    13. Prins, R. Hydrogen Spillover. Facts and Fiction. Chem Rev 2012,112 (5), 2714-2738.
    14. Handjani, S.; Marceau, E.; Blanchard, J.; Krafft, J. M.; Che, M.; Maki-Arvela, P.; Kumar, N.; Warna, J.; Murzin, D. Y. Influence of the support composition and acidity on the catalytic properties of mesoporous SBA-15, Al-SBA-15, and A12O3-supported Pt catalysts for cinnamaldehyde hydrogenation JCatal 2011,282 (1),228-236.
    15. Stakheev, A. Y.; Zhang, Y.; Ivanov, A. V.; Baeva, G. N.; Ramaker, D. E.; Koningsberger, D. C. Separation of geometric and electronic effects of the support on the CO and H-2 chemisorption properties of supported Pt particles:The effect of ionicity in modified alumina supports. JPhys Chem C 2007,111 (10),3938-3948.
    16. Wehner, P. S.; Gustafson, B. L. Catalytic-Hydrogenation of Esters over Pd/Zno. J Catal 1992,135 (2),420-426.
    17. Semagina, N.; Grasemann, M.; Xanthopoulos, N.; Renken, A.; Kiwi-Minsker, L. Structured catalyst of Pd/ZnO on sintered metal fibers for 2-methyl-3-butyn-2-ol selective hydrogenation. J Catal 2007,251 (1),213-222.
    18. Hollak, S. A. W.; Bitter, J. H.; van Haveren, J.; de Jong, K. P.; van Es, D. S. Selective deoxygenation of stearic acid via an anhydride pathway. Rsc Adv 2012,2 (25),9387-9391.
    19. Simakova, I.; Rozmyslowicz, B.; Simakova, O.; Maki-Arvela, P.; Simakov, A.; Murzin, D. Y. Catalytic Deoxygenation of C18 Fatty Acids Over Mesoporous Pd/C Catalyst for Synthesis of Biofuels. Top Catal 2011,54 (8-9),460-466.
    20. Maki-Arvela, P.; Rozmyslowicz, B.; Lestari, S.; Simakova, O.; Eranen, K.; Salmi, T.; Murzin, D. Y. Catalytic Deoxygenation of Tall Oil Fatty Acid over Palladium Supported on Mesoporous Carbon. Energ Fuel 2011,25 (7),2815-2825.
    21. Hasan, M. A.; Zaki, M. I.; Pasupulety, L. Oxide-catalyzed conversion of acetic acid into acetone:an FTIR spectroscopic investigation. Appl Catal a-Gen 2003,243 (1),81-92.
    22. Hendren, T. S.; Dooley, K. M. Kinetics of catalyzed acid/acid and acid/aldehyde condensation reactions to non-symmetric ketones. Catal Today 2003,85 (2-4), 333-351.
    23. Dooley, K. M.; Bhat, A. K.; Plaisance, C. P.; Roy, A. D. Ketones from acid condensation using supported CeO2 catalysts:Effect of additives. Appl Catal a-Gen 2007,320,122-133.
    1. Zhang, W. J.; Hu, M. L.; He, H. B. HZSM-5 Zeolite Modified by Oxalic Acid and Photocatalytic Activity of Supported TiO2. Frontiers of Advanced Materials and Engineering Technology, Pts 1-3 2012,430-432,1044-1047.
    2. Artetxe, M.; Lopez, G.; Amutio, M.; Elordi, G.; Bilbao, J.; Olazar, M. Cracking of High Density Polyethylene Pyrolysis Waxes on HZSM-5 Catalysts of Different Acidity. Ind Eng Chem Res 2013,52 (31),10637-10645.
    3. Yue, Y. H.; Tang, Y.; Gao, Z. Studies on the control of pore-opening size of HZSM-5 and its shape-selective adsorption. Acta Chim Sinica 1996,54 (3),248-252.
    4. Dong, F.; Wang, G. R.; Wang, X. S. Fine control of HZSM-5's pore-opening size by a new CVD method. Chinese J Chem Eng 1995,3 (4),208-214.
    5. Weitkamp, J.; Jacobs, P. A.; Martens, J. A. Isomerization and Hydrocracking of C-9 through C-16 N-Alkcanes on Pt/Hzsm-5 Zeolite. Appl Catal 1983,8 (1),123-141.
    6. Mo, N.; Savage, P. E. Hydrothermal Catalytic Cracking of Fatty Acids with HZSM-5. Acs Sustain Chem Eng 2014,2 (1),88-94.
    7. Castano, P.; Arandes, J. M.; Pawelec, B.; Azar, M.; Bilbao, J. Kinetic modeling for assessing the product distribution in toluene hydrocracking on a Pt/HZSM-5 catalyst. Ind Eng Chem Res 2008,47 (4),1043-1050.
    8. Martens, J. A; Tieln, M.; Jacobs, P. A. Hydro isomerization and Hydrocracking of Methylnonanes over Pt/Hzsm-5. Acta Chim Hung 1985,119 (2-3),203-212.
    9. Masuda, T.; Mizota, H.; Hashimoto, K. Catalytic Activity and Shape Selectivity of Methylation of Toluene over Hzsm-5 Zeolite in an Integral Reactor. Kagaku Kogaku Ronbun 1994,20 (2),170-177.
    10. Hashimoto, K.; Masuda, T.; Hariguchi, Y. Analysis of Shape Selectivity of Methylation in Toluene over Hzsm-5 Zeolites - Contribution of Outer and Inner Surfaces of the Crystallite. Nippon Kagaku Kaishi 1989, (3),575-582.
    11. Liu, D.; Yuan, P.; Liu, H. M.; Cai, J. G.; Tan, D. Y.; He, H. P.; Zhu, J. X.; Chen, T. H. Quantitative characterization of the solid acidity of montmorillonite using combined FTTR and TPD based on the NH3 adsorption system. Appl Clay Sci 2013, 80-81,407-412.
    12. Zhang, W. G.; Yu, D. H.; Ji, X. J.; Huang, H. Efficient dehydration of bio-based 2,3-butanediol to butanone over boric acid modified HZSM-5 zeolites. Green Chem 2012,14 (12),3441-3450.
    13. Hunger, B.; Hoffmann, J. Kinetic-Analysis of Nh3 Temperature Programmed Desorption(Tpd)on a Hzsm-5 Zeolite. Thermochim Acta 1986,106,133-140.
    14. Maldonado-Hodar, F. J.; Perez-Cadenas, A. F.; Fierro, J. L. G.; Moreno-Castilla, C. Influence of carbon-chlorine surface complexes on the properties of tungsten oxide supported on activated carbons.2. Surface acidity and skeletal isomerization of 1-butene. J Phys Chem B 2003,107 (21),5003-5007.
    15. Hollak, S. A. W.; Bitter, J. H.; van Haveren, J.; de Jong, K. P.; van Es, D. S. Selective deoxygenation of stearic acid via an anhydride pathway. Rsc Adv 2012,2 (25),9387-9391.
    16. Simako va, I.; Simako va, O.; Maki-Arvela, P.; Simakov, A.; Estrada, M.; Murzin, D. Y. Deoxygenation of palmitic and stearic acid over supported Pd catalysts:Effect of metal dispersion. Appl Catal a-Gen 2009,355 (1-2),100-108.
    17. Weisz, P. B.; Haag, W. O.; Rodewald, P. G. Catalytic Production of High-Grade Fuel (Gasoline) from Biomass Compounds by Shape-Selective Catalysis. Science 1979,206(4414),57-58.
    1. Tiwari, R.; Rana, B. S.; Kumar, R.; Verma, D.; Kumar, R.; Joshi, R. K.; Garg, M. O.; Sinha, A. K. Hydrotreating and hydrocracking catalysts for processing of waste soya-oil and refinery-oil mixtures. Catal Commun 2011,12 (6),559-562.
    2. Maki-Arvela, P.; Rozmyslowicz, B.; Lestari, S.; Simakova, O.; Eranen, K.; Salmi, T.; Murzin, D. Y. Catalytic Deoxygenation of Tall Oil Fatty Acid over Palladium Supported on Mesoporous Carbon. Energ Fuel 2011,25 (7),2815-2825.
    3. Lestari, S.; Maki-Arvela, P.; Eranen, K.; Beltramini, J.; Lu, G. Q. M.; Murzin, D. Y. Diesel-like Hydrocarbons from Catalytic Deoxygenation of Stearic Acid over Supported Pd Nanoparticles on SBA-15 Catalysts. Catal Lett 2010,134 (3-4), 250-257.
    4. Chen, Y. G.; Yang, F.; Wu, L. B.; Wang, C.; Yang, Z. Y. Co-deoxy-liquefaction of bio mass and vegetable oil to hydrocarbon oil:Influence of temperature, residence time, and catalyst. Bioresource Technol 2011,102 (2),1933-1941.
    5. Nie, C.; Huang, L. M.; Zhao, D. Y.; Li, Q. Z. Performance of Pt/Al-SBA-15 catalysts in hydroisomerization of n-dodecane. Catal Lett 2001,71 (1-2),117-125.
    6. Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 1997,97 (6),2373-2419.
    7. Handjani, S.; Marceau, E.; Blanchard, J.; Krafft, J. M.; Che, M.; Maki-Arvela, P.; Kumar, N.; Warna, J.; Murzin, D. Y. Influence of the support composition and acidity on the catalytic properties of mesoporous SBA-15, Al-SBA-15, and A12O3-supported Pt catalysts for cinnamaldehyde hydro genation. J Catal 2011,282 (1),228-236.
    8. Handjani, S.; Dzwigaj, S.; Blanchard, J.; Marceau, E.; Krafft, J. M.; Che, M. Comparing Al-SBA-15 Support and Pt/Al-SBA-15 Catalyst:Changes in Al Speciation and Acidic Properties Induced by the Introduction of Pt via Aqueous Medium Top Catal 2009,52 (4),334-343.
    9. Ramaker, D. E.; de Graaf, J.; van Veen, J. A. R.; Koningsberger, D. C. Nature of the metal-support interaction in supported Pt catalysts:Shift in Pt valence orbital energy and charge rearrangement. JCatall 2001,203 (1),7-17.
    10. Han, J. X.; Sun, H.; Duan, J. Z.; Ding, Y. Q.; Lou, H.; Zheng, X. M. Palladium-Catalyzed Transformation of Renewable Oils into Diesel Components. Adv Synth Catal 2010,352 (11-12),1805-1809.
    11. Cortright, R. D.; Davda, R. R.; Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002,418 (6901),964-967.
    12. Ooi, Y. S.; Zakaria, R.; Mohamed, A. R.; Bhatia, S. Hydrothermal stability and catalytic activity of mesoporous aluminum-containing SBA-15. Catal Commun 2004, 5 (8),441-445.
    1. Okay, H.; Subrahmanyam, A. V.; Xing, R.; Lajoie, J.; Dumesic, J. A.; Huber, G. W. Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams. Energ Environ Sci 2013,6 (1),205-216.
    2. Blommel, P. G.; Keenan, G. R.; Rozmiarek, R. T.; Cortrigth, R. D. Catalytic conversion of sugar into conventional gasoline, diesel, jet fuel, and other hydrocarbons, Int Sugar J2008,110 (1319),672-+.
    3. Kim, Y. T.; Dumesic, J. A.; Huber, G. W. Aqueous-phase hydrodeoxygenation of sorbitol: A comparative study of Pt/Zr phosphate and Pt-ReOx/C. J Catal 2013,304, 72-85.
    4. Li, N.; Huber, G. W. Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2-Al2O3:Identification of reaction intermediates. J Catal 2010,270 (1),48-59.
    5. Murata, K.; Liu, Y. Y.; Inaba, M.; Takahara, I. Production of Synthetic Diesel by Hydrotreatment of Jatropha Oils Using Pt-Re/H-ZSM-5 Catalyst. Energ Fuel 2010, 24,2404-2409.
    6. Kim, S. J.; Park, S. D.; Jeong, Y. H.; Park, S. Homogeneous precipitation of TiO2 ultrafine powders from aqueous TiOC12 solution. J Am Ceram Soc 1999,82 (4), 927-932.
    7. Huang, C. Y.; Tang, Z. L.; Zhang, Z. T. Differences between zirconium hydroxide (Zr(OH)(4)center dot nH(2)O) and hydrous zirconia (ZrO2 center dot nH(2)O). JAm Ceram Soc 2001,84 (7),1637-1638.
    8. Jung, K. T.; Bell, A. T. The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia. J Mol Catal a-Chem 2000,163 (1-2),27-42.
    9. Qiu, W.; Ren, C. J.; Gong, M. C.; Hou, Y. Z.; Chen, Y. Q. Structure, Surface Properties and Photocatalytic Activity of TiO2 and TiO2/SiO2 Catalysts Prepared at Different pH Values. Acta Phys-Chim Sin 2011,27 (6),1487-1492.
    10. Kamiya, Y.; Sakata, S.; Yoshinaga, Y.; Ohnishi, R.; Okuhara, T. Zirconium phosphate with a high surface area as a water-tolerant solid acid. Catal Lett 2004,94 (1-2),45-47.
    11. Spurr, R. A.; Myers, H. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Anal Chem 1957,29 (5),760-762.
    12. Srinivasan, R.; Harris, M. B.; Simpson, S. F.; Deangelis, R. J.; Davis, B. H. Zirconium-Oxide Crystal Phase - the Role of the Ph and Time to Attain the Final Ph for Precipitation of the Hydrous Oxide. J Mater Res 1988,3 (4),787-797.
    13. Hanaor, D. A. H.; Sorrell, C. C. Review of the anatase to utile phase transformation. J Mater Sci 2011,46 (4),855-874.
    14. Xamena, F. X. L. I.; Damin, A; Bordiga, S.; Zecchina, A. Healing of defects in ETS-10 by selective UV irradiation: a Raman study. Chem Commun 2003, (13), 1514-1515.
    15. Gribb, A. A.; Banfield, J. F. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am Mineral 1997,82 (7-8),717-728.
    16. Panayotov, D. A.; Yates, J. T. Depletion of conduction band electrons in TiO2 by water, chemisorption - IR spectroscopic studies of the independence of Ti-OH frequencies on electron concentration. Chem Phys Lett 2005,410 (1-3),11-17.
    17. Wu, M. M.; Lin, G.; Chen, D. H.; Wang, G. G.; He, D.; Feng, S. H.; Xu, R. R. Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystal titanium dioxide. Chem Mater 2002,14 (5),1974-1980.
    18. Penn, R. L.; Banfield, J. F.; Kerrick, D. M. TEM investigation of Lewiston, Idaho, fibrolite:Microstructure and grain boundary energetics. Am Mineral 1999,84 (1-2), 152-159.
    19. Elliott, D. C.; Hart, T. R.; Neuenschwander, G. G. Chemical processing in high-pressure aqueous environments.8. Improved catalysts for hydrothermal gasification. Ind Eng Chem Res 2006,45 (11),3776-3781.
    20. Fadda, G.; Truskinovsky, L.; Zanzotto, G. Unified Landau description of the tetragonal, orthorhombic, and monoclinic phases of zirconia. Phys Rev B 2002,66 (17).
    21. Patil, R. N.; Subbarao, E. C. Monoclinic-Tetragonal Phase Transition in Zirconia- Mechanism, Pretransformation and Coexistence. Acta Crystall a-Crys 1970, A 26, 535-&.
    22. Xie, S. B.; Iglesia, E.; Bell, A. T. Water-assisted tetragonal-to-monoclinic phase transformation of ZrO2 at low temperatures. Chem Mater 2000,12 (8),2442-2447.
    23. Murase, Y.; Kato, E. Role of Water-Vapor in Crystallite Growth and Tetragonal-Monoclinic Phase-Transformation of Zro2. J Am Ceram Soc 1983,66 (3), 196-200.
    24. Pieck, C. L.; Marecot, P.; Querini, C. A.; Parera, J. M.; Barbier, J. Influence of Pt-Re interaction on activity and selectivity of reforming catalysts. Appl Catal a-Gen 1995,133 (2),281-292.
    25. Kunkes, E. L.; Simonetti, D. A.; Dumesic, J. A.; Pyrz, W. D.; Murillo, L. E.; Chen, J. G. G.; Buttrey, D. J. The role of rhenium in the conversion of glycerol to synthesis gas over carbon supported platinum-rhenium catalysts. J Catal 2008,260 (1),164-177.
    26. Li, N.; Tompsett, G. A.; Huber, G. W. Renewable High-Octane Gasoline by Aqueous-Phase Hydrodeoxygenation of C-5 and C-6 Carbohydrates over Pt/Zirconium Phosphate Catalysts. Chemsuschem 2010,3 (10),1154-1157.
    27. Tanaka, T.; Kumagai, H.; Hattori, H.; Kudo, M.; Hasegawa, S. Generation of Basic Sites on Tio2 by Reduction with H2. JCatal 1991,127 (1),221-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700