用户名: 密码: 验证码:
负载型Pd催化剂的制备及催化加氢脱氯和还原烷基化过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
4,6-二氨基间苯二酚(DAR)是制备高性能纤维PBO的单体,开展DAR合成工艺的研究具有重要的意义。本论文以2-氯-4,6-二硝基间苯二酚为原料,10 wt.% Pd/C为催化剂一步加氢脱氯、硝基还原反应合成DAR。通过比较晶状DAR的产量以及2-Cl-DAR副产物的含量,研究反应过程中的溶剂效应,确定了乙醇-水混合溶液为最合适的反应介质。并对乙醇-水介质中,2-氯-4,6-二硝基间苯二酚催化加氢合成DAR的工艺条件进行了优化,提出在乙醇-水介质中适宜的工艺条件:10 wt.% Pd/C催化剂2.5 g,2-氯-4,6-二硝基间苯二酚60g、80%乙醇-水溶液600 ml,乙酸铵20.0 g,2.2 MPa氢压,1300rpm搅拌速率。当起始反应温度为40℃时,得到晶状DAR 37.8 g,其中2-Cl-DAR副产物含量为0.37%。
     又以2-氯-4,6-二硝基间苯二酚为硝基苯酚类化合物的模型底物、丙酮为烷基化剂、氢气为还原剂,研究了10 wt.% Pd/C催化的一锅法还原N-单烷基化反应和加氢脱氯反应合成4,6-二(异丙基氨基)-1,3-苯二酚(BPAR)的反应工艺。通过改变醋酸的添加量、反应时间、溶剂的组成、氢压以及催化剂用量,考察了工艺条件对产物BPAR的得率及选择性的影响,选出最优操作条件为:10 wt.% Pd/C催化剂2.0 g,醋酸20ml,2-氯-4,6-二硝基间苯二酚40g、1:1(v/v)丙酮/异丙醇320 ml,水50ml,乙酸铵13.3 g,2.0 MPa氢压,1300 rpm搅拌速率,反应时间90 min, BPAR的得率为91%。以上述反应工艺为基础,考察了多种硝基苯酚类衍生物与酮类化合物生成相应的仲氨基苯酚化合物;而以醛为烷基化试剂时,双烷基化的叔胺基苯酚则是唯一的烷基化产物。
     负载型钯催化剂参与的液相催化加氢脱氯反应不仅能用于有机化合物的合成,同时也可以非破坏性的方法用于氯代芳烃的处理,因此,研究催化剂中钯活性位的结构特征与制备方法的关系对氯代芳烃的低温加氢脱氯反应具有重要的科学意义和应用价值。
     本论文选用介孔C-SiO2复合材料(MSC)、Si02基有序介孔分子筛(SBA-15)和活性炭(AC)三种不同载体负载的钯催化剂(Pd/MSC、Pd/SBA-15和Pd/AC),运用低温N2吸附/脱附、XRD、H2-TPR、H2-TPD、XPS、HR-TEM等技术,研究了这三种催化剂的结构特征。由HR-TEM确认MSC负载的Pd/MSC中Pd晶粒表面存在大量台阶状缺陷的晶界结构,Pd/SBA-15中Pd晶粒表面平整,而Pd/AC中同时存在大量表面平整的Pd和少量缺陷的Pd。
     在低温(-15℃)条件下,以Et3N为碱助剂,以4-氯苯酚(4-CP)、2-氯苯酚(2-CP)和2,4-二氯苯酚(2,4-DCP)为氯苯酚化合物模型分子,研究了Pd/MSC、Pd/SBA-15和Pd/AC液相加氢脱氯反应的催化活性和选择性。催化剂的活性取决于其具有缺陷结构Pd的含量,以缺陷结构Pd为主体的Pd/MSC表现出最高的催化活性,而以平面Pd为主体的Pd/SBA-15活性较低。使用DFT理论计算的方法得到了Et3N、4-CP和2,4-DCP在Pd(111)平台面(模拟平面结构Pd)和Pd(211)台阶棱(模拟缺陷结构Pd)上σ键和π键配位吸附构型的吸附能。关联Pd的结构特征及实验数据,发现4-CP通过苯环在这两种结构Pd活性位上形成π键吸附被活化;有空间位阻的2,4-DCP在Pd/MSC上通过4位氯的σ键配位吸附活化,表现出对中间物种2-CP的绝对选择性。而在Pd/AC和Pd/SBA-15催化的反应中,2,4-DCP仍通过苯环与Pd活性位形成π键吸附被活化,中间物种2-CP和4-CP同时生成。Et3N阻抑作用可归结于其在Pd活性位上的吸附能与反应物分子的吸附能相当。降低Et3N的浓度,可明显降低其阻抑作用。
It is significant to investigate the methods for the synthesis of 4,6-diaminoresocinol (DAR) that is the indispensable monomer used in preparing the high-performance fiber PBO. In this paper, DAR was synthesized by catalytic HDC and nitro reduction of 2-chloro-4,6-dinitroresorcinol over 10 wt.% Pd/C catalyst. The solvent effect on the yield of DAR and the content of 2-Cl-DAR byproduct was studied, and the ethanol-water mixture was considered as the most appropriate reaction media. The operation conditions of catalytic reaction were optimized, and the optimum operation conditions were obtained:2.5 g of 10 wt.% Pd/C catalyst,60.0 g of 2-chloro-4,6-dinitroresorcinon and 20.0 g of ammonium acetate, 600 ml of 80% ethanol-water solution, a stir of 1300 rpm, hydrogen atmosphere of 2.2 MPa. At the initial reaction temperature of 40℃,37.8 g of DAR was obtained with 0.37% 2-Cl-DAR byproduct.
     4,6-bis(isopropylamino)resorcinol (BPAR) was catalytically synthesized from 2-Chloro-4,6-dinitroresorcinol by an one-pot reaction including reductive mono-N-alkylation and HDC over 10 wt.% Pd/C catalyst, in which acetone was used as alkyl source and hydrogen as reducing reagent. The effects of reaction conditions, such as the amount of acetic acid, reaction time, solvent, hydrogen pressure and catalyst amount, on the yield of BPAR were investigated. The optimum operation conditions were obtained as follows:2.0 g of 10 wt.% Pd/C catalyst,20 ml of acetic acid,40.0 g of 2-chloro-4,6-dinitroresorcinon 320 ml of 1:1 (v/v) acetone/2-propanol mixtures,50 ml of water,13.3 g of ammonium acetate, hydrogen atmosphere of 2.2 MPa, a stir of 1300 rpm. In the reaction condition above the synthesis reaction was carried out for 90 min,91% of BPAR yield was obtained.
     When various nitrophenol derivatives were used as the reactant and ketone as alkyl reagent, the corresponding secondary alkyl aminophenols with the high yield were achieved by a one-pot catalytic synthesis method in above operation condition over 10 wt.% Pd/C catalyst. When aldehyde was used as the alkyl reagent, the corresponding tertiary amine as a sole N-alkylation product was obtained.
     Liquid phase HDC catalyzed by supported Pd catalyst is considered as an economical and environmentally benign method in the synthesization of organic compounds as well as the nondestructive disposal of chlorinated arene. It is significant to investigate the correlations between the structure of Pd active sites and the performance of Pd catalyst for the HDC of chlorinated arene.
     Three different carriers, mesoporous silica-carbon nanocomposites (MSC), mesoporous SiO2 (SBA-15) and active carbon (AC) were employed as the supports of Pd catalyst (noted as Pd/MSC, Pd/SBA-15 and Pd/AC, respectively).
     The textural properties of the supports and catalysts have been determined by the low temperature N2 adsorption/desorption, XRD, H2-TPR, H2-TPD, XPS, HR-TEM. The results show the nano-sized Pd particles with the saw-edged grain boundaries formed on Pd/MSC due to the unique hybrid nature of carbon and silica. The mainly isolated Pd particles with terrace formed on Pd/SBA-15 and Pd/AC were observed, and a small quantity of Pd defect existed on Pd/AC.
     In the HDC of chlorophenols at low temperature (-15℃), the activity of catalyst depends on the content of Pd defect. Pd/MSC with a high concentration of defective surface Pd atoms exhibited the very high catalytic activity, and Pd/SBA-15 with a high concentration of plane surface Pd atoms exhibited the lower catalytic activity.
     The ab initio Density Functional Theory (DFT) was used to calculate the adsorption energies of Et3N,4-CP and 2,4-DCP by formingπ-orσ-complex on the terrace site of Pd (111) and the step edge of Pd (211), which are to simulate the plane and defective surface Pd atoms. The results show that 4-CP was activated via the formation ofπ-complex with aromatic ring on Pd (111) and Pd (211). It is evident that HDC of 2,4-DCP with steric hindrance over Pd/MSC isn't similar to the situations over other two catalysts, in which 2,4-DCP adsorbed on the Pd atoms by formingσ-complex with C-Cl bond at 4-position, resulting in the only intermediate specie of 2-CP. The intermediate species of 2-CP and 4-CP were detected simultaneously in the HDC of 2,4-DCP on Pd/AC and Pd/SBA-15 in which 2,4-DCP was adsorbed flatly by the formation ofπ-complex with the aromatic ring.
     The inhibition of Et3N occurs mainly on Pd/MSC and Pd/AC, because of the competition adsorption with substrates on the defective surface Pd atoms. Reducing the concentration of can relieve the inhibitory effect evidently.
引文
[1]金俊弘,李光,江建明.聚苯撑苯并二恶唑(PBO)的合成[J].东华大学学报.2002,28(6):122-125
    [2]雷晖,冯东东,袁明祥.液晶高分子PBO单体和聚合物的合成[J].功能高分子学报.2003,16(1):120-125
    [3]木濑直树,河本健一.4,6-二氨基间苯二酚的制造方法[P].特开平:8-268973,2000
    [4]Lysenko, Richard G P. Process for the preparation of diaminoresorcinol [P]. US: 5399768,1995
    [5]河内淳二,松原宏知,中原良典.4,6-二氨基间苯二酚类衍生物的制造法[P].特开:2000-103771,2000
    [6]Horst B, Helmut F. Process for preparing 4,6-diaminoresorcino dihydrochloride [P]. US: 6093852,2000
    [7]Mitsui. Chemicals. Inc. Process for the preparation of 4,6-diaminoresorcin [P]. EP: 1048644,2000
    [8]Dow Chemical Co. Preparation of 4,6-diamino-1,3-benzenediol of high purity [P]. EP: 266222,1988
    [9]熊本行宏,楠本昌彦.4,6-二氨基间苯二酚的制备方法[P].CN:1276369,2000
    [10]Nissan Chemical Ind. Ltd.4,6-二氨基间苯二酚的制造方法[P].特开平:7-233127,1995
    [11]Daiwa Kasei, Kogyo K K.4,6-二氨基间苯二酚的制造法[P].特开平:10-168041,1998
    [12]Nader B S, Midland M. Synthesis of 4,6-diaminoresorcinol [P]. US:5371291,1994
    [13]马春杰,宁荣昌.PBO纤维的研究及进展[J].高科技纤维与应用.2004.29(3):46-51
    [14]德永健一,白鸟元人.4,6-二氨基间苯二酚或其盐的制造方法[P].CN:1129118,2001
    [15]Gibson M S. In the chemistry of the amino group [M]. Wiley-Interscience, New York, 1968, p.61
    [16]Epstein A J, Macdiarmid A G. Polyanilnes:From solutions to polymer metal, from chemical currosity to technology [J]. Synthetic Metals.1995,69(1-3):179-182
    [17]Wolfe J P, Wagaw S, Marcoux J, Buchwald S L. Rational development of practical catalysists for aromatic carbon-nitrogen bond formation [J]. Accounts of Chemical Research.1998,31(12):805-818
    [18]Pappas P G, Melville J B. Catalyzed gas-phase mono N-alkylation of aromatic primary amines [P]. US:5159115,1992
    [19]Czarnik A W. Guest editorial. Accounts of Chemical Research [J].1996,29(3):112-113
    [20]Li X, Mintz E A, Bu X R, Zehnder O, Bosshard C, Gunter P. Phase transfer catalysis for
    tandem alkylation of azo dyes for the synthesis of novel multi-functional molecules [J]. Tetrahedron.2000,56(32):5785-5791
    [21]Dehmlow E V, Thieser R, Zahalka H A, Sasson Y. The mechanism of N-alkylation of weak N-H-acids by phase transfer catalysis [J]. Tetrahedron Lettter.1985,26(3): 297-300
    [22]Hayden L M, Sauter G, Ore F R, Pasillas P L, Hoover J M, Lindsay G A, Henry R A. Second-order nonlinear optical measurements in guest-host and side-chain polymers[J]. Journal of Applied Physics.1990,68(2):456-461
    [23]Siswanto C, Rathman J F. Selective N-alkylation of aniline by Micellar catalysis [J]. Journal of Colloid and Interface Science.1997,196(1):99-102
    [24]Onaka M, Ishikawa K, Izumi Y. Selective N-monoalkylation of aniline over alkali cation exchanged X and Y type zeolites [J]. Chemistry Letters.1982,11(11):1783-1786
    [25]Onaka M, Umezono A, Kawai, M, Izumi Y. N-alkylation of aniline derivatives by use of potassium cation-exchanged Y-type zeolite [J]. Journal of Chemical Society, Chemical Communications.1985:1202-1203
    [26]Ando T, Yamawaki J. Potassium fluoride on celite. A versatile reagent for C-, N-, O- and S-alkylations [J]. Chemistry Letters.1979,8(1); 45-46
    [27]Wolfe J P, Wagaw S, Buchwald S L. An improved catalyst system for aromatic carbon-nitrogen baond formation:the possible involvement of bis(phosphine) palladium complexes as key intermediates [J]. Jouranl of the American Chemical Society.1996, 118(30):7215-7216
    [28]Hartwig J F. Transtion metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates:scope and mechanism [J]. Angeandte Chemie International Edition. 1998,37(15):2046-2047
    [29]Pappas P G, Melville, J B. α,β-diacid/N,N-substitued diamine adduct catalyst for epoxy resin and acid polyester [P]. US Patent 5,023,303,1991
    [30]Yang S C, Hung C W. Palladium-catalyzed amination of allylic alcohols using aninlines [J]. Journal of Organic Chemistry.1999,64(14):5000-5001
    [31]Harris M C, Geis O, Buchwald S L. Sequental N-arylation of primary amines as a route to alkydiarylamines [J]. Journal of Organic Chemistry.1999,64(16):6019-6022
    [32]Louie J, Driver M S, Hamann B C, Hartwig J F. Palladium-catalyzed amination of aryl triflates and importance of triflate addition rate [J]. Journal of Organic Chemistry.1997, 62(5):1268-1273
    [33]Ward Y D, Farina V. Solid phase synthesis of aryl amines via palladium catalyzed amination of resin bound aromatic bromides [J]. Tetrahedron Letters.1996,37(39): 6993-6996
    [34]Lipshutz B H, Ueda H. Aromatic aminations by heterogeneous Ni0/C catalysis [J]. Angeandte Chemie International Edition.2000,39(24):4492-4494
    [35]Yamamoto H, Keiji M. Novel N-alkylation of amines with organocopper reagents [J]. Journal of Organic Chemistry.1980,45(13):2739-2740
    [36]Malz R E, Greenfield H. Tertiary amine preparation by reductive alkylation of aliphatic
    secondary amines with ketones [J]. Studies in Surface and Science and Catalysis.1991, 59:351-335
    [37]Fache F, Valot F, Milenkovic A, Lemaire M. Catalytic reductive N-alkylation of anilines. Application to the synthesis of N-aryl aminoacid precursors [J]. Tetrahedron.1996, 52(29):9777-9784
    [38]Allegretti M, Berdini V, Cesta M C, Curti R, Nicolini L, Topai A. One-pot, new stereo-selective synthesis of endo-tropanamine [J]. Tetrahedron Letters.2001,42(25): 4257-4259
    [39]Byun E, Hong B, De Castro K A, Lim M, Rhee H. One-pot reductive mono-N-alkylaton of aniline and nitroarene derivatives using aldehydes [J]. Journal of Organic Chemistry. 2007,72(25):9815-9817
    [40]Sydnes M O, Isobe M. One-pot reductive monoalyation of nitro aryls with hydrogen over Pd/C [J]. Tetrahedron Letters.2008,49(7):1199-1202
    [41]Sajiki H, Hirota K, Ikawa T. Reductive and catalytic monoalkylation of primary amines using nitriles as an alkylation reagent [J]. Organic Letters,2004,6(26):4977-4980
    [42]Trost B M, Fleming I. Comprehensive organic chemistry [M]. Pergamon press, Oxford, 1991
    [43]Smith M B, March J. March's advanced organic chemistry:reactions, mech-anisms, and structure,5th ed. [M]. Wiley-Interscience, New York,2001
    [44]魏文德.有机化工原料大全,第二版[M].化学工业出版社,北京,1999
    [45]United Nations Environment Programme. Stockholm Convention on Persistent Organic Pollutants.2001.
    [46]孙哲.优势复合菌群降解氯酚类化合物的特征研究.河海大学硕士毕业论文.2007
    [47]Agilent Technologies. Solution to today's environmental analysis problems-A technical seminar [J]. Agilent Corporation.2000:103-106
    [48]陈光.五氯酚降解菌的筛选及降解应用研究.中国农业大学硕士毕业论文.2004
    [49]US EPA. The inventory of sources of dioxin in the United States. EPA/600/P-98/00A2. 1998
    [50]中华人民共和国环境保护部,中华人民共和国国家发展和改革委员会.国家危险废物名录.2008
    [51]中华人民共和国国家标准化管理委员会.中华人民共和国国家标准:污水综合排放标准.GB 8978-1996.1996
    [52]Annahhatre A P, Gheewala S H. Biodegradation of chlorinated phenolic com-pounds [J]. Biotechnology Advances.1996,14(1):35-56
    [53]Hatta T, Nakano O, Imai N, Takizawa N. Cloning and sequence analysis of hydroxyquinol 1,2-dioxygenase gene in 2,4,6-trichlorophenol degrading Ralstonia pickettii DTP0602 and characterization of its product [J]. Journal of Bioscience and Bioengineering.1999,87(3):267-272
    [54]McAllister K A, Lee H, Trevors J T. Microbial degradation of pentachlorophenol [J]. Biodegradation.1996,7(1):1-40
    [55]Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide [J]. Progress in Solid State Chemistry.2004,32(1-2):33-177
    [56]Bandara J, Mielczarski J A, Lopez A, Kiwi J. Sensitized degradation of chlorophenols on iron oxides induced by visible light:Comparison with titanium oxide [J]. Applied Catalysis B:Environmental.2001,34(4):321-333
    [57]Guillard C, Disdier J, Monnet C, Dussaud J, Malato S, Blanco J, Maldonado M I, Herrmann J M. Solar efficiency of a new deposited titania photocatalyst:chlorophenol, pesticide and dye removal applications [J]. Applied Catalysis B:Environmental.2003, 46(2):319-332
    [58]Green M L H, Lago R M, Tsang S C. Total oxidation of chlorinated hydrocarbons by copper and chlorine-based catalysts [J]. Journal of the Chemical Society, Chemical Communications.1995,3:365-366
    [59]Hutchings G J, Heneghan C S, Hudson I D. Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds [J]. Nature,1996,384:341-343
    [60]Liu Y, Luo M F, Wei Z B, Xin Q, Ying P L, Li C. Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts [J]. Applied Catalysis B:Environmental.2001, 29(41):61-67
    [61]Lin S H, Ho S J. Catalytic wet-air oxidation of high strength industrial wastewater [J]. Applied Catalysis B:Environmental.1996,9(1-4):133-147
    [62]Sedlak D L, Andren A W. The effect of sorption on the oxidation of poly-chlorinated Biphenyls by hydroxyl radical [J]. Water Research.1994,28(5):1207-1215
    [63]Grigoropoulou H, Philippopouls C. Homogeneous oxidation of phenols in aqueous solution with hydrogen peroxide and ferric ions [J]. Water Science and Technology. 1997,36(2-3):151-154
    [64]Beziat J C, Besson M, Gallezot P, Durecu S. Catalytic wet air oxidation of carboxylic acids on TiO2-supported ruthenium catalysts [J]. Journal of Catalysis.1999,182(1): 129-135
    [65]Duprez D, Delanoe F, Barbier J, Isnard P, Blandchard G. Catalytic oxidation of organic compounds in aqueous media [J]. Catalysis Today.1996,29(1-4):317-322
    [66]Pintar A, Levc J. Catalytic oxidation of organics in aqueous solutions:Ⅰ. Kinetics of phenol oxidation [J]. Journal of Catalysis.1992,135(2):345-357
    [67]Sadana A, Katzer J R. Involvement of free radicals in the aqueous-phase catalytic oxidation of phenol over copper oxide [J]. Journal of Catalysis.1974,35(1):140-152
    [68]Sadana A, Katzer J R. catalytic oxidation of phenol in aqueous solution over copper oxide [J]. Industrial & engineering chemistry fundamentals.1974,13(2):127-134
    [69]Lin S S, Chang D J, Wang C H, Chen C C. Catalytic wet air oxidation of phenol by CeO2 catalyst-effect of reaction conditions [J]. Water Research.2003,37(4):793-800
    [70]Eftaxias A, Font J, Fortuny A, Giralt J, Fabregat A, Stuber F. Kinetic modelling of catalytic wet air oxidation of phenol by simulated annealing [J]. Applied Catalysis B: Environmental.2001,33(2):175-190
    [71]Lin S S, Chen C L, Chang D J, Chen C C. Catalytic wet air oxidation of phenol by
    various CeO2 catalyst [J]. Water Research.2002,36(12):3009-3014
    [72]Bovkun T T, Sasson Y, Blum J. Conversion of chlorophenols into cyclohexane by a recyclable Pd-Rh catalyst [J]. Journal of Molecular Catalysis A:Chemical.2005,242 (1-2):68-73
    [73]Keane M A, Murzin D Y. A kinetic treatment of the gas phase hydride-chlorination of chlrobenzene over nickel/silica:beyong conventional kinetics [J]. Chemical Engineering Science.2001,56(10):3185-3195
    [74]Shin E J, Keane M A. Gas phase catalytic hydrodechlorination of chlorophenols using a supported nickel catalyst [J]. Applied Catalysis B:Environmental.1998,18(3-4): 241-250
    [75]Jujjui S, Ding E, Hommel E L, Shore S G, Keane M A. Synthesis and characterization of novel silica-supported Pd/Yb bimetallic catalysts; Application in gas-phase hydrodechlorination and hydrorogenation [J]. Journal of Catalysis.2006,239(2): 486-500
    [76]Zhou S J, Chen J X, Liu X G, Zhang J Y. Influence of reduction conditions on the catalytic activity of Ni2P/SiO2 for gas-phase hydrodechlorinaiton of chlorobenzene [J]. Chinese Journal of Catalysis.28(6):498-500
    [77]Baumgarten E, Fiebes A, Stumpe A. A new platinum catalyst based on poly {acrylamide-co-[3-(acryloylamino)propyltrimethylammonium chloride]}} for the gas-phase reduction of nitrobenzene, phenol and the hydrodechloriation of aromatic compounds [J]. Reactive & Functional Polymers.1997,33(1):71-79
    [78]Liu X G, Chen J X, Zhang J Y. A novel catalyst for gas phase hydride-chlorinaiton of chlorobenzene:Silica supported Ni3P [J]. Catalysis Communications.2007,8(2): 1905-1909
    [79]Chary K V R, Rao P V R, Wishwanathan V. Synthesis and high performance of ceria supported nickel catalysts for hydrodechlorination reaction [J]. Catalysis Communications.2006,7(2):974-978
    [80]Cesteros Y, Salagre P, Medina F, Sueiras J E, Tichit D, Coq B. Hydrode-chlorination of 1,2,4-trichlorobenzene on nickel-based catalysts prepared from several Ni/Mg/Al hydrotalcite-like precursors [J]. Applied Catalysis B:Environmental.2001,32(1-2): 25-35
    [81]Meshesha B T, Chimentao R J, Medina F, Sueiras J E, Cesteros Y, Salagre P, Figueras F. Catalytic hydrodechlorination of 1,2,4-trichlorobenzene over Pd/Mg(Al)O catalysts [J]. Applied Catalysis B:Environmental.2009,87(1-2):70-77
    [82]Gopinath R, Lingaiah N, Babu N S, Suryanarayana I, Sai Prasad P S, Obuchi A. A highly active low Pd content catalyst synthesized by deposition-precipitation method for hydrodechlorination of chlorobenzene [J]. Journal of Molecular Catalysis A: Chemical.2004,223(1-2):289-293
    [83]Lingaiah N, Uddin M A, Muto A, Iwamoto T, Sakata Y, Kusano Y. Vapour phase catalytic hydrodechlorination of chlorobenzene over Ni-Carbon composite catalysts [J]. Journal of Molecular Catalysis A:Chemical.2000,161(1-2):157-162
    [84]Srinivas S T, Lakahmi L J, Lingaiah N, Sai Prasad P S, Rao P K. Selective vapour-phase hydrodechlorinaiton of chlorobenzene over alumina supported platinum bimetallic catalysts [J]. Applied Catalysis A:General.1996,135(6):201-207
    [85]Heidi M. Roy, Chien M. Wai, Tao Yuan, Jun-Kyoung Kim, William D. Marahall. Catalytic hydrodechlorination of chlorophenols in aqueous solution under mild conditions [J]. Applied Catalysis A:General.2004,271(1):137-143
    [86]Huang Z Z, Tang Y. Unexpected catalyst for witting-type and dehalogenation reactions [J]. Journal of Organic Chemistry.2002,67(15):5320-5325
    [87]Fritsh D, Kuhr K, Mackenzie K, Kopinke F D. Hydrodechlorination of chloroorganic compounds in groud water by palladium catalysts Part 1. Development of polymer-based catalysts and membrane reactor test [J]. Catalysis Today.2003,82(1): 105-118
    [88]Caubere P, Coutrot P. Comprehensive Organic Chemistry. Vol.8 (Eds.:Trost B M, Fleming I, Semmelhack M F.) [M]. Pergamon Press, Oxford,1991
    [89]Urbano F J, Marinas J. M. Hydrogenolysis of organohalogen compounds over palladium supported catalysts [J]. Journal of Molecular Catalysis A:Chemical.2001, 73(1-2):329-345
    [90]Babu N S, Lingaiah N, Pasha N, Kumar J V, Sai Prasad P S. Influence of particle size and nature of Pd species on the hydrodechlorination of chloroaromatics:Studies on Pd/TiO2 catalysts in chlorobenzene conversion [J]. Catalysis Today.2009,141(1-2): 120-124
    [91]Bae J W, Lee J S, Lee K H. Hydrodechlorinaiton:CC14 over Pt/a-A12O3 prepared from different Pt precursors [J]. Applied Catalysis A:General.2008,334(1-2):156-167
    [92]Effect of nickel precursor on the catalytic performance of Ni/A12O3 catalysts in the hydrodechlorinaiton of 1,1,2-trichloroethane [J]. Journal of Molecular Catalysis A: Chemical.2006,256(1-2):178-183
    [93]Aramendia M A, Borau V, Garcia I M, Jimenez C, Marinas J M, Urbano F J. Influence of the reaction conditions and catalytic properties on the liquid-phase hydrodechlorination of chlorobenzene over palladium-supported catalysts:Activity and deactivation [J]. Journal of Catalysis.1999,187(2):392-399
    [94]Kawabata T, Atake I, Ohishi Y, Shishido T, Tian Y, Takaki K, Takehira K. Liquid phase catalytic hydrodechlorination of aryl chlorides over Pd-Al-MCM-41 catalyst [J]. Applied Catalysis B:Environmental.2006,66(3-4):151-160
    [95]Liu Q, Cui Z M, M Z, Nisn D E, Song W G. Highly active and stable material for catalytic hydrodechlorination using ammonia-treated carbon nanofibers as Pd supports [J]. Journal of Physical Chemistry C.2008,112(4):1199-1203
    [96]Meshisha B T, Chimetao R J, Medina F, Sueiras J E, Cesteros Y, Salagre P, Figeras F. Catalytic hydrodechlorination of 1,2,4-trichlorobenzene over Pd/Mg(Al)O catalysts [J]. Applied Catalysis B:Environmental.2009,87(1-2):70-77
    [97]Hildebrand H, Mackenzie K, Kopinke F D. Highly active Pd-on-magnetite nanocatalysts for aqueous phase hydrodechlorination reaction [J]. Environmental Science & Technology.2009,43(9):3254-3259
    [98]Hara T, Kaneta T, Mori K, Misudome T, Mizugaki T, Ebitani K, Kaneda K. Magnetically recoverable heterogeneous catalyst:Pdlladium nanocluster supported on hydroxyapatite-encapsulated a-Fe3O4 nanocrystallites for highly efficient dehalogenation with molecular hydrogen [J]. Green Chemistry.2007,9:1246-1251
    [99]Aramendia M A, Borau V, Garcia I M, Jimenez C, Marinas J M, Urbano F J. Liquid-phase hydrodehalogenation of substituted chlorobenzenes over palladium supported catalysts [J]. Applied Catalysis B:Environmental.2003,43(1):71-79
    [100]Golubina E V, Lokteva E S, Lunin V V, Telegina N S, Stakheev A Y, Tundo P. The role of Fe addition on the activity of Pd-containing catalysts in multiphase Hydrodechlorination [J]. Applied Catalysis A:General.2006,302(1):32-41
    [101]Berry F J, Smart L E, Sai Prasad P S, Lingaiah N, Rao P K. Microwave heating during catalyst preparation:influence on the hydrodechlorination activity of alumina-supported palladium-iron bimetallic catalysts [J]. Applied Catalysis A:General.2000,204(2): 191-201
    [102]Simagina V, Likholobov V, Bergeret G, Gimenez M T, Renouprez A. Catalytic hydrodechlorination of hexachlorobenzene on carbon supported Pd-Ni bimetallic catalysts [J]. Applied Catalysis B:Environmental.2003,40(2):293-304
    [103]Jujjuri S, Ding E, Sheldon G S, Keane M A. A characterization of Ln-Pd/SiO2 (Ln=La, Ce, Sm, Eu, Gd and Yb):Correlation of surface chemistry with hydrogenolysis activity [J]. Journal of Molecular Catalysis A:Chemical.2007,272(1-2):96-107
    [104]Nutt M O, Hughes J B, Wong M S. Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination [J]. Environmental Science & Technology.2005,39(5):1346-1353
    [105]Konuma K, Kameda N. Effect of substituents on the hydrodechlorination re-activity of para-substituted chlorobenzenes [J]. Journal of Molecular Catalysis A:Chemical.2002, 178(1-2):239-251
    [106]Yoneda T, Takido T, Konuma K. Hydrodechlorination reactivity of para-substituted chlorobenzenes over platinum/carbon catalyst [J]. Journal of Molecular Catalysis A: Chemical.2007,265(1-2):80-89
    [107]Yoneda T, Takido T, Konuma K. Hydrodechlorination of para-substituted chlorobenzenes over a ruthenium/carbon catalyst [J]. Applied Catalysis B: Environmental.2008,84(3-4):667-677
    [108]Shin E J, Keane M A. Detoxification of dichlorophenols by catalytic hydro-dechlorination using a nickel/silica catalyst [J]. Chemical Engineering Science.1999, 54(8):1109-1120
    [109]Xia C, Liu Y, Xu J, Yu J B, Qin W, Liang X M. Catalystic hydrodechlorination reactivity of monochlorophenols in aqueous solutions over palladium/carbon catalyst [J]. Catalysis Communications.2009,10(5):456-458
    [110]Wu W H, Xu J, Ohnishi R. Complete hydrodechlorination of chlorobenzene and its derivatives over supported nickel catalysts under liquid phase conditions [J]. Applied
    Catalysis B:Environmental.2005,60(1-2):129-137
    [111]Mukhopadhyay S, Gandi G K, Chandalia S B. Kinetics of Liquid-phase catalytic hydrogenation of 4-chloro-2-nitrophenol [J]. Organic Process Reaserch & Deveplopment.1999,3(2):201-205
    [112]Agarwal S, Al-Abed S R, Dionysiou D D, Graybill E. Reactivity of substituted chlorines and ensuing dechlorination pathways of select PCB congeners with Pd/Mg bimetallics [J]. Environmental Science & Technology.2009,43(3):915-921
    [113]Lassova L, Lee H K, Andy Hor T S. Catalytic dechlorination of chlorobenzenes:Effect of solvent on efficiency and selectivity [J]. Journal of Molecular Catalysis A:Chemical. 1999,144(3):397-403
    [114]Xia C H, Xu J, Wu W Z, Luo Q, Chem J P, Zhang Q, Liang X M. Catalytic hydrodechlorination of 2,4,4'-trichloro-2'-hydroxydiphenyleter under mild conditions [J]. Applied Catalysis B:Environmental.2003,45(4):281-292
    [115]Hoke J B, Gramiccioni G A, Balko E N. Catalytic hydrodechlorination of chloro-phenols [J]. Applied Catalysis B:Environmental.1992,1(4):285-296
    [116]Concibido N C, Okuda T, Nishijima W, Okada M. Deactivation and reactivation of Pd/C catalyst used in repeated bath hydrodechlorination of PCE [J]. Applied Catalysis B: Environmental.2007,71(1-2):64-69
    [117]Nishijima W, Ochi Y, Tsai T Y, Nakano Y, Okada M. Catalytic hydride-chlorination of chlorinated ethylenes in organic solvents at room temperature and atmospheric pressure [J]. Applid Catalysis B:Environmental.2004,51(1-2):135-140
    [118]Yakovlev V A, Terskikh V V, Simagina V I, Likholobov V A. Liquid phase catalytic hydrodechlorination of chlorobenzene over supported nickel and palladium catalysts: an NMR insight into solvent function [J]. Jouranl of Molecular Catalysis A:Chemical. 2000,153(1-2):231-236
    [119]Kopinke F D, Mackenzie K, Koehler R, Georgi A. Alternative sources of hydrogen for hydrodechlorination of chlorinated organic Compounds in water on Pd catalysts [J]. Applied Catalysis A:General.2004,271(1-2):119-128
    [120]Ukisu Y, Miyadera T. Dechlorination of polychlorinated dibenzio-p-dioxins catalyzed by noble metal catalysts under mild conditions [J]. Chemosphere.2002,46(4):507-510
    [121]Ukisu Y, Miyadera T. Dehydrogenation of 2-propanol with suspended noble metal catalysts:activity enhancement by the addition of sodium hydroxide [J]. React. Kinet. Catal. Lett.2004,81(2):305-311
    [122]Ukisu Y, Miyadera T. Catalytic dechlorination of aromatic chlorides with Pd/C catalyst in alkaline 2-propanol:activity enhancement by the addition of methanol [J]. React. Kinet. Catal. Lett.2006,89(2):341-347.
    [123]Pri-Bar I, James B R. Mechanochemical, solvent free, palladium-catalyzed hydrodechlorination of chloroaromatic hydrocarbons [J]. Journal of Molecular Catalysis A:Chemical.2007,264(1-2):135-139
    [124]Janiak T, Brazejowski J. Kinetics of 10% Pd/C-catalyzed hydrogenolysis of chlorobenzene dissolved in n-heptane by gaseous hydrogen in contact with aqueous NaOH or water [J]. Applied Catalysis A:General.2004,271(2):103-108
    [125]Yuan G, Keane M A. Liquid phase hydrodechlorination of chlorophenols over Pd/C and Pd/A12O3:a consideration of HCl/catalyst interactions and solution pH effects [J]. Applied Catalysis B:Environmental.2004,52(4):301-314
    [126]Yuan G, Keane M A. Role of base addition in the liquid-phase hydrode-chlorination of 2,4-dichlorophenol over Pd/A12O3 and Pd/C[J]. Journal of Catalysis.2004,225(2): 510-522
    [127]Aramendia M A, Borau V, Garcia I M, Jimenez C, Marinas A, Marinas J M, Urbano F J. Liquid-phase hydrodechlorination of chlorobenzene over palladium supported catalysts influence of HCl formation and NaOH addition [J]. Journal of Molecular Catalysis A: Chemical.2002,184(2):237-245
    [128]Monguchi Y, Kume A, Hattori K, Maegawa T, Sajiki H. Pd/C-Et3N-mediated catalytic hydrodechlorination of aromatic chlorides under mild conditions [J]. Tetrahedron.2006, 62(33):7926-7933
    [129]Zinovyev S S, Perosa A, Tundo P. Liquid-phase and multiphase hydride-halogenation of halobenzenes over Pd/C:Reaction selectivity and inhibition/promotion effects by the quaternary salt [J]. Journal of Catalysis.2004,226(1):9-15
    [130]Kratky V, Kralik M, Mecarova M, Stolcova M, Zalibera L., Hronec M. Effect of catalyst and substituents on the hydrogenation of chloronitrobezenes[J]. Applied Catalysis A:General.2002,235(1-2):225-231
    [131]Barbieri A, Van Hove M A, Somorjai G A. Benoadsorbed with CO on Pd(111) and Rh(111):detailed molecular distortions and induced substrate relaxation [J]. Surface Science.1994,306(3):261-268
    [132]Lee A F, Wilson K, Lambert R M. On the coverage-dependent adsorption geometry of benzene adsorbed on Pd{111}:a study by fast XPS and NEXAFS [J]. Journal of Physical Chemistry. B.2000,104(49):11729-11733
    [133]Yuan G, Keane M A. Liquid phase catalytic hydrodechlorintioan of chlorophenols at 273 K [J]. Catalysis Communications.2003,4(4):195-201
    [134]Xia C, Xu J, Wu W, Liang X. Pd/C-catalyzed hydrodechlorination of aromatic halides in aqueous solutions at room temperature under normal pressure [J]. Catalysis Communications.2005,5(8):383-386
    [1]Kratky V, Kralik M, Mecarova M, Stolcova M, Zalibera L, Hronec M. Effect of catalyst and substituents on the hydrogenation of chloronitrobenzenes [J]. Applied Catalysis A: General.2002,235 (1-2):225-231
    [2]Lassova L, Lee H, Andy Hor T S. Catalytic dchloriation of chlorobenzenes:effect of solvent on efficiency and selectively [J]. Journal of Molecular Castalysis A:Chemical. 1999,144 (3):397-403
    [3]Kawabata T, Atake I, Ohishi Y, Shishido T, Tian Y, Takaki K, Takehira K. Liquid phase catalytic hydrodechlorination of aryl chlorides over Pd-Al-MCM-41 catalyst [J] Applied Catalysis B:Environmental.2006,66 (1-2):151-160
    [4]Xia C, Xu J, Wu W, Luo Q, Chen J, Zhang Q, Liang X. Catalytic hydrodechlorination of 2,4,4'-trichloro-2'-hydroxyl-diphenylether under mild conditions [J]. Applied Catalysis B:Environmental.2003,45(4):281-292
    [5]Mukhopadhyay S, Gandi G K, Chandalia S B. Kinetics of Liquid-phase catalytic hydrogenation of 4-chloro-2-nitrophenol [J]. Organic Process Reaserch & Deveplopment.1999,3 (2):201-205
    [1]Kalgutkar A S, Kozak K R, Crews B C, Hochgesang G P, Marnett L J. Covalent modify-cation of cyclooxygenase-2 (COX-2) by 2-acetoxyphenyl alkyl sulfides, a new class of selective COX-2 inactivators [J]. Journal of Medicinal Chemistry.1998,41(24): 4800-4818
    [2]Byun E, Hong B, De Castro K A, Lim M, Rhee H. One-pot reductive mono-N-alkylaton of aniline and nitroarene derivatives using aldehydes [J]. Journal of Organic Chemistry. 2007,72(25):9815-9817
    [3]Sydnes M O, Isobe M. One-pot reductive monoalyation of nitro aryls with hydrogen over Pd/C [J]. Tetrahedron Letters.2008,49(7):1199-1202
    [4]Fache F, Valot F, Milenkovic A, Lemaire M. Catalytic reductive N-alkylation of anilines. Application to the synthesis of N-aryl aminoacid precursors [J]. Tetrahedron.1996, 52(29):9777-9784
    [5]Freedman H H, Frost A E. Aminophenols. I. The reaction of o-aminophenol with chlor-acetic acid and some comments on the formation of phenmorpholones [J]. Journal of Organic Chemistry.1958,23(9):1292-1298
    [6]Yang S, Lai H, Tsai Y. Palladium-catalyzed regiospecific tandem allylation of 2-amino-phenols using 2-butene-1,4-diol [J]. Tetrahedron Letters.2004,45(12):2693-2697
    [7]Dai W M, Wang X, Ma C. Microwave-assisted one-pot regioselective synthesis of 2-alkyl-3,4-dihydro-3-oxo-2H-1,4-benzoxazines [J]. Tetrahedron.2005,61(28): 6879-6885
    [8]Lassova L, Lee H, Andy Hor T S. Catalytic dchloriation of chlorobenzenes:effect of solvent on efficiency and selectively [J]. Journal of Molecular Castalysis A:Chemical. 1999,144 (3):397-403
    [9]Nader B S, Midland M. Synthesis of 4,6-diaminoresorcinol [P]. US:5371291,1994
    [10]Kratky V, Kralik M, Mecarova M, Stolcova M, Zalibera L, Hronec M. Effect of catalyst and substituents on the hydrogenation of chloronitrobenzenes [J]. Applied Catalysis A: General.2002,235 (1-2):225-231
    [11]Mooberry J B, Archie W C. Blocked photographically useful compounds and photographic compositions, elements and processes employing them [P]. US:4358525, 1982
    [12]Bayer F. Novel benzomorpholone derivatives and a process for the manufacture thereof [P]. GB:815279,1959
    [1]Wimmer O J, Paulussen R, Vermeulen D P, Fortuin J M H. Enhacement of absorption of a gas intio stagnant liquid in which a heterogeneously catalyzed chemical reaction occurs [J]. Chemical Engineering Science.1984,39(9):1415-1422
    [2]Beenackers A A C M, Van Swaaij W P M. Mass transfer in gas-liquid slurry reactors [J]. Chememcial Engineering Science.1993,48(18):3109-3139
    [3]Yuan G, Keane M A. Liquid phase catalytic hydrodechlorintioan of chlorophenols at 273 K [J]. Catalysis Communications.2003,4(4):195-201
    [4]Monguchi Y, Kume A, Hattori K, Maegawa T, Sajiki H. Pd/C-Et3N-mediated catalytic hydrodechlorination of aromatic chlorides under mild conditions [J]. Tetrahedron.2006, 62(33):7926-7933
    [5]Zinovyev S S, Perosa A, Tundo P. Liquid-phase and multiphase hydride-halogenation of halobenzenes over Pd/C:Reaction selectivity and inhibition/promotion effects by the quaternary salt [J]. Journal of Catalysis.2004,226(1):9-15
    [6]Van Hardeveld R, Fartog F. The statistics of surface atoms and surface sites on metal crystals [J]. Surface Science.1969,15(2):189-230
    [7]Liu R L, Shi Y F, Wan Y, Meng Y, Zhang F Q, Gu D, Chen Z X, Tu B, Zhao D Y. Triconstituent Co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas [J]. Journal of the American Chemical Society.2006,128(35):11652-11662
    [8]Meng Y, Gu D, Zhang F Q, Shi Y F, Yang H F, Li Z, Yu C Z, Tu B, Zhao D Y. Ordered mesoporous polymers and homologous carbon frameworks:Amphiphilic surfactant templating and direct transformation [J]. Angewandte Chemie International Edition. 2005,44(3):7053-7059
    [9]Estelle J, Ruz J, Cesteros Y, Fernandez R, Salagre P, Medina F, Sueiras J E. Surface structure of bulk nickel catalysts, acitve in the gas-phase hydrodechlorination reaction of aromatics [J]. Journal of Chemical Society, Faraday Trans.1996,92:2811-2816
    [10]Yuan G, Keane M A. Catalyst deactivation during the liquid phase hydrodechlorination of 2,4-dichlorophenol over supported Pd:influence of the support [J]. Catalysis Today, 2003,88(1-2):27-36
    [11]Keane M A. Hydrodehalogenation of haloarenes over silica supported Pd and Ni:A consideration of catalytic activity/selectivity and haloarene reactivity [J]. Applied Catalysis A:General.2004,271(1-2):109-118
    [12]Chen W, Cai W P, LeiY, Zhang L D. A sonochemical approach to the confined synthesis of palladium nanoparticles in mesoporous silica [J]. Materials Letters.2001,50(2-3): 53-56
    [13]Okitsu K, Bandow H, Maeda Y. Sonochemical preparation of ultrafine palladium particles [J]. Chemistry of Materials.1996,8(2):315-317
    [14]Ouchaib T, Moraweck B, Massardier J, Renouprez A. Charcoal supported palladium and palladium-chromium catalysts:a comparison in the hydrogenation of dienes with silica supported metals [J]. Catalysis Today.1990,7(2):191-198
    [15]Benseradj F, Sadi F, Chater M. Hydrogen spillover studies on diluted Rh/Al2O3 catalyst [J]. Applied catalysis A:General.2002,228(1-2):135-144
    [16]Kramer R, Andre M. Adsorption of atomic hydrogen on alumina by hydrogen spillover [J]. Journal of Catalysis.1979,58(2):287-295
    [17]Keane M A, Murzin D Y. A kinetic treatment of the gas phase hydride-chlorination of chlrobenzene over nickel/silica:beyong conventional kinetics [J]. Chemical Engineering Science.2001,56(10):3185-3195
    [18]Hahimoto y, Ayame A. Low-temperature hydrodechlorinaiton of chloro-benzenes on platinum-supported alumina catalysts [J]. Applied Ctalysis A:General.2003,250(2): 247-254
    [19]Gomez-Sainero L M, Cortes A, Seoane X L, Arcoya A. Hydrodechlorination of carbon tetrachloride to chloroform in the liquid phase with metal-supported catalysts. Effect of the catalyst components [J]. Industrial & Engineering Chemistry Research.2000,39(8): 2849-2854
    [20]Murthy J K, Shekar S C, Rama Rao K S, Kishan G, Niemantsverdriet J W. Advatanges of FCCA and Bi promotion in Bi-Pd/FCCA catalysts for the hydrodechlorination of CCl2F2 [J]. Applied Catalysis A:General.2004,259(2):169-178
    [21]Gopinath R, Lingaiah N, Sreedhar B, Suryanarayana I, Sai Prasad P S, Obuchi A. Highly stable Pd/CeO2 catalyst for hydrodechlorination of chlorobenzene [J]. Applied catalysis B:Environmental.2003,46(3); 587-594
    [22]Kumar G, Blackburn J R, Albridge R G, Moddeman W E, Jones M M. Photoelectron spectroscopy of coordination compounds. Ⅱ. Palladium complexes [J]. Inorganic Chemistry.1972,11(2):296-300
    [23]Gomez-Sainero L M, Seoane X L, Fierro J L G, Arcoya A. Liquid-phase hydrodechlorination of CCl4 to CHCl3 on Pd/Carbon catalysts:Nature and role of Pd active species [J]. Journal of Catalysis,2002,209(2):279-288
    [24]Bovkun T T, Sasson Y, Blum J. Conversion of chlorophenols into cyclohexane by a recyclable Pd-Rh catalyst [J]. Journal of Molecular Catalysis A:Chemical.2005,242 (1-2):68-73
    [25]Kopinke F D, Mackenzie K, Koehler R, Georgi A. Alternative sources of hydrogen for hydrodechlorination of chlorinated organic Compounds in water on Pd catalysts [J]. Applied Catalysis A:General.2004,271(1-2):119-128
    [26]Hara T, Kaneta T, Mori K, Misudome T, Mizugaki T, Ebitani K, Kaneda K. Magnetically recoverable heterogeneous catalyst:Pdlladium nanocluster supported on hydroxyapatite-encapsulated a-Fe3O4 nanocrystallites for highly efficient dehalogenation with molecular hydrogen [J]. Green Chemistry.2007,9:1246-1251
    [27]Hoke J B, Gramiccioni G A, Balko E N. Catalytic hydrodechlorination of chloro-phenols [J]. Applied Catalysis B:Environmental.1992,1(4):285-296
    [28]Thompson C D, Rioux R M, Chen N, Ribeiro F H. Turnover rate, reaction order, and elementary steps for the hydrodechlorination of chlorofluorocarbon compounds on palladium catalysts [J]. Journal of Physical Chemistry B.2000,104(14):3067-3077
    [29]Nishijima W, Ochi Y, Tsai T Y, Nakano Y, Okada M. Catalytic hydride-chlorination of chlorinated ethylenes in organic solvents at room temperature and atmospheric pressure [J]. Applid Catalysis B:Environmental.2004,51(1-2):135-140
    [30]Jujjuri S, Keane M A. Catalytic hydrodechlorination at low hydrogen partial pressures: Activity and selectivity response [J]. Chemical Engineering Journal.2010,157(1): 121-130
    [31]Shin E J, Keane M A. Detoxification of dichlorophenols by catalytic hydro-dechlorination using a nickel/silica catalyst [J]. Chemical Engineering Science.1999, 54(8):1109-1120
    [1]Schleyer P V R. Encyclopaedia of computational chemistry. New York:John and Son, 1998
    [2]Eill D E, Perdew J P. Density functional theory of molecules. Solids, Kluwer Academi, 1994
    [3]Parr R G, Yang W T. Density functional theory of atoms and eolecules. Oxford, New York,1989
    [4]Brivio G P, Trioni M I. The adiabatic molecule-metal surface interaction:Theoretical approaches [J]. Reviews of Modern Physics.1999,71 (1):231-265
    [5]Orita H, Itoh N, Inada Y. A comparison of CO adsorption on Pt(211), Ni(211), and Pd(211) surfaces using density functional theory [J]. Surface Science.2004,571(1-3): 161-172
    [6]Hammer B, Norskov J K. Adsorbate reorganization at Steps:NO on Pd(211) [J]. Physical Review Letter.1997,79(22):4441-4444
    [7]Lahti M, Nivalainen N, Puisto A, Alatatlo M.O2 dissociation on Pd(211) and Cu(211) surfaces [J]. Surface Science.2007,601(18):3774-3777
    [8]Zinovyev S S, Perosa A, Tundo P. Liquid-phase and multiphase hydride-halogenation of halobenzenes over Pd/C:Reaction selectivity and inhibition/promotion effects by the quaternary salt [J]. Journal of Catalysis.2004,226(1):9-15
    [9]Wiener H, Blum J, Sasson Y. Transfer hydrogenolysis of aryl halides and other hydrogen acceptor by formate salts in the presence of palladium/carbon catalyst [J]. Journal of Organic Chemisty.1991,56(21):6145-6148
    [10]Faucher N, Ambroise Y, Cintrat J C, Doris E, Pillon F, Rousseau B. Highly chemoselective hydrogenolysis of lodoarenes [J]. Journal of Organic Chemisty.2002, 67(3):932-934
    [11]Ambroise Y, Mioskowski C, Mariadassou G D, Rousseau B. Consequences of affinity in heterogeneous catalytic reaction:Highly chemoselective hydrogenolysis of iodoarenes [J]. Journal of Organic Chemisty.2000,65(21):7183-7186
    [12]Baroni S, De Gironcoli S, Dal Corso A, Giannozzi P. Quantum-Espresso. http://www.democritos.it
    [13]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B:Condensed matter and materials physics.1990,41(11): 7892-7895
    [14]Van Hardeveld R, Fartog F. The statistics of surface atoms and surface sites on metal crystals [J]. Surface Science.1969,15(2):189-230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700