用户名: 密码: 验证码:
快速凝固AZ91镁合金及其颗粒增强复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁基复合材料具有低密度、高比强度、高比模量、良好的尺寸稳定性等优异的性能,在航空航天、交通、电子、武器装备等领域具有广阔的应用前景。快速凝固/粉末冶金为制备颗粒增强金属基复合材料的有效方法之一,本文介绍了一种自行发明的新型快速凝固粉末的制备方法,该方法将普通气体雾化液滴喷射到旋转的双辊辊缝中进一步模冷,形成了雾化-双辊急冷的快速凝固粉末制备工艺。利用该方法安全有效地制备了快速凝固AZ91镁合金粉末,并与SiCp、Al_2O_3、ZrO_2粉末混合,通过热挤压研制了颗粒增强AZ91镁基复合材料,研究了复合材料组织性能的演变规律。本文还研究了快速凝固/粉末冶金AZ91镁合金热压缩变形流变应力行为,快速凝固/粉末冶金法原位生成Mg_2Si增强AZ91镁基复合材料,经过系统的研究,获得如下结论:
     1、雾化-双辊急冷法在下列工艺参数组合下:双辊线速度25m/s;喷嘴直径1mm;熔体压射压力0.1MPa;雾化气体压力0.3MPa.,可获得宏观尺寸细小、微观组织均匀细小、综合性能优良的的快速凝固AZ91镁合金细碎箔带,快速凝固箔带在挤压温度为673K、挤压速度为0.1mm/min,挤压比为25:1时,可获得的外表光洁、尺寸均匀、组织性能优异的镁合金棒材。
     2、雾化-双辊急冷法制备的AZ91镁合金粉末态为细小等轴晶组织,晶粒尺寸1-3μm,组织为α-Mg过饱和固溶体和微量的细小β-Mg_(17)Al_(12)相组成;粉末挤压棒材为等轴晶组织,晶粒尺寸5-7μm,组织中含有大量细小的β-Al_(12)Mg_(17)以及AlMg_2Zn析出相,室温力学性能,抗拉强度383MPa,屈服强度275MPa,断后伸长率7.5%。室温下表现为韧性断裂特征。
     3、快速凝固/粉末冶金AZ91镁合金在加热过程中发生明显的沉淀相析出和静态再结晶现象。加热温度为118-200℃时,晶粒尺寸无明显变化,而在晶内和晶界处析出了大量的β-Mg_(17)Al_(12)相粒子。加热温度在200℃时发生再结晶,当加热温度在350℃以下时,合金的晶粒尺寸仍保持稳定,但第二相粒子开始重溶。当加热温度达到400℃时,β-Mg_(17)Al_(12)相粒子大量重溶,在短时间内发生了晶粒异常长大现象。退火温度以及挤压比对快速凝固/粉末冶金AZ91镁合金的硬度及组织有显著影响。
     4、在应变速率为0.001-1s~(-1)和变形温度为250-400℃条件下,快速凝固粉末冶金AZ91镁合金热压缩变形流变应力行为与普通铸造镁合金不同,在微应变阶段,应力上升很快,该阶段加工硬化占主导,动态回复或动态再结晶现象不明显,尤其在较低的温度变形时,硬化效果突出。材料的热压缩变形流变应力行为强烈地受到变形温度的影响,流变应力主要呈现幂指数关系。在本实验条件下,RS/PM AZ91镁合金热变形应力指数n为8.7,其热变形激活能Q为132.6kJ/mol。在热变形温度较低,材料处于较高应力水平时,其拟合方程为:在热变形温度较高,材料处于较低应力水平时,其拟合方程为:
     5、首次采用快速凝固/粉末冶金法制备了Si颗粒增强AZ91镁基复合材料,增强相分布均匀,在挤压过程中增强相与基体反应形成反应层,反应层中存在高温相Mg_2Si。在热处理过程中,随热暴露温度提高和时间的延长,增强相与基体的反应层拓展,Mg_2Si明显增多。反应区显微硬度明显高于其它区域,同时热处理过程中晶粒有所长大,增强相有明显抑制基体晶粒长大的作用,增强相附近基体晶粒长大速率小于其它区域。Si/AZ91复合材料在不同的时效制度下,材料的性能与固溶时间存在一定的规律性。450℃退火处理时,随固溶时间的延长,显微硬度没有明显变化。随后200℃/60h时效时,随退火时间延长,材料的显微硬度呈上升趋势;200℃/120h时效时,固溶时间为16h时,材料的显微硬度达到峰值,而后迅速降低。Si颗粒增强AZ91镁基复合材料的力学性能室温δ、σ_b、σ_(0.2)分别为3.50%、322MPa、241MPa。而且随Si含量的提高,材料的性能明显下降。同时,复合材料表现出较好的高温性能。
     6、采用雾化.双辊急冷法制备出了原位生成Mg_2Si快速凝固2%Si/AZ91镁合金碎箔带,并用热挤压方法制备出合金板材。板材室温σ_b、σ_(0.2)、δ_分别为429 MPa、322 MPa、6.4%,弹性模量71 GPa。断口表现为韧性断裂特征,有明显的增强相拔断现象。在423K时合金的屈服强度大于240MPa,在473K时合金的屈服强度和铸态AZ91镁合金相当。
     7、采用雾化-双辊急冷法制备的合金粉末与增强颗粒均匀混合后热挤压成形制备了SiC(Al_2O_3、ZrO_2)_p/AZ91复合材料。增强颗粒分布较均匀。SiCp/AZ91复合材料的屈服强度、抗拉强度、延伸率随着SiC颗粒含量的增加有所降低,在热挤压过程中,基体合金中的Mg与SiC颗粒表面的SiO_2发生了界面反应,生成了Mg_2Si相,在拉伸变形过程中存在SiC颗粒断裂、SiC颗粒与基体脱粘现象。Al_2O_(3p)/AZ91复合材料的高温力学性能优异。由于ZrO_2增强颗粒在基体中的分布不均匀,同时与基体发反应,影响了ZrO_(2p)/AZ91复合材料的力学性能。
Magnesium alloy matrix composites have great potential for applications in the fields of aerospace, automotive, electron and weapon equipment due to its low density, high specific strength and specific module, good dimension stability, etc. Rapid solidification/Powder metallurgy(RS/PM) is an effective method to prepare particle reinforced metal matrix composites (MMCs). In the present dissertation, a novel preparation method of rapidly solidified (RS) powders was developed, in which alloy melt is atmized into fine droplets and subsequent splat-quenched on the water-cooled copper twin-rollers, this process was termed as atomization-twin rolls quenching technology. RS AZ91 magnesium alloy powders were prepared safely and effectively, and mixed with SiC, Al_2O_3, ZrO_2 particles respective to develop particle reinforced AZ91 composites by hot extrusion and the evolution of microstructures and properties of the composites were investigated. Moreover, the hot compressive deformation behavior of the RS/PM AZ91 magnesium alloy and AZ91 alloy matrix composite were also investigated, the conclusions are drawn as follows:
     1. The processing parameters of the atomization-twin rolls quenching technology were optimized as follows: the diameter of the nozzle 1mm, the wheel velocity 25m/s, the pressure of atomization gas 0.3MPa and Ar gas for melt injection 0.1MPa. The RS AZ91 alloy flakes exhibited fine and uniform microstructures. When the flakes were extruded at 673K, extruded velocity of 0.1mm/min and extrusion ratio of 25:1,the magnesium alloy rods with clean surface, uniform dimension and excellent mechanical properties were obtained.
     2. The RS AZ91 magnesium alloy powders prepared by atomization-twin rolls quenched technology exhibited fine equiaxed grains with the grain size of 1-3μm, the phase constituent included supersaturate solid solution phaseα-Mg and miner fineβ-Mg_(17)Al_(12) phase. The as-extruded materials also exhibited equiaxed grains with the size of 5-7μm and a large number of fineβ-Al_(12)Mg_(17) and fewer AlMg_2Zn phases were detected in the alloy. The yield strength, tensile strength and elongation of the alloy bars at room temperature were 383 MPa, 275 MPa and 7.5%, respectively. The fracture characterization exhibited ductile rupture.
     3. The precipitation of phases and static recrystallization phenomenon occurred in the RS/PM AZ91 magnesium alloy during thermal exposure. When the thermal exposure temperature was in the range of 118-200℃,the grain size was not changed remarkably, however, a large number ofβ-Mg_(17)Al_(12) precipitated both within the grains and on the grain boundaries. The recrystallization occurred at 200℃.As the thermal exposure temperature was blew 350℃,the grain size of the alloy still maintained invariant, but the precipitates began to remelting. When the heating temperature up to 400℃,manyβ-Mg_(17)Al_(12) phases remelted, and the grains grew up abnormally in a short time. In addition, the aging temperature and extrusion ratio had an obvious influence on the hardness and microstructures of the RS/PM AZ91 magnesium alloy.
     4. When the strain rate and deformation temperature were in the range of 0.001-1s~(-1) and 250-400℃respectively, the flow stress behavior of the RS/PM AZ91 alloy during hot compressive deformation was different from that of the cast magnesium alloys. At the stage of micro-strain, the stress raised rapidly, in which work hardening was dominant but the dynamic recovery or recrystallization phenomenon was not apparent, especially when the deformation temperature was relative lower, the hardening effect was visible. The flow stress behavior during hot compressive deformation for the RS/PM AZ91 magnesium alloy was intensively influenced by deformation temperature, and flow stress mainly exhibited power exponent relationship. In the present dissertation , the values of stress exponent n and the activation energy Q of the RS/PM AZ91 alloy during hot deformation were 8.7 and 132.6kJ/mol respectively.
     At relative low deformation temperature and high stress level, the fitting equation was:
     With relative high deformation temperature and low stress level, the fitting equation was:
     5. AZ91 magnesium alloy matrix composites reinforced by Si particles were prepared by RS/PM method. The Si particles were uniformly distributed in the composites, and during hot extrusion the reaction between silicon particles and alloy matrix occured and formed a reaction layer, in which high temperature phase Mg_2Si was present. During heat treatment process, the reaction layer between the reinforced particles and matrix was extended, and Mg_2Si obviously increased. The microhardness in the reaction zone was obviously higher than that in other zones. In addition, though the grains coarsed,the growing rate of grains in the matrix nearby reinforced particles was lower than that in other zones due to the effective suppression effect of reinforced particles on the grain growth in the matrix. For Si/AZ91 composites, there were some regularities between the properties and solution treatment time. When annealed at 450℃,the microhardness of the composite material was not visible changed with increasing the solution treatment time. Subsequently aging at 200℃for 60h, the microhardness of the material increased with aging time. As aging at 200℃for 120h with solution treatment time of 16h, the value of hardness was maximum, then decreased rapidly. Theδ、σ_b、σ_(0.2) of AZ91 magnesium alloy matrix composites reinforced by Si were 3.50%, 322MPa, 241MPa respectively at room temperature, and the mechanical properties of composites obviously decreased with increasing the content of Si particles. But the composites exhibited good mechanical properties at elevated temperatures.
     6. 2% Si/AZ91 magnesium alloy flakes reinforced by in situ Mg_2Si were prepared by atomization- twin rolls quenched technology, and the flakes were hot extruded into sheet. Theσ_b,σ_(0.2),δand G of the composite material at room temperature were 429 MPa, 322 MPa, 6.4% and 71 GPa respectively. The fracture characterization exhibited ductile rupture. The yield strength of the 2%Si/AZ91 magnesium alloy at 423K was above 240 MPa, and was equivalent with that of cast AZ91 magnesium alloy at 473K.
     7. The powders prepared by atomization-twin rolls quenching technology were mixed with the reinforced particles of SiC, Al_2O_3,ZrO_2 respectively to prepare composites by hot extrusion. The distribution of reinforced particles SiC, Al_2O_3 was relatively uniform. The yield strength, tensile strength and elongation of the SiC_p/AZ91 composites decreased with increasing the content of SiC. During hot extrusion, the interface reaction between Mg and the surface of SiC particles occurred and formed Mg_2Si. During the tensile failure, SiC particles cracked and sticky point phenomenon occurred between the SiC particles and the matrix. Al_2O_(3p)/AZ91 composites exhibited good mechanical properties at elevated temperatures. The mechanical properties of the ZrO_(2p)/AZ91 composites were influenced due to the non-uniform distribution of ZrO_2 particles in the matrix and the reaction with matrix.
引文
[1] Schumann S, Friedrich H. Current and future use of magnesium in the automotive industry. Materials Science Forum, 2003, 419-422:51
    [2] 陈振华,严红革,陈吉华等.镁合金.化学工业出版社,2004,183-338
    [3] Kainer K V. Magnesium Alloys and Their Applications. Munich: DGM, 2000:14-22
    [4] Kaplan H, Hryn J, Clow B. Magnesi-um Technology 2000. Nashville: TMS,2000: 279-284
    [5] Luo A A, Shinoda T. Magnesium Alloy Having Superior Elevated-Temperature Properties and Diecastability.IMRA America Inc,US Patent: US5855697, 1997
    [6] Mordike B L. Magnesium and Magnesium Alloys. Journal of Japan Institute of Light Metals,2001,51(1):2-13
    [7] 袁广银.轿车用耐热镁合金的应用基础研究.上海交通大学博士后研究工作报告.上海交通大学,2001,11
    [8] Mabuchi M, Iwasaki H, Yanase K, et al.Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE. Scripta Materialia, 1997, 36(6):681
    [9] Valiev R Z, Islamgaliev R K, Alexandrov I V, et al. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science, 2000,45(2):103
    [10] 郭强,严红革,陈振华等.多向锻造工艺对AZ80镁合金显微组织和力学性能的影响.金属学报,2006,42(7):740
    [11] Govind, Suseelan N, Mittal M C, et al. Development of rapidly solidified (RS) magnesium-aluminium-zinc alloy. Materials Science and Engineering A, 2001,304-306: 520-523
    [12] 刘正,张奎,曾小勤等.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002,202-205
    [13] 陈振华,夏伟军,陈吉华等.耐热镁合金.北京:化学工业出版社,2007,112-370
    [14] 徐锦锋,翟秋亚,袁森等.AZ91D镁合金的快速凝固特征.中国有色金属学报,2004,14(6):939-944
    [15] Hehmann F, Sommer F, Predel B, et al. Extension of solid solubility in magnesium by rapid solidification. Materials Science and Engineering A, 1990,125: 249-265
    [16] 陈吉华,陈振华,严红革等.快速凝固镁合金的研究进展.化工进展,2004,23(8):816-821
    [17] Hwang S M. Analysis of flow and heat transfer in Twin-Roll strip casting by finite element method. Engineering for Industry, 1995, 117(3): 304-315
    [18] Murty Y V, Adler R P I. High speed casting of metallic foils by double-roller quenching technique. Materials Science, 1982, (17): 1945-1954
    [19] Singer A R E,Roche A D, Day L, et al.Atomization of liquid metals using twin roller technique. Powder Metallurgy, 1980, (23): 81-85
    [20] Larionova T V, Park W W, You B S, et al. A ternary phase observed in rapidly solidified Mg-Ca-Zn alloys. Scripta Materialia,2001,45(1):7-12
    [21] Cahn R W著,丁道云等译.非铁合金的结构与性能,第八卷.北京:科学出版社.1999
    [22] Sugamata M, Hanawa S, Kaneko J. Structures and mechanical properties of rapidly solidified Mg-Y based alloys. Materials Science and Engineering A,1997, 226(22): 861-866
    [23] Kawamura Y, Morisaka T, Yamasaki M, et al. Structure and mechanical properties of rapidly solidified Mg_(97)Zn_1RE_2 alloys. Materials Science Forum,2003,419-422:751-756
    [24] Koike J, Kawamura Y, Hayashi K, et al. Mechanical properties of rapidly solidified Mg-Zn alloys. Materials Science Forum, 2000, 350-351: 105-110
    [25] Hondo K, Sugamata M, Kaneko J, et al. Structures and mechanical properties of rapidly solidified Mg-Ag based alloys. Japan Institue of Light Metals, 2002,52(6): 276-281
    [26] Schemme K. Rapid solidification of Mg-Li-X alloys. DGM Conference on Magnesium Alloys and Their Application. 1992, 519.
    [27] Michael M. Avedesian, Hugh Baker. ASM Speciality Handbook_Magnesium and Magnesium Alloys. ASM International, Ohio,1999, 22
    [28] Cho S S, Chun B S, Won C W, et al. Structure and properties of rapidly solidified Mg-Al alloys . Materials Science, 1999, 34(17): 4311-4320
    [29] Sanchez C, Nussbaum G,Azavant P, et al. Elevated temperature behaviour of rapidly solidified magnesium alloys containing rare earths. Materials Science and Engineering A, 1996, 221(1-2): 48-57
    [30] Akihisa I, Yoshihito K, Mitsuhide M, et al. Novel hexagonal structure and ultra high strength of magnesium solid solution in the Mg-Zn-Y system. Journal of Materials Research, 2001, 16(7): 1894-1900
    [31] Akihisa I, Yoshihito K, Mitsuhide M, etal. High strength nanocrystalline Mg-based alloys. Materials Science Forum, 2002, 386-388: 509-518
    [32] Yoshihito K, Akihisa I. Development of high strength magnesium alloys by rapid solidification. Materials Science Forum, 2003, 419-422(2): 709-714
    [33] Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg_(97)Zn_1Y_2 alloys with excellent tensile yield strength above 600MPa. Materials Transactions, 2001, 42(7): 1172-1176
    [34] Sugamata M, Hanawa S, Kaneko J. Structures and mechanical properties of rapidly solidified Mg-Y based alloys. Materials Science and Engineering A, 1997, 226-228: 861-866
    [35] Takaomi I, Tomoiro S, Yoshihito K, et al. Microstructure of high strength Mg_(97)Zn_1Y_2 alloys prepared by extrusion of gas atomized powder. Materials Science Forum, 2003, 419-422(2):721-726
    [36] Kazuaki H, Makoto S, Junichi K, et al. Structures and mechanical properties of rapidly solidified Mg-Ag based alloys. Journal of Japan Institute of Light Metals, 2002, 52(6): 276-281
    [37] Hyuk K S, Hyang K D, NackJ K. Structure and properties of rapidly solidified Mg-Al-Zn-Nd alloys. Materials Science and Engineering A, 1997, 226-228: 1030-1034
    [38] Nie J F, Muddle B C. Precipitation in Magnesium Alloy WE54 during Isothermal Ageing at 250℃. Scripta Materialia, 1999, 40: 1089
    [39] Juarez-Islas J A. Rapid solidification of Mg-Al-Zn-Si alloys. Materials Science and Engineering, 1991, A134: 1193-1196
    [40] Nussbaum G, Reggazoni G, Gjestland H. in science and Engineering of Light Metals, Proc. Int. Conf. RASELM JILM. Tokyo, 1991: 114-120
    [41] Sanchez C, Nussbaum G, Azavant P, et al. Elevated Temperature Behaviour of Rapidly Solidified Alloys Containing Rare Earths. Materials Science and Engineering, 1996, A221: 48-57
    [42] Nie J F, Muddle B C. Precipitation in Magnesium Alloy WE54 during Isothermal Ageing at 250℃. Scripta Materialia, 1999, 40: 1089-1094
    [43] Vogel M, Kraft O, Dehm G, et al. Quasi-crystalline Grain-boundary Phase in the Magnesium Die-cast Alloy ZA85. Scripta Materialia, 2001, 45: 517-524
    [44] Bae D H, Kim S H, Kim W T, et al. High Strength Mg-Zn-Y Alloy Containing Quasicrystalline Particles. Materials Transaction, 2001, 42 (10):2144-2147
    [45] Motegi T, Yano E, Tamura Y, et al.Clarification of grain refining mechanism of super-heat-treated Mg-Al-Zn Alloy Casting. Materials Science Forum, 2000,350-351:91
    [46] 郭学峰,魏建峰,张忠明.镁合金与超高强度镁合金.铸造技术,2002,23(3):133-136
    [47] Zheng M Y, Wu Q, Liang H C, et al. Microstructure and mechanical properties of aluminum borate whisker-renforced magnesium matrix composites.Materials Letters, 2002, 57: 558-564
    [48] Jayalakshmi S, Kaillas S V, Seshan S, et al. Tensile behaviour of squeeze cast AM100 magnesium alloy and its A1_2O_3 fibre reinforced composites.Composites, 2002, 33(8): 1135-1140
    [49] Jayamathya M, Kailasa S V, Kumara K, et al. The compressive deformation and impact response of a magnesium alloy: influence of reinforcement. Materials Science and Engineering A, 2005, 393:27-35
    [50] Henry Hu. Grain microstructure evolution of Mg(AM50A)/SiCp metal matrix composites. Scripta Materialia, 1998, 39(8):1015-1022
    [51] Huard G,Angers R, Krishnadev M R, et al. SiCp/Mg composites made by low-energy mechanical processing. Canadian Metallurgical Quarterly, 1999,38(3): 193-200
    [52] Hong T W, Kim S K, Park G S, et al. Fabrication of Mg_2NiHx from Mg and Ni chips by hydrogen induced planetary ball milling. Materials Transactions JIM,2000, 41(3): 393-398
    [53] Jiang Q C, Wang H Y, Ma B X, et al. Fabrication of B_4Cparticipate reinforced magnesium matrix composite by powder metallurgly. Alloys and Compounds,2005,386(1-2): 177-181
    [54] Watanabe H, Muka T, Nieth T G, et al. The low temperature superplasiticity of magnesium matrix composites. Scripta Materialia, 2000, 42(3): 249-255
    [55] 康智涛.多层喷射共沉积制备大尺寸SiC颗粒增强铝基复合材料的工艺、设备及过程原理研究:[中南大学博士学位论文].长沙:中南大学,2001,7-12
    [56] Ebert T, Moll F, Kainer K U. Spray forming of magnesium alloys and composites. Powder Metallurgy,1997, 40(2): 126
    [57] Wang H Y, Jiang Q C, Li X L et al. In situ synthesis of TiC/Mg composites in molten magnesium. Scripta Materialia, 2003, 48(9): 1349-1354
    [58] 钱志强,张荻,丁剑等.原位增强镁基复合材料研究进展与原位反应体系热 力学.材料科学与工程,2002,20(4):579-584
    [59] Lai M O,Lu L, Laing W, et al.Formation of magnesium nanocomposite via mechanical milling. Composite Structures, 2004, 66(1-4):301-304
    [60] Wang H Y, Jiang Q C, Zhao Y Q, et al. Fabrication of TiB_2 and TiB_2-TiC particulates reinforced magnesium matrix composites. Materials Science and Engineering A, 2004, 372(1-2):109-114
    [61] Wang H Y, Jiang Q C, Zhao Y Q, et al. In situ synthesis of TiB_2/Mg composite by self-propagating high-temperature synthesis reaction of the A-Ti-B system in molten magnesium. Alloys and Compounds, 2004, 379(1-2):14-17
    [62] Kondoh Katsuyoshi, Oginuma Hideki, Kimura Atsushi, et al.In-situ synthesis of Mg_2Si intermetallics via powder metallurgy process. Materials Transcations JIM, 2003, 44(5): 981-985
    [63] 武凤,朱静.石墨/镁基复合材料中的残余应变、位错及孪晶.金属学报,1998,34(5):449-454
    [64] 陈煜,吴桢干,顾民元等.石墨纤维增强镁基复合材料界面.中国有色金属学报,1997,7(3):124-126
    [65] Mingyi Zheng, Kun Wu, Congkai Yao, et al. Characterization of interfacial reaction in squeeze cast SiCw/Mg composites. Materials Letters, 2001,47(3):118-124
    [66] Feng Wu, Jing Zhu. Morphology of second-phase precipitations in carbon-fiber and graphite-fiber-reinforced magnesium-based metal-matrix- composites.Composites Science and Technology,1997, 57(6): 661-667
    [67] Braszczynska K N, Litynska L, Zyska A, et al. TEM analysis of the interfaces between the components in magnesium matrix composites reinforced with SiC particles. Materials Chemistry and Physics, 2003, 81(2-3):326-328
    [68] Cai Y, Taplin D, Tan M J, et al. Nucleation phenomenon in SiC particulate reinforced magnesium composite. Scripta Materialia,1999, 41(9): 967-971
    [69] Sasaki Gen, Yao Li Jun, Yoshida Makoto, et al. Interfaces in Al_(18)B_4O_(33)/Al,Mg alloy composites. Japan Institue of Light Metals, 1999, 63(5):577-580
    [70] 金头男,聂祚仁,李斗星等.浸渍/挤压(SiCw+B_4Cp)/Mg(AZ91)复合材料的界面特征.中国有色金属学报,2002,12(2):284-288
    [71] 郑茂盛,赵更申.关于颗粒增强金属基复合材料的协同强化.稀有金属材料与工程,1996,25(5):16-17
    [72] Lloyd D J. Particles reinforced aluminium and magnesium matrix composites.International Materials Reviews, 1994, 39:1-23
    [73] 胡连喜,李小强,王尔德等.挤压变形对SiCw/ZK51A镁基复合材料组织和性能的影响.中国有色金属学报,2000,10(5):680-683
    [74] Xi Y L, Chai D L, Zhang W X, et al.Titanium alloy reinforced magnesium matrix composite with improved mechanical properties. Scripta Materialia,2006, 54(1): 19-23
    [75] Brutinger F, Li Y, Zeschky J, et al. Stress relaxation in Mg-Al-alloys AZ31 reinforced by ceramic form. Materials Science Forum, 2003, 419-422(2):811-816
    [76] 纪秀林,王树奇,谢建华.内生颗粒增强镁基复合材料的研究现状.上海有色金属,2004,25(3):136-140
    [77] Ajay R, Vaidya, John J, et al. Effect of SiCp size and volume fraction on high cycle fatigue behavior of AZ91D magnesium alloy composites. Materials Science and Engineering A,1996, 20(1-2): 85-92
    [78] 杜军,李文芳,刘耀辉等.AZ91镁合金及其Al_2O_3纤维-石墨颗粒混杂增强复合材料的滑动摩擦磨损性能研究.摩擦学学报,2004,24(4):341-345
    [79] 孙志强,张荻,丁剑等.原位增强镁基复合材料研究进展与原位反应体系热力学.材料科学与工程,2002,20(4):579-584
    [80] 董群,陈礼清,赵明久等.镁基复合材料制备技术.性能及应用发展概况.材料导报,2004,18(4):86-90
    [81] Pollard I B. Interface structure and fractography of a magnesium alloy, Metal matrix composite reinforced with SiC particles. Materials Science, 1993, 28:4427-4434
    [82] Henry H. Grain microstructure evolution of AM50A/SiCp metal matrix composites. Scripta Materialia, 1998, 39(8):1015-1022
    [83] 李荣华,黄继华,殷声等.镁基复合材料研究现状与展望.材料导报,2002,16(8):17-19
    [84] 房文斌,张文丛,于振兴等.储氢材料的研究进展.中国有色金属学报,2002,12(5):853-862
    [85] 王辉,曾美琴,罗勘昌等.Mg基储氢合金研究进展.金属功能材料.2002,9(2):4-7
    [86] 申泽骥,李宝东.铸造镁合金熔炼技术进展.中国铸造装备与技术,2001,(6):1-4
    [87] 蔡叶,苏华钦,耿鑫明.镁合金熔炼中若干问题的研究.能源研究与利用,1994,(4):12-15
    [88] Zeng X Q, Wang Q D, Ding W J. Study on ignition proof magnesium alloy with beryllium and rare earth additions. Scripta. Mater, 2000, (43): 403
    [89] 赵云虎,王渠东,丁文江.Be对铸造镁合金组织和力学性能的影响.特种铸造及有色合金,2000,(3):9
    [90] 黄晓峰,周宏.镁合金的防燃研究进展.中国有色金属学报,2000,10(1):271-274
    [91] 翟春泉,丁文江,徐小平等.新型无公害镁合金熔剂的研制.特种铸造及有色合金,1997,(4):48-51
    [92] 翟春泉,徐小平.新型镁合金熔剂及其性能测定.热加工工艺,1996,(6):39-40
    [93] 崔忠圻,刘北兴.金属学与热处理原理.哈尔滨工业大学出版社,1998:60-61
    [94] 陈绪宏,丁培道,杨春楣.双辊快速凝固AZ31镁合金薄带实验研究.轻合金加工技术,2003,31(5):19-22
    [95] 谢贤清,虞觉奇,刘金水.双辊快速凝固技术的研究进展.金属成型工艺,1998,16(6):43-47
    [96] 陈明安,卓利,张新明.AL-12.6%Si薄带双辊快速凝固成型实验研究.材料工程,1994,(4):32-35
    [97] Czerwenski F. Magnesium alloy particulates for Thixomolding applications manufacture by rapid solidification. Materials Science and Engineering A367,2004, 261-271
    [98] 徐锦峰,翟秋亚.快速凝固AZ91D镁合金的相结构及位错.稀有金属材料与工程,2004,33(8):835-838
    [99] Jones H. Rapid Solidification of Metals and Alloys. London, UK,1982
    [100] Govind, Suseelan Nair K. Development of rapidly solidified (RS) magnesium-aluminum-zinc alloy. Materials Science and Engineering A304-306,2001, 520-523
    [101] 陈倬麟.单辊快速凝固装置与Mg-5%Zn合金快速凝固组织:[西安理工大学硕士].西安:西安理工大学,2003,42-43
    [102] 陈振华.变形镁合金.北京:化学工业出版社,2005,116-119
    [103] Ohtoshi K. Changes in Mechanical Properties and Crystallographic Textures with the Rolling Conditions of the AZ31 Magnesium Alloy Sheets[J]. Journal of Japan Institute of Light Metals, Vo1.51, No10,Oct. 2001,51(10):534-538
    [104] 黄正华,郭学锋,张忠明.快速凝固AZ91D镁合金组织的研究[J].材料热处理学报,2005,26(1):32-35
    [105] Govind, Suseelan Nair K. Development of rapidly solidified (RS) magnesium-aluminum-zinc alloy. Materials Science and Engineering A304-306, 2001,520-523
    [106] 诺维柯夫ии.金属热处理理论.北京:机械工业出版社,1987,311
    [107] Zhang M X, Kelly P M. Crystallography of Mg17A112 precipitates in AZ91D alloy. Scripta Materialia, 2003, 48: 647-652
    [108] Wang R M, Eliezer A, Gutman E, et al.Microstructures and dislocations in the stressed AZ91D magnesium alloys. Materials Science and Engineering A, 2003,344(1-2): 279-287
    [109] Galiyev A, Kaibyshev R, Sakai T, et al. Continuous dynamic recrystallization in magnesium alloy. Materials Science Forum, 2003, 419-422(1): 509-514
    [110] Tan J C, Tan , M J, et al. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3A1-Zn alloy sheet. Materials Science and Engineering A, 2003, 399(1-2): 124-132
    [111] Koike J, Ohyama R, Kobayashi T, et al. Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523K. Materials Transactions JIM,2003, 44(4): 445-451
    [112] Kaibyshev R, Galiyev A, Sitdikov O,et al. On the possibility of producing a nanocrystalling structure in magnesium and magnesium alloys. Nanostructured Materials, 1995, 6(5-8): 621-624
    [113] Galiyev A, Kaibyshev R, Gottstein G, et al. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Materialia, 2001,49(7): 1199-1207
    [114] 杨平,孟利,毛为民等.利用道次间退火改善镁合金轧制成形性的研究.材料热处理学报,2005,26(2):34-38
    [115] 余琨,黎文献.Mg-Al-Zn系变形镁合金轧制及热处理后的组织与性能.金属热处理,2002,27(5):8-11
    [116] Mathis K, Trojanova Z, Luka P, et al. Deformation behaviour of Mg-Al-Mn alloys at elevated temperatures. Metallurgia Italiana, 2002, 93(1):33-36
    [117] 彭伟平,彭彩虹,李培杰等.AZ31B镁合金再结晶过程的动力学.中国有色金属学报,2006,16(10):1725-1728
    [118] 米国发,曾松岩,蒋祖龄等.快速凝固二元Al-Cr合金的退火组织及显微硬度.金属学报,1994,30(1):A25-A28
    [119] 张昊,张辉,陈振华等.AM60镁合金的高温热压缩流变应力行为的研究[J].矿业工程,2006,26(6):92-94
    [120] Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater. 2001, 49:1199-1207
    [121] Yang X, Miura H, Sakai T. Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation. Materials Transactions, 2003, 44: 197-203
    [122] Takuda H, Fujimoto H, Hatta N. Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures. Mater. Processing Technol., 1998, 80-81: 513-516
    [123] McQueen H J, Yue S, Ryan N D, et al. Hot Working Characteristics of Steels in Austenitic State. J Mater Process Technol,1995,53:293-310
    [124] Castro-Fernandez F R, Selllars C M, Whiteman J A. Change of Stress and Microstructure during Hot Deformation of Al-Mg-lMn,Mater Sci and Technol, 1990,6(5):453-460
    [125] Shi H, Mclaren J, Sellers C M, et al. Constitutive Equations for High Temperature Flow Stress of Aluminum Alloys. Mater Sci. and Technol, 1997, 13(3): 210-216
    [126] Sellars C M, Tegart W J McG. La Relation Entre la Resistance et la Structure Dans le Deformation a Chaud. Mem Sci Rev Metall, 1966, 63:731-746
    [127] Kreuss G. Deformation Processing and Structure, Ohio, American Society for Metal, 1984: 109-230
    [128] Zener C, Hollomon J H. Effect of Strain Rate upon the Plastic Flow of Steel .J Appl. Phys., 1944, 15(1): 22-32
    [129] Barnett M R. RecrystalIization during and following hot working of magnesium alloy Dahle AK, Lee YC, Nave MD, Schaffer PL, St John DH. Development of the as-cast microstructure in magnesium-aluminum alloys. J Light Metals, 2001, 1:61-72
    
    [130] Polmear I J. Magnesium alloys and applications. Mater Sci Technol, 1994, 10:1
    [131] Han B Q, Dunand D C. Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids. Mater Sci Eng, A Struct Mater: Prop Microstruct Process, 2000, 277: 297-304
    [132] Wang H Y, Jiang Q C, Li X L, et al. Effect of Al content on the self-propagating high-temperature synthesis reaction of Al-Ti-C system in molten magnesium. J Alloys Compd , 2004, 366: 9-12
    [133] Kim J M, Shin K, Kim K T, et al. Microstructure and mechanical properties of a thixocast Mg-Cu-Y alloy. Sci. Mater., 2003, 49: 687-691
    [134] Mabuchi M, Higashi K. Strengthening mechanisms of MgSi alloys. Acta Mater, 1996,44:4611-4618
    [135] Mabuchi M, Kubota K, Higashi K. Tensile strength, ductility and fracture of magnesium-silicon alloys. J. Mater Sci., 1996, 31: 1529-1535
    [136] Mabuchi M, Kubota K, Higashi K. High strength and high strain rate superplasticity in a Mg-Mg2Si composite. Scr. Metall. Mater., 1995, 33: 331-335
    [137] Mabuchi M, Kubota K, Higashi K. Elevated temperature mechanical properties of magnesium alloy containing Mg_2Si. Mater Sci Technol, 1996,12:35-39
    [138] Lu L, Thong K K, Gupta M. Mg-based composite reinforced by Mg_2Si.Compos Sci Technol, 2003, 63: 627-632
    [139] Lu Y Z, Wang Q D, Zeng X Q, et al.Behavior of Mg-6Al-xSi alloys during solution heat treatment at 420℃. Mater Sci Eng, A Struct Mater: Prop Microstruct Process, 2001,301:255-258
    [140] Pierre D, Peronnet M, Bosselet F, et al. Chemical interaction between mild steel and liquid Mg-Si alloys. Mater Sci Eng, B, Solid-State Mater Adv Technol,2002,94: 186-195
    [141] Lu L, Lai M O,Hoe M L. Formation of nanocrystalline Mg_2Si and Mg_2Si dispersion strengthened Mg-Al alloy by mechanical alloying. Nanostruct Mater,1998, 10: 551-563
    [142] Zhang J, Fan Z, Wang Y Q, et al. Microstructural development of Al-15 wt.% Mg_2Si in situ composite with mischmetal addition. Mater Sci Eng, A Struct Mater: Prop Microstruct Process, 2000, 281:104-112
    [143] Beer S, Frommeyer G,Schmid E. Magnesium alloys and their applications.Oberursel, Germany7 DGM Informations-gesellschaft m.b.H, 1992: 317
    [144] Wang H Y, Jiang Q C, Ma B X, et al. Modification of Mg_2Si in Mg-Si alloys with K_2TiF_6,KBF_4 and KBF_4+K_2TiF_6.J Alloys Compd, 2005, 387:105-108
    [145] Jiang Q C, Wang H Y, Wang Y, et al. Modification of Mg_2Si in Mg-Si alloys with yttrium. Mater Sci Eng, A Struct Mater: Prop Microstruct Process, 2005,392:130-135
    [146] Kim J J, Kim D H, Shin K S, et al. Modification of Mg_2Si morphology in squeeze cast Mg-Al-Zn-Si alloys by Ca or P addition. Scr Mater, 1999,41:333-340
    [147] Zhang J, Fan Z, Wang Y Q, et al. Microstructural evolution of the in situ Al-15 wt.% Mg_2Si composite with extra Si contents. Scr Mater ,2000, 42:1101-1106
    [148] 马福康.等静压技术.第一版.北京:冶金工业出版社,1991,27
    [149] Ferguson B L. Emerging alternatives to hot isostatic pressing. Int. J. Powder Metallurgy & Powder Technology,1985,21(3):201-218
    [150] 刘咏,周科朝,黄伯云等.粉末冶金成形技术-陶瓷模工艺.材料导报,1996,4:19-23
    [151] Pryds N H, Hattel J H, Pedersen T B, et al. Emerging alternatives to HIP. Acta Materials, 2002, (50): 4075
    [152] Ecer G M, Sakarcan M, Yeltekin S. Metals joining and coating using the Ceracon process. ASM, 1985, 9: 221-231
    [153] Yichuan Pan, Xiangfa Liu, Hua Yang. Microstructural formation in a hypereutectic Mg-Si alloy. Materials Characterization, 2005, (55): 241-247
    [154] Liao Lihua, Zhang Xiuqin, Li Xianfeng. Effect of silicon on damping capacities of pure magnesium and magnesium alloys. Materials Letters 61 (2007) 231-234
    [155] Lihua Liao, Xiuqing Zhang, Haowei Wang. Influence of Sb on damping capacity and mechanical properties of Mg2Si/Mg-9Al composite materials. Journal of Alloys and Compounds, 2007, 430: 292-296
    
    [156] Hassan S F, Gupta M. Development of high performance magnesium nano-composites using nano-Al_2O_3 as reinforcement. Materials Science and Engineering A, 2005, 392: 163-168
    [157] Yuan Guangyin, Liu Manping, Ding Wenjiang, et al. Microstructure and mechanical properties of Mg-/Zn-/Si-based alloys. Materials Science and Engineering A, 2003, 357: 314-320
    [158] Lu L, Thong K K, Gupta M. Mg-based composite reinforced by Mg_2Si. Composites Science and Technology, 2003, 63: 627-632
    [159] H.Y. Wang, Q.C. Jiang, Y. Wang , B.X. Ma, F. Zhao. Fabrication of TiB_2 paniculate reinforced magnesium matrix composites by powder metallurgy [J]. Materials Letters, 2004, 58: 3509-3513
    
    [160] 陈振华, 夏伟军,陈吉华等. 耐热镁合金.北京: 化学工业出版社, 2007, 112-370
    [161] Hyo S Lee, Kyung Y Jeon, Hee Y Kim, et al. Fabrication process and thermal properties of SiC_p/Al metal matrix composites for electronic packaging applications. Journal of Materials Science, 2000, 35(24): 6231-6236
    [162] Hu Lianxi, Wang Erde. Fabrication and mechanical properties of SiC_w/ZK51A magnesium matrix composite by two-step squeeze casting. Materials Science and EngineeringA, 2000, 278: 267-271
    [163] Henry Hu. Grain microstructure evolution of Mg(AM50A)/SiC_p metal matrix composites. Scripta Materialia, 1998, 39(8): 1015-1022
    [164] Schroder J, Kainer K U. Characterization of P/M Magnesium-SiC_p-Compsites Processed by Spray Forming. Powder Forging and Extrusion of Composite Powder Mixtures, in Aldinger F(ed). Materials by Powder Technology. PJM193. Oberursel: DGM- Infornation Syesellschatf, 1993, 739
    [165] Ebert T, Moll F, Kainer K U. Spray Forming of Magnesium Alloys and Composites. Powder Metallurgy, 1997, 40(2): 126
    [166] Noguchi A, Ezawa I, Kaneko J, Suqamata M. SiCp/Mg-Ce and Mg-Ca alloy composites obtained by spray forming. Journal of Japan Institute of Light Metals, 1995,45(2):64-69
    [167] Veroort P J, Duszczyk J. Extrusion of Spray Deposited Magnesium Alloys and Composites, in John V Wood(ed). Proceedings of the Second International Conference on Spray Forming. Cambridge: Woodhead Publishing Ltd, 1993: 409-425
    [168] Hassan S F, Ho K F, Gupta M. Increasing elastic modulus, strength and CTE of AZ91 by reinforcing pure magnesium with elemental copper. Materials Letters, 2004, 58(16): 2143-2146
    [169] Ferkel H, Mordike B L. Magnesium strengthened by SiC nanoparticles. Materials Science and Engineering A, 2001, 298 :193-199
    [170] Li LO, Lai M O, Gupta M, et al. Improvement of microstructure and mechanical properties of AZ91/SiC composite by mechanical alloying. Journal of Materials Science , 2000, 35 .5553-5561
    [171] Watanabe H, Mukai T, Nieh T G, et al. The low temperature superplasiticity of magnesium matrix composites. Scripta Materialia, 2000, 42 (3): 249-255
    [172] Jiang Q C, Wang H Y, Ma B X, et al. Fabrication of B_4C participate reinforced magnesium matrix composite by powder metallurgy. Journal of Alloys and Compounds, 2005, 386(1-2): 177-181
    [173] Sheng S, Chen Z, Chen D, et al. The microstructures and mechanical properties of rapidly solidified and powder metallurgy AZ91 alloy. Metall, 2008,1-2:47-50
    [174] Shibata T, Kawanishi M, Nagahora J, et al. High Specific Strength of Extruded Mg-Al-Ga Alloys Produced by Rapid Solidification Processing. Mater Sci Eng A, 1994, 179-180:632-636
    [175] Ye Haizhi, Liu Xingyang. Review of recent studies in magnesium matrix composites. Journal of Materials Science , 2004, 39: 6153-6171
    [176] Cai Y, Tan M J, SHEN G J, et al. Microstructure and heterogeneous nucleation phenomena in cast SiC particles reinforced magnesium composite. Materials Science and Engineering A, 2000, 282(1-2): 232-239
    
    [177] 秦蜀懿, 张国定. 如何韧化颗粒增强金属基复合材料. 机械工程材料, 1998, 22(3): 1-4
    [178] Gutman I, Gotman I, Shapiro M. Kinetics and mechanism of periodic structure formation at SiO_2/Mg interface. Acta Materialia, 2006, 54: 4677-4684
    [179] Mingyi Zheng, Kun Wu, Congkai Yao. Effect of interfacial reaction on mechanical behavior of SiCw/AZ91 magnesium matrix composites. Materials Science and Engineering, 2000, A318: 50-56
    [180] Jinhai Gu, Xiaonong Zhang, Yongfu Qiu. Damping behaviors of magnesium Matrix composites reinforced with Cu-coated and uncoated SiC particulates. Composites Science and Technology, 2005 (65): 1736-1742
    [181] Urena A, Gomez J M, Escalera M D. Influence of Metal-Ceramic Interfaces on the Behavior of Metal Matrix Composites and Their Joints. Key. Eng. Mater, 1997, 127-131:687-694
    [182] Seshan S, Jayamathy M, Kailas S V, et al. The tensile behavior of two magnesium alloys reinforced with silicon carbide particulates. Materials Science and Engineering A, 2003, 363(1-2): 345-351
    [183] Taya M, Lulay K E, Lloyd D J, et al. Strengthening of a particulate metal matrix composite by quenching. Acta Metallurgical Materialia, 1991, 39(1): 73-78
    [184] Wang Z R, Zhang R J. Mechanical-behavior of cast particulate SiC/Al (A356) metal matrix composite. Metallurgical Transactions A, 1991, 22(7): 1585- 1593
    [185] Singh P M, Lewandowski J J. Effects of heat-treatment and reinforcement size on reinforcement fracture during tension testing of a SiC(p) discontinuously reinforced aluminum-alloy. Metallurgical Transaction A, 1993, 24(11): 2531-2535

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700