用户名: 密码: 验证码:
不可逆过程热力学在冶金中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冶金过程存在着大量的不可逆现象。例如,火法冶金和湿法冶金的传热、传质和化学反应都是不可逆过程。应用不可逆过程热力学理论研究冶金体系发生的不可逆过程,具有重要的理论和实际意义。
     应用不可逆过程热力学理论,根据不可逆过程热力学力和热力学通量之间存在函数关系的假设,建立了均相只存在单一化学反应体系的不可逆过程热力学的化学反应速率方程。和线性热力学不同的是方程中含有高次项。将建立的动力学方程应用于气相体系中的化学反应—水煤气反应和一氧化氮的氧化反应。对于水煤气反应而言,得到与实验数据吻合的五次关系式;而一氧化氮的氧化反应,则得到与实验数据吻合的三次关系式。将建立的动力学方程应用到液相反应体系中去,对于高锰酸钠氧化苯酚和苯胺的反应,均得到了在不同初始条件下,与实验数据吻合的三次关系式。
     利用不可逆过程热力学理论推导了扩散过程的动力学方程,描述了三组分溶液的耦合扩散,利用Hankel变换,求出了解析解,通过实例计算和分析,说明当交互扩散系数达到主扩散系数的5%~7%时,耦合扩散对组分迁移和浓度的影响不容忽略。
     建立了均相存在化学反应和扩散体系的动力学反应方程,将建立的方程应用于双氧水分解反应,得到了298K以及308K和实验数据吻合的四次关系式,并分析了温度对拟合关系式次数的影响。
     建立了液—液相反应体系化学反应控制、扩散控制、化学反应和扩散共同控制的动力学方程。在渣金体系的氧化锰还原反应中应用动力学方程,得到了和实验数据吻合的三次关系式。对于无固体产物生成的气—固相反应建立了化学反应、扩散以及化学反应和扩散共同为限制步骤条件下的动力学方程,将动力学方程应用于二氧化钛加碳氯化的反应,在1073K和1273K得到了与实验结果吻合的二次拟合关系式,讨论了温度和唯象系数之间的关系。建立了固—固相反应的动力学模型,并应用于固相合成钛酸锶反应,证明了在1061K~1207K范围内,固相合成钛酸锶反应主要由扩散控制。应用于二氧化硅和碳酸钡反应,得到了与实验吻合的四次关系式。建立了浸出过程的动力学模型,研究了三氯化铁溶液浸出锌精矿的反应,结果表明从328K到368K逐渐由化学反应控制过渡到扩散控制。
Irreversible phenomena are common in the metallurgical systems. Heat transfer, mass transfer and chemical reactions in pyrometallurgy and hydrometallurgy are typical cases of irreversible processes. It is significant in theory and practice to introduce thought and method of thermodynamics of irreversible processes to metallurgical systems.
    Based on the assumption which the thermodynamic flow is the function of the thermodynamic forces in the theory of irreversible processes, a chemical rate equation was set up in single chemical reaction homogeneous system. The equation is different from that of linear thermodynamics theory because of its high term. The equation has been applied to water-gas reaction with a quintic expression obtained in high conformity to measured data. The thrice expression was obtained in agreement with the experimental data when the equation was used to the reaction of nitrogen monxide and oxygen .The equation was applied to sodium permanganate for phenol destruction and sodium permanganate for aniline destruction separately, the thrice expressions which were conformed to the experimental data were obtained at different initial reaction conditions in different reaction systems.
    The coupled diffusion model was given according to irreversible thermodynamics. The coupled three-components liquid diffusion was investigated and the rigorous solutions of the model subject to the homogeneous boundary conditions of the first kind were derived by employing Hankel transform technique and the standard technique resolving ordinary differential system. Then the case computations were conducted. The calculation results showed that when the cross coefficients were close to 5%-7% of the main coefficients, the significant effect of coupled diffusion on the concentration profiles of components was observed.
    The kinetic equation was given to express the reaction rate in homogeneous system including chemical reaction and diffusion by irreversible thermodynamics. The equation was applied to the catalytic reaction of hydrogen peroxide, some quartic expressions were obtained in conformity to the experimental data at 298K and 308K correspondingly. The influence of temperature on term was discussed
    The kinetic equation was set up at different control factors in liquid-liquid system, and applied to the manganese oxidation reduction reaction. The obtained thrice
引文
1.李如生.非平衡态热力学和耗散结构[M],北京:清华大学出版社,1986,1,8,51
    2.曾丹苓.工程非平衡热动力学[M],北京:科学出版社,1991,1-2,6
    3.赵学庄.化学反应动力学原理[M],北京:高等教育出版社,1984,3-4
    4.梁英教.物理化学[M],北京:冶金工业出版社,1992
    5.普里戈金,斯唐热著,曾庆宏译.从混沌到有序:人与自然的新对话[M],上海:上海译文出版社,2005.1-5
    6.许越编.化学反应动力学[M].北京:化学工业出版社,2005,1-2
    7.国家自然科学基金委员会编.冶金与矿业科学[M],北京:科学出版社,1997,27-38
    8.[英]德格鲁脱 SR,梅休尔 P.非平衡态热力学[M],陆全康译,上海:上海科学技术出版社,1981,1-2,24,27,32,348-364
    9. Kedem O, Katchalsky A. Pemeability of composite membranes. Part 1 Electric current volume flow of solute through membranes[J], Trans Faraday Soc, 1962,59:1918-1953
    10. Katchalsky A. Canan P F. Nonequilibrium thermodynamics in biophysics[M], Massachusetts: Harvard University Press, 1965
    11. Spiegler K S, Kedem O. Thermodynamics of hyperfiltration (reverse osmosis)[J], Criteria for efficient membranes desalination, 1996,1: 311-326.
    12.张子富,姜美莎,王恒,薛凤.水合氧化锆-聚丙烯酸动态膜上的传输性质研究 1.染料-盐-水体系[J],辽宁大学学报(自然科学版),2005,32(3):215-217
    13. Forland K S, Forland T, Kjelstrup S. Irreversible thermodynamics theory and applications[M], New York: John Wiley & Sons, 1988, 131-192
    14.李如生,万荣.非平衡非线性化学[J],化学进展,1996,8(1):17-29
    15.李如生.生命现象与化学耗散结构[J],生物化学与生物物理进展,1990,17(1):19-23
    16. Caplan S R, Essig A. Bioenergetics and linear nonequilibrium thermodynamics-the steady state[M], Massachusetts: Harvard University Press, 1983
    17. John L H, Matthew N. Biological energy-coupling in terms of irreversible thermodynamics[J], Biological and molecular biology education, 2000,28: 301-303
    18. Edwin H B. The development of direct and indirect methods for the study of the thermodynamics of microbial growth[J], Thermochimica Acta, 1998,309: 17-37
    19. Prigogine I. From being to becoming[M], San Francisco: W H Freeman and Comp, 198020.白永平.甘肃省武威市绿洲生态环境综合评价及整治方略[J],地理科学,2000,20(3):251-258
    21.周念青.基于GIS的徐州市地下水资源管理研究[D],南京大学博士论文,2001
    22. Gidaspow D. Two phase transport and reactor safety[M], New York: Hemisphere Publishing Corp, 1978: 283
    23.李守德.不可逆热力学理论在多孔介质渗流问题中的应用研究[D],浙江大学博士论文,2003
    24. Kirkwood J G, Crawford J B. Phys Chem, 1952, 56: 1048-1051
    25.范镜泓,高芝晖.非线性连续介质力学基础[M],重庆:重庆大学出版社,1987
    26. Park S W, Schapery R A. A viscoelastic constitutive model for particulate composites with growing damage[J], Int J Solids Structures, 1997,34(8): 931-947
    27. Castrenze Polizzotto, Guido Borino. A thermodynamics-based formulation of gradient-dependent plasticity[J], Eur J Mech A, 1998, 17: 741-761
    28. Perera R, Carnicero A, Alarcon E, Gomez S. A fatigue damage model for seismic response of RC structures[J], Computers & Structures, 2000,78: 293-302
    29.曹标,陈振华,高英俊.金属及合金非平衡凝固的热力学行为分析[J],中国有色金属学报,1998,8(1):15-19
    30.周尧和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社,1998
    31.陈忠伟,坚增运,介万奇.非平衡态热力学与动力学[J],西安工业学院学报,2001,21(2):142-149
    32. Paltridge G W. The steady state format of global climate[J]. Quart J R Meteor Soc, 1978, 104: 927-945
    33. Paltridge G W. Thermodynamics dissipation and the global climate system[J]. Quart J R Meteor Soc, 1981, 107: 531-547
    34. Dutton J A. The global thermodynamics of atmospheric motion[J], Tellus,1973, 25: 89-110
    35. Grassl H. The climate at maximum entropy production by meridian atmospheric and oceanic heats fluxes[J]. Quart J R Meteor Soc, 1981, 107: 153-166
    36. Shutts G J. Maximum entropy production states in quasiegestrophic dynamical model[J], Quart J R Meteor Soc, 1981, 107: 503-520
    37. Nicolis G, Nicolis C. On the entropy balance of the earth atmosphere system[J], Quart J R Meteor Soc, 1980, 106: 691-706
    38. Stephens G I, Brien D M O. Entropy and climate Ⅰ. ERBE observations of the entropy production of the earth[J], Quart J R Meteor Soc, 1993, 119; 121-152
    39. Brien D M O, G I Stephens. Entropy and climate Ⅱ: Simple models[J], Quart J R??Meteor Soc, 1995, 121: 1773-1796
    40. Noda A, Tokioka T. Climate at minimum of the entropy exchanges rate[J], J Meteor Soc Japan, 1983, 61: 894-907
    41. Duane G S, Curry J A. Entropy of a connecting water-air system and the interpretation of cloud morphogenesis[J], Quart J R Meteor Soc, 1997, 123: 605-629
    42.钱维宏.大气中的耗散结构与对流运动[J],大气科学,1992,16:84-91
    43.仪垂祥.大气系统中的熵[J],大气科学,1989,13:367-372
    44.胡隐樵.非平衡态大气热力学的研究[J],高原气象,1999,18(3):306-319
    45.於崇文,骆庭川,鲍征宇.南岭地区区域地球化学[M],北京:地质出版社,1987,1-543
    46.於崇文.揭示地质现象的本质与核心—地质作用与时空结构[J],地学前缘(中国地质大学,北京),2000,7(1):2-12
    47.胡松涛,李绪泉,廉乐明.致密毛细多孔体干燥中传热传递过程的研究[J],南京林业大学学报,1997,21(s):232-235
    48.胡松涛,廉乐明,李力能.封闭空腔复合传热过程热力学力和流的研究[J],哈尔滨建筑大学学报,1999,32(3):68-71
    49.曾丹苓,王飞,刘朝.利用非平衡热力学理论研究过热液中气泡的成长[J],中国科学(A),1997,27(10):922-929
    50.马友光,汪晓红,成弘,余国琮.气泡传质过程近界面非稳态特性及其热力学研究[J],化学工程,2000,28(4):7-10
    51. Ross J, Hunt K L C, Hunt P M. Thermodynamics far from equilibrium: reactions with multiple stationary states[J], J.Chem.Phys., 1988, 88(4): 2719-2729
    52. Ross J, Garciacolin L S. Thermodynamics of chemical systems far from equilibrium[J], J.Phys.Chem., 1989, 93: 2091-2092
    53.张旭,陈沛霖.直接蒸发冷却过程不可逆热动力学分析[J],同济大学学报,1995,23(6):638-643
    54.冯邦彦,周孟亮.熵、耗散结构理论与我国国有银行改革分析[J],山西财经大学学报,2005,27(1):85—89
    55.赵玉祥,沈颐身.现代冶金原理[M],北京:冶金工业出版社,1993,1-5
    56.肖兴国,谢蕴国.冶金反应工程学基础[M],北京:冶金工业出版社,1997,1-3
    57.肖兴国.冶金反应工程学[M],沈阳:东北工学院出版社,1989,1-7
    58.莫鼎成.冶金动力学[M],长沙:中南大学出版社,1987,10-20
    59.翟玉春,刘喜海,徐家振.现代冶金学[M],北京:电子工业出版社,2000,1-507
    60. Nagata K, Goto K S. Transport coefficients of ions and interdiffusivties in multicomponent ionic solution of CaO-SiO_2-Al_2O_3 at 1500℃[J], J. Electrochem.??Soc.:Electrochemical Science and Technology, 1976, 123(13): 1814-1820
    61.向井楠宏,古河洋之,土川孝.Fe移行时溶铁—间—界面张力関—考察[J],铁钢,1978,(2):215-224
    62. Yao Y L. Thermodynamics of parabolic time rate law of oxidation of metals[J]. J Chem Phys, 1965, 43: 3050
    63.中井弘.铸铁高温度各种硫黄腐蚀[J].铁钢,1962,41(11):1613
    64.翟玉春.用不可逆过程热力学讨论铸铁在含硫气体中的腐蚀问题[J].中国腐蚀与防护学报,1987,7(2):127
    65. Yokokawa H, Sakai N, Kawada T. Chemical potential diagrams for Fe-Cr-Li-K-C-O systems: thermodynamic analysis on reaction profiles between alloys and alkali carbonate [J], J Electrochem Soc, 1993, 140(12): 3565-3577
    66.苏春辉,端木庆铎,王艳,肖璇,隋智通.稀土氧化物在透明陶瓷晶界浓度分布的非平衡态热力学分析[J],硅酸盐学报,1998,26(6):802-807
    67.杨镏栓,杨根仓.深过冷条件下均质形核的非平衡态热力学探讨[J],材料科学与工程,1994,12(3):28
    68.王季陶.非平衡定态相图—人造金刚石的低压气相生长热力学[M],北京:科学出版社,2000,186-205
    69. Wang J T, Carlsson O. A thermochemical model for diamond growth from the vapor phase[J], Surf Coat Technol, 1990, 43: 1-9
    70.王季陶,郑培菊.人造金刚石低压合成的非平衡定态相图研究[J],科学通报,1995,40(11):1056
    71. Wang J T, Huang Z Q, Wan Y Z, Zhang D W, Jia H Y. Thermodynamic coupling effect and catalyst effect for the artificial diamond growth[J], J Materials Research, 1997, 12(6): 1530-1535
    72. Wan Y Z, Zhang D W, Liu Z J, Wang J T. Effect of temperature and pressure on the CVD diamond growth from C-H-O system[J], Applied Physics A, 1998, 67(2): 225-231
    73. Liu Z J, Zhang D W, Zhang J Y, Wan Y Z, Wang J T. Thermodynamics of diamond film deposition at low pressure from chlorinated precursors[J], Applied Physics A, 1999, 68(3): 359-362
    74. Ohguchi S, Robertson D G C, Deo B. Simultaneous dephosphorization and desulphurization of molten pig iron[J], Ironmaking Steelmaking,1984,11(4): 202-213
    75. Robertson D G C, Deo B, Ohguchi S. Multicomponent mixed transport control theory for kinetics of coupled slag/metal and slag/metal/gas reactions: Application to??desulphurization of molten iron[J], Ironmaking Steelmaking, 984, 11(1): 41-55
    76.魏季和,胡汉涛.冶金过程与非平衡态热力学[J],包头钢铁学院学报,2002,21(3):197-202
    77.程云霞.转炉炼钢脱碳过程的非平衡态热力学模型[D],北京科技大学硕士学位论文,2005
    78. Wei J H, Mitchell A. Changes in composition during A. C. ESR Part Ⅰ Theoretical mass transfer model[J], Chinese J Met Sci Technol, 1986, 2(1): 11-23
    79. Wei J H, Mitchell A. Changes in composition during A. C. ESR Part Ⅱ Laboratory result and analysis[J], Chinese J Met Sci Technol, 1986,2(1):24-31
    80.魏季和,Mitchell A.工业规模电渣重熔过程的传质模型分析[J],金属学报,1987,23:126-134
    81. Wei J H. Oxidation of alloying elements during ESR of stainless steel[J], Chinese J Met Sci Technol, 1989,5(4):235-246
    82. Jonsson L, Grip C E, Johansson A. Three phase (steel, slag, gas) modeling of the CAS-OB process[J], Steelmaking Conference Proc,1997,80:69-82
    83. Jonsson L, Sichen D, Jonsson P. A new approach to model sulphur refining in a gas stirring ladle-A couple CFD and thermodynamic model[J], ISIJ Int, 1998,38(3):260-267
    84. Solhed H, Alexis J, Sjostrom U. Application of mathematical modeling at MEFOS to improve metallurgical processes[J], Scan J Metallurgy, 2000,29:127-138
    85. Andersson M A T, Jonsson L T I, Jonsson P. A thermodynamic and kinetic model of reoxidation and desulphurization in the ladle furnace[J], ISIJ Int, 2000, 40: 1080-1088
    86. Traebert A, Modigell M, Monheim P. Development of a modeling technique for non-equilibrium metallurgical processes[J], Scand J Metallurgy, 1999,28:285-290
    87. Alkire R, Cangellari A. Effect of benzotriazole on the anodic dissolution of iron in the presence of fluid flow[J], J. Electrochem. Soc., 1998, 135(10): 2441-2446
    88. Russell P P, Newman J. Experimental determination of the passive-active transition for iron in 1M sulfuric acid[J], J. Electrochem. Soc.,1983, 130(3): 547-553
    89. Sazou D, Pagitsas M. Periodic and aperiodic current oscillations induced by the presence of chloride ions during electrodissolution of a cobalt electrode in sulphuric acid solutions [J], J. Electroanal. Chem., 1991,312: 185-203
    90.杨怀玉.碳钢在H_2S溶液中的腐蚀及咪唑啉缓蚀作用的研究[D],沈阳:中国科学院金属腐蚀与防护研究所,1999
    91.宋光铃,曹楚南,林海潮.腐蚀电极阳极过程稳定性的非线性非平衡热力学分析[J],腐蚀科学与防护技术,6(3):201-20892.徐采栋,林蓉.不可逆过程热力学在冶金中的应用[J],有色金属,1982,(1):27-33
    93.薛万华,杨宏秀.谈谈热力学[J],化学通报,2000,(3):55-57
    94.翟玉春.非平衡态冶金热力学[J],中国稀土学报,2000,18:26-40
    95.翟玉春.浅谈不可逆过程热力学及其在冶金中的应用[C],中国有色金属学会第一届全国冶金物理化学学术年会论文集,长沙:中南工业大学,1986,519-533
    96. Fenimore C P, Jones G W. The reaction of hydrogen atoms with carbon dioxide at 1200~1350°K[J], J Phys Chem, 1958, 62: 1578-1581
    97. Fenimore C P, Jones G W. Determination of hydrogen atoms in rich, flat, premixed flames by reaction with heavy water[J], J Phys Chem, 1958, 62: 693-695
    98.梁英教,车荫昌.无机物热力学数据手册[M],沈阳:东北大学出版社,1993,449-479
    99.王沫然.MATLAB6.0与科学计算[M],北京:电子工业出版社,2001,57-76
    100. Ashore P G, Burnett M G, Tyler B J. Reaction of nitric oxide and oxygen[J], Trans. Faraday.Soc., 1962, 58(4): 685-691
    101. Omeal C R. Particle-Particle Interaction[M]. New York: Aquatic surface chemistry willey-interscience, 1989
    102. Mohamad R F. Preozonation as an aid in the coagulation of humic substance-optimum preozonation does[J]. Water Research, 1989, 23(3): 307-401
    103.马军,李圭白.高锰酸钾的氧化助凝效能研究[J],中国给水排水,1992,8(4):4-7
    104.任广军,翟玉春,田彦文,张春丽,王昕.高锰酸钠氧化法去除水中苯酚的研究[J],当代化工,2004,33(1):1-3
    105.翟玉春,任广军,田彦文.高锰酸钠去除水中苯胺的动力学[J],环境科学与技术,2004,27(3):80-81
    106. Vandenberg G B, Smolders C A. Diffusional phenomena in membrane separation processes[J], J Membrane Sci, 1992, 73: 103-118
    107. Patricia E G, Amelia C R. A model for determination of multiocomponent diffusion coefficients in food[J], J Food Engng, 2003, 56: 401-410
    108. Bochet R, Meverl R. A numerical inverse method for calculation the interdiffusion coefficients along a diffusion path in ternary systems[J] Acta Materials, 2002, 50: 4887-4900
    109. Oleg O M, Alexander A S. Verifying reciprocal relations for experimental diffusion coefficients in multicomponent mixtures[J], Fluid Phase Equilibria, 2003, 208: 291-301110.辛峰,尹晓红,王富民,廖晖,李绍芬.多孔氧化铝中气体的有效扩散系数[J],化工学报,2001,52(4):306-310
    111.鞭巌,八木顺一郎,田村健二,森山昭.高炉炉内反虑速度[J],金属学会誌,1966,30:826-831
    112. Patisson F, Francois M G, Ablitzer D. A non-isothermal, non-equimolar transient kinetic model for gas-solid reactions[J]. Chemical Engineering Science, 1998, 53(4): 697-708
    113. Eddings E G, Sohn H Y. Simplified treatment of the rates of gas-solid reactions involving multicomponent diffusion[J], Ind. Engng Chem Res, 1993, 32: 42-48.
    114. Hindmarsh A C, Johnson S H. Dynamic simulation of multispecies reaction/diffusion in nonisothermal porous spheres[J], Chem Engng Sci, 1991,46:1445-1463
    115. Winkelman J G M, Beenackers A A C M. Simultaneous absorption and desorption with reversible first-order chemical reaction analytical solution and negative enhancement factors[J],Chemical Engineering Science, 1993, 48(16):2951-2955
    116. Boaventura R A, Eodrigues A E. Consectutive reactions in fluidized bed biological reactors: modeling and experimental study of wastewater denitrification[J], Chemical Engineering Science, 1988, 43(10): 2715-2728
    117.陈宇飞,陈家镛.混合电解质溶液在多孔颗粒内扩散的数学模型[J],化工学报,992,43(2):125-131
    118. Ozisik M N. Heat conduction[M], New York: John Wiley & Sons Ins, 1993: 502-563
    119. Tranter C J. Integral transforms in mathematical physics[M], New York: John Wiley & Sons, 1962, 387-401
    120.宋颖韬,徐曾和.气固反应与多组分气体对流反应扩散问题的研究[J],中国稀土学报,2004,22(SI):239-244
    121.广西师范大学合编.基础物理化学实验[M],桂林:广西师范大学出版社,1991:185
    122.王苏文,袁立新,徐达圣,洪夕荣.微机在“H_2O_2分解动力学”实验中的应用[J],大学化学,1996,11(2):42-44
    123.鞭岩,森山昭,蔡志鹏译.冶金反应工程学[M],北京:科学出版社,1981,1-9
    124. Daines W L, Pehlke R D. Kinetics of manganese oxide reduction from basic slags by carbon dissolved in liquid iron[J], Metallurgical Transactions, 1971, 204(3): 1203-1211
    125. Daines W L, Pehlke R D. Kinetics of manganese oxide reduction from basic slags??by silicon dissolved in liquid iron[J], Trans.TMS-AIME, 1968,242:565-575
    
    126. Sohn H Y, Zhou L. Chlorination kinetics of beneficiated ilmenite particles by CO+Cl_2 mixtures[J], Chemical Engineering Journal, 1999, 72 (1): 37-42
    
    127. Sohn H Y, Zhou L, Cho K. Intrinsic kinetics and mechanism of rutile chlorination by CO+Cl_2 mixtures[J], Industrial & Engineering Chemistry Research, 1998,37(10): 3800-3805
    
    128. Andrade-Gamboa J, Pasquevich D M.Model for the role of carbon on carbochlorination of TiO_2[J], Metallurgical and Materials Transactions B,2000, 31(6): 1439-1446
    
    129. Yang F, Hlavacek V. Carbochlorination kinetics of titanium dioxide with carbon and carbon monoxide as reductant[J], Metallurgical and Materials Transactions B.1998, 29(6): 1297-1307
    
    130. Zhou L, Sohn H Y. Mathematical modeling of fluidized-bed chlorination of rutile[J], J AIChE, 1996,42(ll):3102-3112
    
    131. Pistorius P C, Ferdus Le Roux J T. Thermal, chemical and structural changes during initial chlorination of titania slag[J], Canadian Metallurgical Quarterly, 2002, 41(3):289-298
    
    132. Rao Y K, Chadwick B K. Chlorination of rutile (TiO_2) with CO-Cl_2-He gas mixtures[J], Transactions of the Institution of Mining & Metallurgy, Section C, 1988, 97:167-179
    
    133. Taqawa N, Iqarashi K. Reaction of strontium carbonate with anatase and rutile[J], J American Ceramic Soc, 1986, 69(4):310-314
    
    134. Chen D, Jiao X, Zhang M. Hydrothermal synthesis of strontium titanate powders with nanometer size derived from different precursors[J]. J Eur Ceram Soc, 2000, 20(9): 1261-1265
    
    135. Poth J, Haberkorn R, Beck H P. Combustion-synthesis of SrTiO_3 Part I. Synthesis and properties of the ignition products[J], J European Ceramic Society, 2000, 20(6): 707-713
    
    136. Leistner T, Frey L, Ryssel H. MOCVD of titanium dioxide on the basis of new precursors[J], J Non-Crystalline Solids, 2002, 303(1): 64-68
    
    137. Kang Y C, Seo D J, Park S B, Park H D. Direct synthesis of strontium titanate phosphor particles with high luminescence by flame spray pyrolysis[J], Materials Research Bulletin, 2002, 37(2): 263-269
    
    138.罗世永,张家芸,周土平.固相反应合成SrTiO_3的反应动力学[J],硅酸盐学 报,2000,28(5):458.461139.许凤秀,王美婷,李霞.关于SiO_2与BaCO_3固相反应的扩散动力学探讨[J],山东轻工业学院学报,2003,17(4):51-55
    140.王应虎,应卫勇,孙文萃,朱炳辰.三氯化铁溶液浸取锌精矿的动力学模型[J],高校化学工程学报,1994,4(8):338-344

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700