用户名: 密码: 验证码:
改性含钛高炉渣低温氯化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国大约有一半TiO2资源以钙钛矿形式损失于高炉渣中,所以这种高炉渣不能简单的用来制作水泥、混凝土等建筑材料。高炉渣中所含的钛大大改变了渣的物理化学性质。许多学者利用含钛高炉渣制作钛合金、TiCl4和钛白粉等。但由于Ti在炉渣中的分布分散,各种矿物中都含有钛组分,矿物之间相互连生现象比较普遍,使得钛渣中的钛不易氯化。
     针对以上存在的问题,本实验采用从反应器底部通入氯气使反应器里的物料发生流态化,粉状原料在被气流吹送的过程中进行加碳低温氯化反应(一般氯化温度在7000C-850°C),仅使钛以四氯化钛气体的形式得到富集,改善工艺参数,以解决氯化过程中粘结问题,降低成本。
     本实验通过对含钛高炉渣加碳低温氯化,研究了引入磷酸后,Ca、Mg对渣中钙钛矿氯化的影响:
     1.通过实验测得在反应温度为800°C、氯化时间为2h、氮气流量为120ml/min、氯气流量为40ml/min、碳过量为20%时改性含钛高炉渣氯化反应氯化率最高。
     2.磷酸对于渣中矿物相的转化有很大影响:随磷酸的增加,非钛相体积分数增加,钙钛矿和含钛辉石相减少,磷酸钙增加,有利于渣中钛的氯化。
     3.动态氯化条件下,熔渣中钙钛矿和含钛辉石基本消失,生成不含钛无机物和复合矿物,分散在不同矿物相的钛组分选择性氯化到四氯化钛相,促进氯化反应进一步进行。
In China about half of Titanium dioxide resources lose in smelting iron slag in the form of Perovskite, so those slag are not simply used to make architectural materials such as cement, concreat. The titanium containing in smelting iron slag changed the physical chemistry property of slag consumedly. Many metallurgist make titanium alloy,TiCl4, Titanium dioxide and so on by the use of containing the titanium smelting iron slag.Whereas due to the distributing of titanium containing in slag is dispersive, various minerals contain titanium component, the phenomenon of mutual continuous growth of minerals is relatively familiar, which cause the titanium containing in slag not easy to be chloridized.
     In allusion to those problems mentioned above, we adopt that chlorine entered from the bottom of reactor make materiel fluidization in reactor, powdery material chloridize under the condition of adding charcoal and low-temperature (chloridized temperature is commonly at 700 C-850 C) in the process of the powdery material wafted by airflow, the titanium almost in the form of TiCl4 gas gets enrichment in absorbing, improving technical parameters is in order to solve the felting problem and play down cost in the process of chlorination.
     In my experiment containing the titanium smelting iron slag chloridized under the condition of adding charcoal and low-temperature, the influence of calcium and magnesium on chloridized Perovskite in slag after importing Phosphorylation is discussed:
     1. From experiments we can find that the chloridizing rate of modifying chloridizing reaction of containing the titanium smelting iron slag is maximal in the reactive temperature of 800℃, the chloridizing time of 2h,the nitrogen capacity of flow of 120ml/min,the chlorine capacity of flow of 40ml/min and excessive charcoal quantity of 20 percent.
     2. The influence of phosphate on the transform of mineral phase containing in slag is quite remarkable:volume point of non-titanium phase increases, Perovskite and titanium pyroxene phase decreases with increasing phosphate, and the increase of calcium phosphate is good to chlorination of titanic in slag.
     3. In the case of dynamic chlorination, Perovskite and titanium pyroxene in slag basically disappear, and create non-titanium mineral and compound mineral,the titanium component dispersed in different mineral phase is chloridized selectively into TiCl4 phase, which accelerate the chloridizing reaction more.
引文
1.邓国珠,刘水根,郭伟等.钛和钛白生产大型化面临的问题[J],钛工业进展,2001,(6):1-6.
    2. 曲颖.我国钛白工业存在的问题与发展对策[J],化工技术经济,1998,16(2):13-16.
    3. 傅文章.攀西钒钛磁铁矿资源特征及综合利用问题的基本分析[J],矿产综合利用,1996,(1):27-32.
    4. N Masuko. Metallurgy for man made resources[M], Proceedings of metallurgical process for the early twenty-first century, San Diego, California:1994,20-23.
    5. Sui Zhitong. Study on crystallization kinetics of the component containing boron in MgO-B203-SiO2 Slag, Proceedings of metallurgical process for the early twenty-first century[M], San Diego, California:1994,20-23.
    6. TJVeasey. Metal recycling, Proceedings of 34th annual conference of metallurgists of CIM[M], Vancouver, British Columbia:1995,20-24.
    7. Sui Zhitong. Precipitation selectivity of boron components from slags, Proceedings of 34th annual conference of metallurgists of CIM[M, Vancouver, British Columbia:1995,20-24.
    8. Alessandra Bonol. Solid waste process, a case study for an integrated wastetreatment plant p roject[M], Proceeding of global symposium on recycling waste treatment and clean technology, San Sebastian:1999,5-9.
    9. Sui Zhitong. A novel technique to recovery valuenonferrous metal compounds from Metallu rgical slags, Proceeding of global symposium on recycling waste treatment and clean technology, San Sebastian, Spain:1999,5-9.
    10. 蒋含勇.论我国矿产资源的综合利用[J],矿产综合利用,2001,(4).
    11.李辽沙.五元渣(CMSTA)中钛选择性富集的基础研究[D],沈阳:东北大学,2001.
    12. 王喜庆.钒钛磁铁矿高炉冶炼,北京:冶金工业出版社,1994,1-5.
    13. 莫畏,邓国珠等.钛冶金[M],北京:冶金工业出版社,1989.
    14. 钛渣冶炼及钛加工技术—赴加拿大、日本技术考察报告,1986,1-3.
    15.谭若斌v钒钛,1994,(2-3):1-11.
    16.徐楚韶.钒钛,1993,(5):47-50.
    17.兰尧中.钒钛,1993,(1-2):45-47.
    18. 李玉海.博士论文[D],沈阳:东北大学,2000,24-25.
    19. 隋智通,付念新.一种资源综合利用的增值技术[J],中国稀土学报,1998,16:731.
    20. 张荣禄.含钛高炉渣制取四氯化钛的方法[P],中国发明专利,申请号:87107488.5,1987.
    21. Leonard E Olds等.钛、铁和钒的选择性碳化工艺[P],国专利,US 3389957.1968.6.25.
    22. Willard L Hunter等.钛铁矿制备高纯TiC14[P],美国专利,US 3899569.1975.8.12.
    23.刘华,胡文启.钛白粉材料的生产和应用[M].北京:科学技术文献出版社,1992.1-3.
    24. Barin I, Schuler W. On the Kinetics of the Chlorination of Titanium Dioxide in the Presence of Solid Carbon [J]. Metallurgical Transaction B,1980,11B(6):199-207.
    25. 王训,祖庸,李晓娥.纳米Ti02表面改性[J].化工进展,2000,(1):67-70.
    26. 李东英.我国的钛工业[J].有色冶炼,2000,29(3):1-6.
    27.李东英.我过地钛工业[J], 有色冶炼.2000,29(3):1-6.
    28. Yuan Z F, Zhou J C, Liao D H, et al. Carburization and Desulphurisation of the Semi-steel durin.
    29.陈朝华,刘长河.钛白粉生产及应用技术[M],北京:化学工业出版社,2006,230-231.
    30. Guo Jianjun(郭建军).2005年世界钛工业发展状况及展望[J].Rare MetalsLetters(稀有金属快报),2006,25(7):6-10
    31.马俊伟.攀钢含钛高炉渣中钛组分选择性分离的研究[D],东北大学:东北大学,2000.
    32.广州有色金属研究院.攀矿高镁钙含钛物料的沸腾氯化问题(内部资料).1987,10.
    33. Morris AJ and Jensen RF. Fluidized-bed chlorination rates of australian rutile. Metallurgical Transactions B,1975,7B; 1976-1989
    34. Barin, I.et al., Thermochemical Properties of Inorganic Substances,1976、1973.
    35. O. Kubaschewski, Metallugical Thermochemistry,5th Edition,1979.
    36. Morris A J, Jensen R F. Fluidized2bed chlorination ratesof australian rutile [J]. etallurgical Transactions B,1975,7B:1976-1989.
    37. 李文兵,袁章福,刘建勋,等.含钛矿物加碳氯化反应的热力学分析[J].过程工程学报,2004,4(2):121-123.
    38.傅念新,张圣弼.复合球团还原热力学平衡成分计算机模拟[J],钢铁研究学报,1998, 10(1):1-5.
    39. 汪珂,马慧娟.富钛料氯化炉气组成及其对工艺过程的影响[J].钒钛,1993,21(6):16-19.
    40. Yang F, Hlavacek V. Recycling titanium from Ti2waste by a low2temperature extraction process [J]. A ICHE J,2000,46 (12):2499-2503.
    41. Yang F, Hlavacek V. Effect extraction of titanium from rutile by a low2temperature chloride p rocess[J]. A ICHE J,2000,46 (2):355-360.
    42. 四氯化钛和二氧化钛的生产, 《国外钒钛》,第九辑,1977年12月。
    43. 攀矿高炉渣无筛板沸腾氯化试验报告,中国钛公司遵义钛厂、有色总局广州有色金属研究院,1982年3月。
    44.日本的海绵钛生产,冶金部赴日考察报告,1974年。
    45. Barin O,Knacke. Thermochemical Properties of Inorganic Substances[M]. New York:Springer-verlag,1973.88-98.
    46. 葛庆仁,气固反应动力学[M],北京:原子能出版社,1991,47-100。
    47.许贺卿,赵君,沈国宏,辛振林.气固反应工程[M],北京:原子能出版社,1993,220-268
    48. 肖兴国,谢蕴国.冶金反应工程学基础[M],北京:冶金工业出版社,1997,16-31
    49. Szekely J, Evans J W, Sohn H Y. Gas-Solid Reactions [M],Academic Press, New York: NY,1976,68-235.
    50. Kanari N, Gaballan. Chlorination and carbochlorination of magnesium oxide [J], Metallurgical and materials transactions B [J],1999,30b,383-391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700