用户名: 密码: 验证码:
浓NaOH溶液分解包头混合稀土矿的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的迅速发展,绿色、环保理念的深入人心,碱法分解包头稀土精矿工艺越来越受到人们的青睐。为克服现有碱法生产工艺中首先要进行化学选矿而使生产不连续的缺点,本文对浓碱法直接分解包头混合稀土矿工艺进行了研究,实验采用包头混合稀土矿与70%的氢氧化钠溶液混合焙烧,反应由开始时的固-液相反应到结束时的固-固相反应,研究了反应前后相变化的工艺条件对稀土分解率的影响。
     论文主要内容有以下三个方面:
     1.机理探讨。
     对包头稀土精矿添加NaOH进行了热分析研究,探讨该复杂体系的热分解机理。
     2.静态条件下稀土矿物的焙烧分解及浸出。
     研究了包头稀土矿中钙在工艺过程中对稀土分解率及回收率的影响。通过对比实验数据表明,在本工艺研究中,除钙和不除钙时稀土浸出率相差较小,说明钙的存在不是影响稀土分解率的主要因素,因此,不进行化学选矿除钙而直接进行稀土精矿的碱分解工艺是可行的。
     采用一个三因素四水平的正交实验,探讨在静态条件下矿碱比、焙烧温度和焙烧时间对稀土分解率的影响。结果表明矿碱比对焙烧反应影响最大,其次为焙烧温度和焙烧时间,试验得到了最佳工艺条件:矿碱比为1:1,焙烧温度为400℃,焙烧时间为90min。稀土分解率可以达到84.80%。
     静态焙烧实验中,随着焙烧温度的升高,F在焙烧矿中含量降低,400℃以后反应的固氟效果变差,氟以气体形式逸出污染空气。
     3.动态条件下稀土矿物的焙烧分解及浸出。
     采用矿碱比为1:1,分别在低温和中温条件下,对不同品位的稀土精矿与70%的NaOH溶液混匀后进行动态焙烧。实验结果显示,动态焙烧下,50%以上品位稀土精矿的稀土分解率可达到93.84%,最高达98.44%。
     在动态焙烧实验中,氟碳铈矿分解较完全,水洗后F以F形式存在于水洗液中。焙烧矿经酸溶后,98%以上的Th以Th4+存在于稀土浸出液中,即经碱分解后的渣为非放射性渣,且渣量小。
     该碱分解工艺可以去除传统工艺的“酸洗除钙”工序,工艺连续,工艺过程无废气和放射性废渣,稀土、钍、氟和磷等均得到回收,达到了清洁生产和资源综合利用的目的。
With the rapid development of science and technology, and the sense of environmental protection is deep into people's mind, the technology of alkali decomposing of Baotou rare earth concentrate is becoming favored gradually. In this thesis, the technics for direct decomposition of Baotou rare earth concentrate by concentrated alkali has been studied. The experiment was carried out by roasting of the mixture of Baotou rare earth concentrate and 70% NaOH solution. It was solid-liquid reaction in the start, and changed into solid-solid reaction in the end. The influence of the phase change before and after the reaction on the decomposition efficiency of the rare earth was also investigated.
     The main contents of the thesis could be divided into three parts:
     1. Mechanism discussion
     Thermogravimetry and differential thermal analysis of Baotou rare earth concentrate with the addition of NaOH were carried out, and the thermal decomposition mechanism of the complex system was investigated.
     2. The roasting decomposition and leaching of rare earth concentrate at static conditions
     The influence of the calcium in Baotou rare earth concentrate on the decomposition efficiency and the recovery ratio of rare earth was investigated in the thesis. The comparison of the experimental results showed that the decomposition efficiencies of rare earth were approximate before and after the removal of calcium, which indicates that the existence of calcium was not the main factor that affecting the decomposition efficiency of rare earth. Therefore, it is possible to carry out the alkali decomposing technology of rare earth concentrate directly without removing calcium by chemical beneficiation.
     The orthogonal experiments with three factors and four levels were conducted to investigate the influence of the ratio of rare earth concentrate to alkali, the calcination temperature and time on the decomposition efficiency of rare earth. The results showed that the ratio of rare earth concentrate to alkali is the most influential factor in the reaction, and secondly for calcination temperature and time. The optimum process conditions were obtained by experiments:the ratio of rare earth concentrate to alkali was 1:1, the calcination temperature was 400℃, and the calcination time was 90 minutes. The decomposition efficiency could reach 84.80%.
     In the static roasting experiment, the content of fluorine in the calcined rare earth concentrate reduced with the increase of the calcinations temperature. The effect of fluorine fixation became worse over 400℃, and the air contamination will be caused by fluorine in the form of gas.
     3. The roasting decomposition and leaching of rare earth concentrate at dynamic conditions
     Different grade of rare earth concentrate and 70% NaOH solution were mixed at low and medium temperature, and the ratio of rare earth concentrate to alkali were kept at 1:1, after which the dynamic roasting was conducted. The results showed that the decomposition efficiency of 50% rare earth concentrate could reach 93.84%, and the maximum was 98.44%.
     In the dynamic experiments, bastnasite could be decomposed effectively, and the fluorine existed in the form of F- in water after washing. After acid dissolution of the calcined rare earth concentration, over 98% of the thorium existed in the form of Th4+ in the leaching liquid, which means that the residue after alkali decomposing was not radioactive, and the amount of the residue is small.
     The alkali decomposing technology could get rid of the pickling procedure in the traditional process. The process is continuous, and there was no production of waste gas and radioactive residue. The chemical elements such as rare earth, thorium, fluorine, and phosphorus could be recycled, which realizes the goal of clean production and resource comprehensive utilization.
引文
[1]徐光宪,稀土[M].北京:冶金工业出版社,1995
    [2]黄礼煌.稀土提取技术[M].北京:冶金工业出版社,2006
    [3]Yasuo K., Masaharu K., Rare earth minerals and resources in the world, [J]. Journal of Alloys and Compounds,2006,408-412:1339-1343
    [4]赵增祺,张宏江.稀土及其在功能材料中的应用[J].功能材料信息,2004,1(2):11-16
    [5]熊家齐.全球稀土市场现状及发展趋势[J].稀土,2006,27(3):98-101
    [6]熊家齐.生机勃发的稀土新材料产业[J].稀土,2007,28(3):96-101
    [7]Yang X. M., Bas M. J., Chemical compositions of carbonate minerals from Bayan Obo, Inner Mongolia, China:implications for petrogenesis, Lithos.2004,72(1-2):97-116
    [8]Smart J. V., Department of Natural resource and mine. Rare Earths, [J]. Mineral Information Leaflet,1999,7
    [9]Fleiseher M., Relative Proportions of the Lanthanides intheminerals of the Bastnaesite Group Can. Mineral.,1978,16(3):361
    [10]涂赣峰,任存治,邢鹏飞等.氟碳铈精矿的煅烧分解[J].有色矿冶,1999,6:18-21
    [11]张世荣,涂赣峰,任存治等.氟碳铈矿热分解行为的研究[J].稀有金属,1998,22(3):185-187
    [12]涂赣峰,张世荣,任存治等.热分析技术在氟碳铈矿动力学中的应用[J].稀土,1997,18(2):23-26
    [13]向军,张成祥,涂赣峰等.氟碳铈精矿空气中焙烧的热分解研究[J].稀有金属1994,18(4):258-261
    [14]刘光华.稀土材料与应州技术[M].北京:化学工业出版社,2005
    [15]张国成,黄小卫.氟碳铈矿冶炼工艺评述[J].稀土,1997,21(3):193-199
    [16]黄小卫,李红卫,薛向欣等.我国稀土湿法冶金发展状况及研究进展[J].中国稀土学报,2006,24(2):129-133
    [17]Kul M.,Topkaya Y., etc., Rare earth double sulfates from pre-concentrated bastnasite[J]. Hydrometallurgy, 2008,93:129-135
    [18]Zhang Q. W., Saito F., Non-thermal process for extraeting Rare earth from Bastnaesite by means of mechanochemical treatment, Hydrometallurgy,1998,47(3):231-241
    [19]赵仕林,张新申,杨代军等.氟碳铈矿与NaOH反应的动力学分析及其应用研究[J].四川大学学报,2002,39(5):929-933
    [20]冯婕,潘明友,李德虎.液碱法分解氟碳铈矿生产氯化稀土的研究[J].矿冶工程,1998,18(2):53-56
    [21]姚亚东,李华民,李瑶.一种高收率,低能耗生产氯化稀土的工艺-高温烧碱法[J].矿产综合利用,1999.1:7-11
    [22]Topkaya Y., Kul M., Karakaya. Recovery of rare earths from a bastnaesite preconcentrate.[J]. Rare Earths and Actinides:Science, Technology and Applications.2000,5:11-16
    [23]熊家齐,刘存杰,王鸿儒.国外从氟碳铈矿提取稀土的方法[J].稀土,1986,8:110-121
    [24]张允什,彭新生.用碱法分解独居石的研究[J].化学通报,1959,(10):15-16
    [25]孙培梅,李洪桂,李运姣等.机械活化碱分解独居石新工艺[J].中南工业大学学报,1998,29(1):36-38
    [26]Kim W., Bae I., Chae S., etc., Mechanochemical decomposition of monazite to assist the extraction of rare earth elements [J]. Journal of Alloys and Compounds,2009,4089(1-2):610-614
    [27]陈秀昆.对包头白云鄂博矿稀土资源的研究[J].包钢科技,2007,33(1):1-4
    [28]程建忠,侯运炳,车丽萍.白云鄂博矿床稀土资源的合理开发及综合利用[J].稀土,2007,28(1):70-74
    [29]吴文远,孙树臣,郁青青.氟碳铈与独居石混合型稀土精矿热分解机理研究[J].稀有金属,2002,26(1):76-79
    [30]李良才.关于包头矿湿法提取技术的思考[J].稀土信息,2003,10:18-20
    [31]吕松涛.我国稀土生产工艺的发展和问题[J].稀土,1987,3:47-49
    [32]胡玉林.包头稀土精矿分解工艺发展方向的探讨[J].稀土信息,1985,(2):17-19
    [33]林河成.氯化稀土的生产及市场[J].四川有色金属,1996,3:1-6
    [34]林河成.国内氯化稀土产品的生产、应用及市场[J].湿法冶金,2002,21(1):10-13
    [35]郎晓川,于秀兰.我国混合稀土精矿处理方法的研究进展[J].稀有金属与硬质合金,2009,37(3):43-46
    [36]许延辉,郭文亮,马莹等.包头稀土矿清洁冶炼废水综合治理工艺概述[J].稀土,2008,29(2):82-85
    [37]许延辉,马莹,胡卫红等.沉淀法处理稀土生产过程中氨氮废水的研究[J].中国稀土学报,2005,23(专辑):271-274
    [38]许延辉,段丽萍.稀土湿法冶金废水处理[J].工业用水与废水,2004,35(2):13-15
    [39]王秀艳,马莹,张丽萍等.包头稀土精矿硫酸低温焙烧分解工艺的研究[J].稀土,2003,24(4):29-31
    [40]王秀艳,李梅,许延辉等.包头稀土精矿浓硫酸焙烧反应机理研究[J].湿法冶金,2006,25(3):134-137
    [41]黄小甲等.从稀土矿中综合回收稀土和钍工艺方法[P].中国,200510085230
    [42]Sun S. C., Effect of CaO on Fluorine in the Decomposition of REFCO3[J]. Rare Earth,2007,25:508-511
    [43]郁青青.包头稀土精矿添加氧化钙焙烧工艺研究[J].稀土,2002,23(2):13-15
    [44]熊家齐,贾昭,胡孝凯等.化学选矿除去高品位包头稀土精矿中的钙[J].稀土,2002,4(32):34-40
    [45]虞宝煜.工频电场下烧碱法分解稀土精矿机理的研究[J].中国稀土学报,1993,11(3):218-221
    [46]韩学印,李良才,常叔等.浓NaOH溶液分解稀土矿物的研究[J].稀土,1985,6:39-44
    [47]柳召刚,马莹,魏绪钧等.用热分析技术研究氟碳铈精矿碳酸钠焙烧反应动力学[J].中国有色金属学报,1998,8(6):299-302
    [48]乔军,柳召刚,张存瑞等.包头稀土精矿添加25%碳酸钠焙烧反应动力学研究[J].中国稀土学报,2000,21(1):65-69
    [49]乔军,柳召刚,马莹等.包头矿碳酸钠焙烧反应动力学研究[J].中国稀土学报,1999,17(1):86-89
    [50]肖桐,刘忠杰,张补河.四川矿纯碱焙烧制取氯化稀土工艺研究[J].稀土,2004,25(2):70-72
    [51]柳召刚,杨启山,刘铃声等.碳酸钠焙烧盐酸浸出分解氟碳铈精矿工艺的研究[J].稀土,2004,25(2):20-25
    [52]郑伟,王树茂.氟碳铈矿纯碱焙烧低酸浸出直接制取氯化稀土和工业纯铈工艺[J].稀土,1996,17(6):59-61
    [53]张丽清,张凤春,姚淑华等.加碳氯化-氧化反应方法从氟碳铈矿-独居石混合精矿中提取稀土[J].过程工程学报,2007,7(1):75-78
    [54]Zhang L. Q., Wang Z. C. Rare Earth Extraction from Bastnaesite Concentrate by Stepwise Carbochlorination-Chemical Vapor Transport-Oxidation[J]. Metallurgical and Materials Transactions B, 2004,35B:217-221
    [55]Wang Z. C., Zhang L. Q., Rare Earth Extraction and Separation from Mixed Bastnaesite-Monazite Concentrate by Stepwise Carbochlorination-Chemical Vapor Transport [J]. Metallurgical and Materials Transactions B,2002,33B:661-668
    [56]张丽清,王之昌,尤健等.氟碳铈矿-独居石混合精矿碳热氯化反应[J].中国稀土学报,2002,20:193-196
    [57]李作顺,杨广禄,张健等.高温氯化法处理包头稀土精矿生产无水氯化稀土的工艺和设备[J].1986,2:92-96
    [58]王勇,于秀兰,舒燕等.碳热氯化法分解包头混合稀土精矿提取稀土[J].有色金属2009,61(1):68-71
    [59]王晓铁,刘建军.包头混合稀土精矿氧化焙烧分解工艺的研究[J].稀土,1996,17(6):6-9
    [60]Chi R., Recovery of rare earth from bastnasite by ammonium chloride roasting with fluorine deactivation[J]. Minerals Engineering,2004,17:1037-1043
    [61]朱国才,池汝安,周静等.氯化铵分解氟碳铈矿回收稀土的研究[J].有色金属,2000,52(1):66-68
    [62]徐盛明,池汝安.氯化铵焙烧法提取稀土工艺及应用基础研究[J].金属矿山,2001,299:24-28
    [63]时文中,朱国才,华杰等.氯化铵焙烧法从混合型稀土精矿中回收稀土[J].河南大学学报,2002,4(32):45-48
    [64]吴文远,胡广勇,孙树臣等.CaO和NaCl焙烧混合稀土精矿过程中的分解反应[J].中国稀土学报,2002,23(2):13-15
    [65]Wu W. Y., Bian X., etc., Reaction process of monazite and bastnaesite mixed rare earth minerals calcined by CaO-NaCl-CaCl2[J]. Trans. Nonferrous Met. Soc. China,2007,17:864-868
    [66]陈旭东,吴文远,孙树臣等.CaO-NaCl体系焙烧混合稀土精矿的研究[J].稀土,2004,1(25):32-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700