用户名: 密码: 验证码:
复合衬垫系统剪力传递、强度特性及安全控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土工合成材料广泛应用于城市固体废弃物填埋场,主要包括有:土工织物,土工膜,土工复合膨润土垫,土工复合排水网等。衬垫系统则是由以上土工合成材料与土体组成的具有封堵排功能的新型土工结构,其使用给填埋场设计和施工带来了传统方法所无法比拟的优势。由于复合衬垫系统各层材料拉伸特性及界面抗剪强度的差异造成衬垫系统内部剪力传递机理非常复杂,目前国内外研究者对斜坡上衬垫系统在垃圾体下滑力作用下各层拉伸变形性状、各界面强度软化程度以及真实滑动面位置等问题的研究还不够深入。因此,本文从以下三个方面进行了系统研究:第一部分采用万能试验机对衬垫系统材料拉伸特性进行了研究,确定各种材料的拉伸强度及拉伸刚度;第二部分采用直剪仪研究了衬垫系统内部典型界面的剪切特性,其中包括土工织物/土工膜界面,含土工复合排水网界面以及土工膜/土工复合膨润土垫界面,为剪力传递机理提供各界面剪切强度随相对位移发展的基本特性;第三部分是复合衬垫系统剪力传递机理的研究,分析了各种关键因素,包括端部是否锚固、界面强度特性(特别是界面强度的软化)、土工合成材料的拉伸特性、界面排列次序等对剪力传递的影响,并通过复合衬垫系统大型斜坡模型试验进行了验证。最后对填埋场的稳定进行了分析。取得了相应的研究成果:
     (1)土工合成材料各种不同材料之间拉伸性能相差甚远。土工格栅的拉伸强度及拉伸刚度较大,而无纺土工织物拉伸强度及拉伸刚度较小。
     (2)土工膜表面粗糙度是影响土工膜/土工织物界面强度的决定因素。粗糙土工膜与土工织物界面峰值强度远大于光滑土工膜与土工织物界面强度。
     (3)加载速率与剪切作用影响土工膜/GCL界面膨润土挤出的关键因素。膨润土挤出严重影响土工膜/GCL界面的剪切强度。膨润土挤出造成土工膜/GCL界面的峰值摩擦角降低3.5°,造成大位移摩擦角降低7.6°,导致土工膜/GCL界面的大位移摩擦角接近10°。
     (4)衬垫系统的剪力传递遵循两个原则:(1)初始以沿峰值强度最小界面破坏为原则;(2)界面传递的剪力不能大于其界面峰值强度。
     (5)本文研制的衬垫系统大型斜坡试验装置具有试样尺寸大、正应力较大的特点,实现了较高正应力水平下衬垫系统界面稳定性的研究。GT/GM单界面衬垫系统的实验结果表明,当薄弱界面峰值强度大于外部剪力时,界面不会发挥出残余强度,薄弱界面上覆材料在锚固端拉力非常小;而当界面峰值强度小于外部剪力时,薄弱界面趋向于发展到残余强度。GT/GM/GCL多界面衬垫系统的实验结果显示滑移并未产生于峰值强度最小的GM/GCL界面,而产生于强度较小的GT/GM界面。
     (6)MSW较大的压缩特性是导致填埋场边坡区衬垫系统易发挥其残余强度的关键因素。另外,边坡坡度,填埋高度也是影响边坡区衬垫系统是否发挥其残余强度的重要因素。随边坡坡度和填埋高度的增加,边坡区衬垫系统内部界面更易发挥其残余强度。MSW较大的压缩特性、边坡坡度及填埋高度对水平区衬垫系统内部界面强度的发挥影响较小,水平区界面一般都发挥出峰值强度。
     (7)本文推荐多层衬垫系统强度参数的选择方法为边坡区采用峰值强度最小界面的残余强度而水平区采用峰值强度最小界面的峰值强度,该方法较真实地反映了填埋场实际的安全性能。
     (8)渗滤液水位、水平区长度、填埋场高度、边坡坡度及界面强度是影响填埋场沿底部产生整体滑移的五个关键因素。其中,渗滤液水位的升高将较大降低填埋场沿底部产生整体滑移的安全系数;而水平区长度的增加将较大地增加安全系数;随填埋场高度的增加,安全系数减小。选择界面强度较大的衬垫系统,控制好渗滤液水位,适当增加水平区长度,选择合适的填埋高度是保障填埋场安全运行的有效措施。
Geosynthetics are widely used in municipal solid waste landfill,mainly including:geotextile(GT),geomembrane(GM),geosynthetics clay liner(GCL), geocomposite(GC) and etc.Liner systems is a new geotechnical structures consisting of the geosynthetics and soil with many features like sealing,impermeable and drainage.The use of liner systems for landfill design and construction brings many advantages.Tensile failure of geosynthetics and slide of the landfill along the liner systems may be attributed to the lower interface strength witin liner systems,the paper systematically studied the shear strength characteristics of liner system interface, as well as the shear transfer mechanism within liner systems,at last the stability of the landfill were analyzed.The main conclusion is as follows:
     (1) The different geosynthetics show different tensile properties.The tensile strength and tensile stiffness of Geogrid are larger,but the tensile strength and tensile stiffness of non-woven geotextile are smaller
     (2) The shear strength of GM/GT interface is affected by the surface roughness of GM.The shear strength of textured GM/GT interface is much larger than that of smooth GM/GT interface.
     (3) The loading rate and shearing effect play an important role related to bentonite extrusion from the prehydrated GCL/GM specimens. Bentonite extrusion exerts a significant influence on the shear strength of the hydrated GCL/GM interfaces.The loss in the large-displacement shear strength is approximately equivalent with 7.6°in terms of interface friction angle.The influence of bentonite extrusion on the peak shear strength showed a magnitude of 3.5°in terms of interface friction angle.
     (4) The shear transfer mechanism within liner systems must follow the two principles:(1)the interface with the smallest peak shear strength would be easily sliding at first;(2) The shear stress which the interface transfered can not be greater than the peak strength of the interface.
     (5) In this paper,a large-scale ramp test of the liner system was developed with a higher stress level.Two group tests on the stability of liner system were studied.The experimental results of GT/GM liner system show that,when the external shear stress is less than the peak shear strength of the GT/GM liner systems,the interface would not reach a residual shear condition,and when the external shear stress is greater than the peak shear strength of the GT/GM interface,the GT/GM interface would trend to reach a residual shear condition.The experimental results of GT/GM/GCL liner systems show that when the external shear stress is greater than the peak shear strength of the GT/GM interface and GM/GCL interface,even the peak shear strength of the GM/GCL interface is less than that of GT/GM interface,slide would happen along the GT/GM interface,and the the GM/GCL interface with the minimum peak shear strength is stable.
     (6) The highly compressible characteristics of MSW have a key impact on development of residual strength for the liner system on landfill slope. In addition,the slope gradient and landfill height also exert an important influence on the residual strength development.The slope gradient and height is greater,the liner system interface on the slope is easier to reach a residual shear condition,highly compressible characteristics of MSW, slope gradient and height have a less impact on the development of residual strength for the liner system on landfill base Generally the liner system on landfill base play its peak shear strength.
     (7) The selection of the strength paramete for a multi-layer liner system was recommended that:(1) determine the interface in the composite liner system that exhibit the lowest peak strength for the full range of normal stresses encountered along the bottom liner system;(2) uses the peak interface shear resistance with the the lowest peak strength along the base and the residual interface shear resistance with the the lowest peak strength along the sideslope
     (8) Leachate level,base length,landfill height,slope gradient and interface strength are the five key factors on the safety factor of slide along the liner system.Among them,the increase of leachate level will,landfill height and slope gradien would reduce the safety factor;but the increase of base length and the interface strength would improve the safety factor. Seleting a liner systems with a larger interface strength,controlling leachate levels,increasing the base length and choosing a suitable landfill height would keep the landfill peration of an effective measure.
引文
[1] ASTM D 4595-2005. Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method. West Conshohocken, Pa., 2005
    [2] ASTM D5321, Standard test method for determining the coefficient of soil and geosynthetic or geosynthetic and geosynthetic friction by the direct shear method. West Conshohocken, Pa., 2005
    [3] ASTM D5890. Standard test method for swell index of clay mineral component of geosynthetic clay liners. West Conshohocken, Pa., 2006
    [4] ASTM D6243. Standard test method for determining the internal and interface shear resistance of geosynthetic clay liner by the direct shear method. West Conshohocken, Pa., 1998
    [5] ASTM D4546-08. Standard Test Methods for One-Dimensional Swell or Settlement Potential of Cohesive Soils. West Conshohocken, Pa., 2008
    [6] Bergado, D.T., Ramana, G.V., Sia, H.I., Varun. Evaluation of interface shear strength of composite liner system and stability analysis for a landfill lining system in Thailand. Geotextiles and Geomembranes, 2006, 24(6), 371-393.
    [7] Bjarngard A B, Edgers L. Settlement of municipal solid waste landfills. Proceedings of the 13th annual Madison waste conference, 1990, University of Wisconsin, September, 192-205.
    [8] Bouazza, A.. Geosynthetic clay liners. Geotextiles and Geomembranes, 2000,20(1), 3-17.
    
    [9] Brian, L., Girard, H., and Poulain D.. Slope stability of lining systems-experimental modeling of friction at geosynthetic interfaces. Geotextiles and Geomembranes. 2002, 20, 147-172
    [10] Byrne, J. R., Kendall, J., and Brown, S.. Cause and mechanism of failure of Kettleman Hills landfill B-19, Phase IA. Stability and Perf. of Slopes and Embankments, Vol. 2, ASCE, New York, 1992, 1188-1215.
    
    [11] Byrne, J. R.. Design issues with displacement-softening interfaces in landfill liners. Proc, Waste Tech '94, Charleston, S.C., 1994
    [12] Chai J C, Miura N. Comparing the performance of landfill liner system. Journal of Material Cycles and Waste Management, 2000,4:135-142.
    [13] Chen, Y.M, Lin, W.A, Ke, H. and Wang, T.L. Application of geosynthetics on Tianziling landfill and correlated geotechnical problems. 8th interna confer on Geosynthetics, 2006, Yokohama: 291-294.
    [14] Chen, Y.M., Tony L.T. Zhan, Wei, H.Y., Ke. H.. Aging and compressibility of municipal solid wastes. Waste Management, 2009,29(1): 86-95
    [15] Chen Y. M., Zhan L. T.. Geo-environmental issues associated with landfills of municipal solid wastes. Keynote lecture of 13th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Kolkata, India, 2007
    [16] Cowland. Use of geosynthetics in hong kong landfills. Invited lecture for Zhejiang University, 2006, Hangzhou.
    [17] Daniel, D.E., Koerner, R.M., Bonaparte, R., Landreth, R.E., Carson, D.A., and Scranton, H.B.. Slope stability of geosynthetic clay liner test plots. Journal of Geotechnical and Geoenvironmental Engineering, 1998,124(7), 628-637.
    [18] Edgers L, Noble J J, and Williams E. A bilolgic model for long term settlement in landfills. Environmental geotechnology. Proceeding of Mediterranean conference on environmental geotechnology, 1992, Balkema Publishers,pp: 177-84.
    [19] Edil T. B., Ranguette V. J, Wuellner W W. Settlement of municipal refuse.Geotechnics of waste fills-theory and practice, 1990, ASTM STP 1070, Arvid Landva and G David Knowles Eds, Philadelphia, pp:225-239.
    [20] Eid, H.T. Interactive shear strength behavior of landfill composite liner system components. 7th interna confer on Geosynthetics, 2002, Delmas:587-590
    [21] Eid, H. T., Stark, T. D., and Doerfler, C. K.. Effect of shear displacement rate on internal shear strength of a reinforced geosynthetic clay liner. Geosynthetics International, 1996, 6(3):219-239
    [22] Eid, H.T., Stark, T.D., and Doerfler, C.K.. Effect of Shear Displacement Rate on Internal Shear Strength of a Reinforced Geosynthetic Clay Liner. Geosynthetics International, 1999, 6(3), 219-239.
    [23] Esterhuizen, J. J. B., Filz, G. M., and Duncan, J. M. Constitutive behavior of geosynthetic interfaces. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10), 834-840.
    [24] Filz G M, Esterhuizen J B, Duncan J M. Progressive failure of lined waste impoundments. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(10):841-848.
    [25] Finley, C.A. and Holtz, R.D.. Investigation and Modeling of Two Composite Landfill Covers, Geosynthetics International, 2001, Vol. 8, No. 2, pp. 97-112
    [26] Fleminga, I.R. Sharmaa, J.S., Jogi, M.B.. Shear strength of geomembrane-soil interface under unsaturated conditions. Geomembrane and geotextile, 2006, 24:274-284.
    [27] Foose G.J., Benson C.H. and Edil T.B.. Comparison of Solute Transport in Three Composite Liners. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2002, 128(5): 391-403.
    [28] Fox, P. J., Rowland, M. G., and Scheithe, J. R.. Internal shear strength of three geosynthetic clay liners. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(10): 933-944.
    [29] Fox, P.J., De Battista, D.J., and Mast, D.G. Hydraulic performance of geosynthetic clay liners under gravel cover soils. Geotextiles and Geomembranes, 2000,18(2-4), 179-201.
    [30] Fowmes,G.J., Dixon, N., Jones, D.R.V.. Validation of a numerical modeling technique for multilayered geosynthetic landfill lining stystems. Geotextiles and Geomembrane, 2008,26(2): 109-121
    [31] Frost J.D., Lee S.W. Microscale study of geomembrane-geotextile interactions.Geosynthetics International, 2001, 8 (6): 577-597.
    [32] GEO-SLOPE International Ltd. CTRAN/W for contaminant transport analysis,v5.0 Users Manual. Calgary, Alberta, Canada, 2003
    [33] GEO-SLOPE International Ltd. SEEP/W for finite element seepage analysis,v5.0. Users Manual. Calgary, Alberta, Canada, 2003
    [34] GEO-SLOPE International Ltd. SLOPE/W for slope stability analysis, v5.0.Users Manual. Calgary, Alberta, Canada, 2003
    [35] Gilbert, R.B., Fernandez, F., and Horsfield, D.W.. Shear strength of reinforced geosynthetic clay liners. Journal of Geotechnical and Geoenvironmental Engineering, 1996,122(4), 259-266.
    [36] Gilbert, R. B., Scranton, H. B., and Daniel, D. E. Shear strength testing for geosynthetic clay liners." Testing and acceptance criteria for geosynthetic clay liners, L. W. Well, ed., ASTM, West Conshohocken, Pa., 1997,121-135.
    [37] Gilbert R B, Byrne R J.Strain-Softening Behavior of Waste Containment Interfaces. Geosynthetics International, 1996, 3(2): 181-200
    [38] Gilbert, R. B., Long, J. H., and Moses, B. E.. Analytical model of progressive slope failure in waste containment systems. International Jounal of Numerical and Analytical Methods in Geomechanics, 1996,20: 35-36
    [39] Gilbert, R. B. 2001. Peak vs. Residual Strength for Waste Containment Systems. Proc. GRI-15, Hot Topics in Geosynthetics II, GSI Publ., Folsom, Pa., pp.29-39.
    [40] Giroud. Contribution of geosynthetics to the gentechnical aspects of waste contaminant. Merch lecture, 2006, Shanghai.
    [41] Grisolia, M. & Napoleoni, Q. Deformability of waste and settlements of sanitary landfills. In: Proc. of World Congress on Waste Management ISWA'95, Wien.,1995
    [42] Hebeler G.L., Frost J.D., Myers A.T. Quantifying hook and loop interaction in textured geomembrane-geotextile systems. Geomembrane and geotextile, 2005,23:77-105.
    [43] Hewitt, R.D., Soydemir, C., Stulgis, R.P., Coombs, M.T.. Effects of normal stress during hydration and shear on the shear strength of GCL/textured geomembrane interface. Testing and Acceptance Criteria for Geosynthetic Clay Liners, Wells, L.W. (Ed.), ASTM, West Conshohocken, Pa., 1997, 55-70.
    [44] Hewitt R.D., Daniel D.E.. Hydraulic conductivity of Geosynthetic Clay Liners after Freeze-Thaw. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 127(4):305-313.
    
    [45] Itasca, 1993.Fast Lagrangian Analysis of Continua, FLAC User's Manual.
    [46] Jessberger, H. L., and Kockel, R. Determination and assessment of the mechanical properties of waste materials. Proc, Sardinia 93,4th Int. Landfill Symp., San Margherita di Pula, CISA, Cagliari, Italy, 1993, p1383-1392
    [47] Jones R.H., Dixon N. Shear strength properties of geomembrane/geotextile interfaces. Geomembrane and geotextile, 1998, 16: 45-71.
    [48] Jones D R V, Dixon N. Landfill lining stability and integrity: the role of waste settlement. Geotextiles and Geomembranes. 2005, 23(1): 27-53
    [49] Katarzyna Z.A.. Shear strength parameters of compacted fly ash-HDPE geomembrane interfaces. Geomembrane and geotextile, 2006, 24: 91-102.
    [50] Kavazanjian, N., Matascovic, R., Bonaparte, G.R., Schmertmazin, E.. Evaluation of MSW properties for seismic analysis. Geoenvironment 2000, Geotechnical Special Publication No. 46, ASCE, 1995, pp. 1126-1141.
    [51] Kavazanjian, E.,. Mechanical properties of municipal solid waste. Proceedings Sardinia '01, Eighth International Waste Management and Landfill Symposium, Cagliari, Italy, 2001,pp.415-424 .
    [52] Kavazanjian, E. and Merry, S. M., 2005. The 10 July 2000 Payatas landfill failure. Proceedings of Sardinia '05 - 10th International Symposium Waste Management and Landfill, Cagliari, Italy, Oct. 2005.
    [53] Kockel R. and Jessberger H.L. Stability evaluation of Municipal Solid Waste slopes. Proc.of 11~(th) ECSMFE, Copenhagen, Denmark, Danish Geotechnical Society, Bulletin, 11, Vol, 2 ,1995
    [54] Kodikara J. Analysis of tension development in geomembranes placed on landfill slope. Geotexiles and Geomembrane, 2000, 18(1): 47-61.
    [55] Koerner R.M.. Designing with geosynthetics. (4th Edition) Prentice-Hall Inc.Englewood Cliffs, NJ, 1998.
    [56] Koerner, R.M., Soong, T-Y., and Gontar, A.. Selected Aspects of GCL shear strength testing. Proceedings of Geo-Bento, Insatec Publications, France, 1998,97-110.
    [57] Koerner, R.M., Carson, D.A., Daniel, D.E., and Bonaparte, R... Update of the Cincinnati GCL test plots. Proceedings of Geo-Bento Insatec Publications,France, 1998,291-315.
    [58] Koerner R.M., Hwu, B.L., Stability and tension considerations regarding cover soils on geomembrane lined slopes,Geotextiles and Geomembranes, 1991,10(4):335-355
    [59] Rowe, R. K... Long-term performance of contaminant barrier systems.Geotechnique, 2005, 55(9): 631-678
    [60] Landva, A., Clark, J.I. Geotechnics of waste fills. Geotechnics of Waste Fills—Theory and Practice, ASTM STP 1070,1990, pp.86-106.
    [61]Landva, A.O., Valsangkar, A.J., Pelkey, S.G. (2000) - Lateral earth pressure at rest and compressibility of municipal solid waste. Canadian Geotechnical Journal,Vol: 37, pp 1157-1165.
    [62] Lambe, T.W.. The permeability of compacted fine-grained soils, Special Technical publication 163,ASTM, Philadephia, 1958, 55-67.
    [63] Lee K. M., Manjunath V. R.. Soil-geotextile interface friction by direct shear tests. Canadian Geotechnical Journal, 2000, 37,238-252.
    [64] Ling, H.I., Pamuk, A., Dechasakulsom, M., Mohri, Y., and Burke C. Interactions between pvc geomembranes and compacted clays. Journal of Geotechnical and Geoenvironmental Engineering, 2001,127(11):950-954
    [65] Long J.H., Gibert R.B. and Daly J.J.. Geosynthetic loads in landfills slopes Displacement Compatibility. Journal of geotechnical engineering, 1994,120(11):2009-2025
    [66] Long J.H., Gibert R.B. and Daly J.J.. Effect of waste settlement on sloped lining systems. Geosynthetics' 95, 729-744
    [67] Long, J.H.,Daly, J.J. andGilbert, R.B.. Structural Integrity of Geosynthetic Liner andover Systems for Solid Waste Landfills, Report, ProjectNo. OSWR05-005,Office of Solid Waste Research, University of Illinois Center for Solid Waste Management and Research, Urbana, Illinois, USA, 284 1993, 1388-1401
    [68] Machado S.L., Carvalho F.M., Vilar O.M.. Constitutive Model for Municipal Solid Waste. Journal of Geotechnical and Geoenvironmental Engineering. 2002,128(11):940~951
    [69] Marques A C M. Filz G M. Vilar O M. Composite compressibility model for municipal solid waste. Journal of Geotechnical and Geoenviromental Engineering, 2003, 129(4):327-378.
    [70] Mesri, G., and Olson, H.. Shear strength of montmorillonite. Geotechnique,1970,20(3), 261-270.
    [71] Mitchell, J.K., Hopper, D.R. and Campanella, R.G. Permeability of compacted clay, Journal of soil mechanics and foundation enginneering ASCE, 1965,91(4):41-65
    [72] Mitchell J.K. and Seed. H.B. Kettleman hills waste landfill slope failure I: liner system properties. Journal of Geotechnical Engineering, 1990,116 (4): 647-668
    [73] Morris D.V., Woods C.E. Settlement and engineering consideration in landfill and final cover design. Geotechnics of waste fills-Theory and practice: 1990,ASTM STP 1070. Philadelphia:9-21.
    [74] Nataraj, M.S., Maganti, R.S. and McManis, K.L.. Interface frictional characteristics of geosynthetics.Proceedings of Conference Geosynthetics '95,Tennessee, USA, 1995, pp. 1057-1069.
    [75] Palmeira, E.M., Lima Jr., N.R., Mello, L.G.R.. Interaction between soils and geosynthetic layers in large-scale ramp tests.Geosynthetic s International, 2002,9(2): 149-187.
    [76] Palmeira, E.M., Viana, N.L. Effectiveness of geogrids as inclusions in cover soils of slopes of waste disposal areas Geomembrane and geotextile, 2003, 21:317-337
    [77] Pelkey S. Valsangkar,A. and Landva A.. Shear Displacement Dependent Strength of Municipal Solid Waste and Its Major Constituent. Geotechnical Testing Journal, 2001, 24(4), 381-390 ]
    [78] Petrov, R.J., Rowe, R.K., and Quigley, R.M.. Selected factors influencing GCL hydraulic conductivity. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(8), 683-695.
    [79] Rowe, R.K., Mukunoki, T., Bathurst, R.J., Rimal, S., Hurst, P., and Hansen, S..Performance of a geocomposite liner for containing Jet A-1 spill in an extreme environment. Geotextiles and Geomembranes, 2007,25(2), 68-77.
    [80] Shan, H.Y., and Lai Y.J.. Effect of hydrating liquid on the hydraulic properties of geosynthetic clay liners. Geotextiles and Geomembranes, 2002,20(1), 19-38.
    [81] Sowers G F. Settlement of waste disposal fills. Proceeding of 8th international conf. Soil mechanical and found engineering. Moscow. 1973,part 2:207-210.
    [82] Stark T.D., Poeppel A.R. Landfill liner interface shear strengths from torsional-ring-shear tests. Journal of Geotechnical Engineering, 1994,120 (3):597-615.
    [83] Stark T.D., Williamson T.A., Eid H.T. HDPE geomembrane/geotextile interface shear strength. Journal of Geotechnical Engineering, 1996,122 (3): 197-203.
    [84] Stark, T. D. Effect of swell pressure on GCL cover stability. Testing and Acceptance Criteria for Geosynthetic Clay Liners, Wells, L.W. (Ed.), ASTM,West Conshohocken, Pa., 1997, 31-45.
    [85] Stark, T. D. and Choi, H.. Peak versus residual interface strengths for landfill liner and cover design. Geosynthetics International, 2004,11 (6): 1-8
    [86] Stark, T. D., Eid, H. T.,. Shear behavior of reinforced geosynthetic clay liners.Geosynthetics International, 1996,3(6), 771-786.
    [87] Thusyanthana, N.I., Madabhushia, S.P.G and Singh S..Tension in geomembranes on landfill slopes under static and earthquake loading-Centrifuge study. Geotextiles and Geomembranes, 2007,25:78-95
    [88] Tony L. T. Zhan, Y. M. Chen and W. A. Lin. Shear strength characterization of municipal solid waste at the Suzhou landfill, China. Engineering geology, 2008,97:97-111..
    [89] Triplett, E.J., and Fox, P.J.. Shear strength of HDPE geomembrane/geosynthetic clay liner interfaces. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(6), 543-552.
    [90] US Environmental Protection Agency, Geosynthetic Clay Liners Used in Municipal Solid Waste Landfill, EPA 530-F97-002, Revised December, 2001
    [91] Villard, P., Gourc, J.P. and Feki, N.. Analysis of geosynthetics lining systems(GLS) undergoing large deformations. Geotextiles and Geomembranes,1999,17:17-32
    [92] Vukelic, A., Szavits-Nossanb, A., Kvasnicka, P.. The influence of bentonite extrusion on shear strength of GCL/geomembrane interface. Geotextiles and Geomembranes, 2008, 26(1), 82-90.
    [93] Wall D K, Zeiss C, Municipal landfill biodegradation and settlement. Journal of Environmental Engineering, 1995,121(3):14-224.
    [94] Werner Müller, Ines Jakob, Stefan Seeger, Renate Tatzky-Gerth. Long-term shear strength of geosynthetic clay liners. Geotextiles and Geomembranes,Volume 26, Issue 2, April 2008, Pages 130-144
    [95] Zornberg,J.G., McCartney, J.S. and Swan R.H..Analysis of a Large Database of GCL Internal Shear Strength Results. Journal of Geotechnical and Geoenvironmental Engineering, 2002,131(3): 367-380
    [96] Qian, X. D., Koerner, R.M. and Gray, D.H. (2002) - Geotechnical aspects of landfill design and construction. Prentice-Hall, Inc, New Jersey, 2002.
    [97] Landva, A.O., Valsangkar, A.J., Pelkey, S.G. (2000) - Lateral earth pressure at rest and compressibility of municipal solid waste. Canadian Geotechnical Journal, Vol: 37, pp 1157-1165.
    [98] Park H I, Lee S R. Long-term settlement behaviour of MSW landfills with various fills ages. Waste Management and Research, 2002, 20:259-268.
    [99] Wardell R E, Nelson. Settlement of sludge landfills with fiber decomposition. Proc. 10th Conf. on Soil Mechanics and Foundation Engineering, 1981,Stockholm, Sweden, 2:397-401.
    [100] Kang S T, Shin H S, Lee C Y, Lee N H. Relationship between biological decomposition and landfill settlement at various leachate recirculation rates.Proc. 7th KAIST-NTU-KU Tri-Lateral Seminar/Workshop on Environmental Engineering, 1997, Kyoto, Japan, 29-31
    [101] Mehta R, Barlaz M A. Yazdani R, et al. Refuse decomposition in the presence and absence of leachate recirculation. Journal of Geotechnical and Geoenviromental Engineering,2002,128(3):228-236.
    [102]包承纲.土工合成材料应用原理与工程实践.北京:中国水利水电出版社,2008.
    [103]鲍忠伟,姚有朝,王艳明.土工格栅在填埋场软基围堤道路加筋处理中的应用.环境卫生工程,2008,16(6):26-27
    [104]陈云敏,凌道盛,詹良通,陈仁朋,陈赟.深圳下坪固体废弃物填埋场垃圾体应急抗滑工程初步设计说明书.浙江大学建筑设计研究院,2008.
    [105]陈云敏,林伟岸,詹良通,朱水元,孙雨清.城市生活垃圾抗剪强度与填埋龄期关系的实验研究,土木工程学报.
    [106]陈云敏,叶肖伟,张民强,柯瀚,张泉芳.多场耦合作用下重金属离子在粘土中的迁移性状试验研究.岩土工程学报,2005,27(12):1371-1375.
    [107]冯世进.城市固体废弃物静动力强度特性及填埋场的稳定性分析.杭州:浙江大学,2005.
    [108]国家环境保护总局.城市生活垃圾处理及污染防治技术政策.建城[2000]120号,2000.
    [109]高登,朱斌,陈云敏.设垃圾坝填埋场的三楔体滑动分析.岩石力学与工程学报,2007,26(2):4378-4385.
    [110]何俊,夏彩虹,胡景山.GCL与CCL复合衬垫的等效性分析.水文地质工程地质,2007 3:102-106.
    [111]林伟岸,朱斌,陈云敏,詹良通.考虑界面软化特性的垃圾填埋场斜坡上土工膜内力分析,岩土力学,2008,29(8):2063-2069.
    [112]林伟岸,詹良通,陈云敏.HDPE土工膜/土工织物界面剪切特性,第十届土力学和岩土工程会议论文(中册),重庆,2007,pp:720-724
    [113]刘爱军.土工复合排水网渠道排水的应用,南水北调与水利科技,2007,5(4):83-84
    [114]吕宏洋.膨润土防水垫(GCL)和土工膜(GM)作为危险废物填埋场复合衬垫系统的研究.有色冶金设计与研究,2007,28(2-3):131-140
    [115]逢钧仪.塑料土工格栅的长期性能与质量保证.工程塑料应用,2005,33(8):50-53
    [116]钱学德,郭志平.填埋场粘土衬垫的设计与施工.水利水电科技进展,1997,17(4):55-59
    [117]钱学德,郭志平,施建勇,卢廷浩.现代卫生填埋场的设计与施工.北京:中国建筑工业出版社,2001.
    [118]土工合成材料测试规程(SL/T235—1999).南京水利科学研究院,中国土工合成材料工程协会.北京:水利电力出版社,1999.
    [119]谢焰.城市生活垃圾固气液耦合压缩试验与理论研究.杭州:浙江大学,2007.
    [120]谢海建.成层介质污染物的运移机理及衬垫系统防污性能研究.杭州:浙江大学,2008.
    [121]温诗铸,黄平.摩擦学原理.北京:清华大学出版社,2002.
    [122]詹良通,魏海云,陈云敏等.垃圾原状样的力学压缩性及其与填埋龄期的关系.浙江大学学报(工学版),2008,42(2):353-358.
    [123]张文杰.城市生活垃圾填埋场中水分运移规律研究.杭州:浙江大学,2007..
    [124]张振营.城市生活垃圾的压缩性及填埋场的沉降研究.杭州:浙江大学,2005.
    [125]祝和权,刘继武,李海燕,杜存山.膨润土防水毯的研制及其在垃圾填埋场中的应用,防水材料与施工,2003,37-39
    [126]周敬超,2003.HDPE土工膜在城市生活垃圾卫生填埋场中的应用。水利水电科技进展,第23卷第3期:53-56
    [127]中华人民共和国建设部(CJJ17-88).城市生活垃圾卫生填埋技术规范.北京:中国建筑工业出版社,1988.
    [128]中华人民共和国建设部(CJJ17-2001).城市生活垃圾卫生填埋技术规范.北京:中国建筑工业出版社,2001.
    [129]中华人民共和国建设部(CJJ 17-2004).生活垃圾卫生填埋技术规范.北京:中国建筑工业出版社,2004.
    [130]中华人民共和国建设部(CJJ 113-2007).生活垃圾卫生填埋场防渗系统工程技术规范.北京:中国建筑工业出版社,2007.
    [131]中华人民共和国行业标准编写组.生活垃圾填埋污染控制标准(GB16889-1997).北京:中国建筑工业出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700