用户名: 密码: 验证码:
TiZrNiCuBe块体非晶合金的力学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用单轴拉伸和压缩以及纳米压痕技术,系统研究了Ti40Zr25Ni3Cu12Be20块体非晶合金宽温度范围内(123 K~658 K)的力学行为。
     铸态非晶样品的尺寸对非晶合金的塑性变形能力产生显著影响。相比较大尺寸非晶试样而言,具有相同化学成分的小尺寸非晶试样体现更大的压缩塑性和较低的压缩强度,这表明非晶合金具有“愈小亦愈软”的趋势。在凝固过程中,小尺寸的试样经历更大的冷却速度,使得其拥有更多的自由体积,促进剪切带的形核并导致玻璃态合金在变形时产生更多剪切带,使得小尺寸试样在单轴压缩过程中体现更大的塑性变形能力。
     Ti40Zr25Ni3Cu12Be20非晶合金在低温环境下塑性和强度均显著增强。其塑性的提高可归因于密集的剪切带的形成及剪切带的扭转。低温环境大大降低原子的活动能力,使得原子扩散困难,进而抑制了剪切带的扩展,使得合金在远低于室温时体现塑性与强度的同时提高。低温压缩变形中,非晶合金产生“变形诱发纳米晶转变”现象,同时,低温变形试样的晶化程度较室温变形试样大大减轻。
     Ti40Zr25Ni3Cu12Be20非晶合金在过冷液相区体现优异的超塑性变形能力,高温压缩应变可高达0.83。非晶合金的超塑性流变行为强烈取决于测试温度和应变速率。在低温和高应变速率时,测量的粘度值随着应变速率的增加而不断降低,即,材料体现非牛顿型流变,且在应力应变曲线上可观察到峰值应力现象。而在低应变速率和高测试温度条件下,材料体现牛顿型流变。非晶合金在宽温度范围内测试温度与其强度之间符合下列关系:σ= aE ( b ? T / Tg)。对于本文研究的Ti基非晶合金而言,当测试温度在0~0.9Tg时,σ/ E= 0.0066T/Tg+0.0206;而当测试温度在0.9~1.1Tg时,σ/ E= 0.1163T/Tg+0.1278。
     研究了Ti40Zr25Ni3Cu12Be20非晶合金在不同测试温度下的单轴压缩断裂行为以及断口形貌特征。在高温变形时,压缩断口较室温断口更为粗糙不平。随着测试温度的升高,一个与脉状花样不同的特征,即大面积粘性介质层,出现在断口上,外加热场以及塑性流变导致的绝热升温被认为是导致粘性介质层的两个重要原因。升高测试温度,导致试样的剪切断裂角亦随之逐渐增加。非晶合金在不同测试温度下的断裂行为均遵循与正应力相关的Mohr-Coulumb准则。
     预塑性变形对Ti40Zr25Ni3Cu12Be20非晶合金的力学性能产生重要影响。预塑性变形前后合金试样在均体现非晶态结构特征的同时,塑性变形能力体现较大差别。随着预应变量的增加,试样在发生断裂破坏前的压缩塑性应变出现先增加后减小的趋势,在预应变为10 %时,试样体现最大的压缩塑性。同时,随着预应变量的增加,预应变试样在破坏后试样表面的剪切带数量及宏观断口的脉状纹络的密度亦体现先增大后减小的趋势,而预变形试样的硬度体现先减小后增加的趋势。热分析结果表明,在预应变为10%时,试样体现最多的自由体积。基于Spaepen提出的自由体积理论,对于预变形过程中,非晶体内自由体积出现饱和的现象进行了合理解释。
     研究了Ti40Zr25Ni3Cu12Be20块体及薄带非晶合金在宽最大载荷范围内(5~100 mN)室温纳米蠕变特性。应力指数n由载荷-位移曲线推算出来并作为一个衡量材料抗蠕变特性的重要指标。随着纳米压痕尺寸增加,所测得的应力指数急剧增加,体现明显的尺寸效应。相比薄带材料而言,这种尺寸效应在块体中体现得更为显著。纳米压痕蠕变行为的变形机理可以由基于“剪切转变区”的非晶合金变形理论来合理解释。
     采用循环加载纳米压痕测试研究了Ti40Zr25Ni3Cu12Be20非晶合金的反塑性行为。随着循环加载次数的增加,卸载曲线与重新加载曲线之间的差别越来越不明显。小的加载/卸载速度导致材料的卸载曲线与重新加载曲线之间体现更为显著的差别。同时,具有高玻璃转变温度的非晶合金体现更小的反塑性。
In the present dissertation, the mechanical behaviors of Ti40Zr25Ni3Cu12Be20 bulk metallic glass (BMG) have been systematically investigated using unixial compression and tensile tests, as well as nanoindentation technique at different testing temperatures ranging from 123 K to 658 K.
     The dramatic effect of sample size on the plastic deformation capability of the glassy alloy tested was studied. Compared with the larger one, the smaller size glassy sample with the same chemical composition exhibits significantly pronounced plasticity, suggesting a“smaller is softer”trend of metallic glasses. The phenomenon is attributed to the fact that the smaller size alloy, which experienced a faster cooling rate during solidification, contains a larger amount of heats of relaxation and crystallization, favoring the preferential nucleation of shear bands and thus allowing enhanced plasticity upon compressive loading.
     The Ti-based BMG studied exhibits a significant enhancement in both compressive strength and plasticity at low temperatures. The ductilization of the BMG system can be evidently attributed to the formation of dense shear bands and the rotation mechanism of shear bands. The cryogenic surroundings can effectively slow down the mobility and diffusion of the atoms and consequently, suppress the nucleation and growth of nanocrystals during the deformation process, allowing the simultaneous improvement in the mechanical responses of the glassy alloy subjected to compressive loading far below the ambient temperature. The deformation-induced crystallization occurs during low temperature compression tests of the studied alloy while the crystallization in the low temperature deformed sample is not as profound as that in the room temperature deformed sample.
     The superplastic deformation behaviors of the studied alloy were examined. The alloy shows an extraordinary compressive superplastic formability in the supercooled liquid region, typically evidenced by a large compressive strain up to 0.83. The superplastic flow behaviors depend strongly on the testing temperatures and initial strain rates. At low temperatures or high strain rates, the viscosity measured was found to dramatically decrease with increasing strain rate (i.e. non-Newtonian flow) and a stress overshoot is detected in the first steps of strain. At low strain rates or high testing temperatures, the studied glass exhibits a Newtonian flow behavior. It is found that the relationship between the strength and the testing temperature of the metallic glasses obeys the following relation:σ= aE ( b ? T / Tg). For the testing temperature regime of 0~0.9Tg,σ/ E= 0.0066T/Tg+0.0206 whereas for the testing temperature regime of 0.9~1.1Tg,σ/ E= 0.1163T/Tg+0.1278.
     The fracture behaviors of the studied BMG subjected to uniaxial compression tests at high temperature have been investigated. At high temperatures, the compressive fracture surface of BMG becomes much rougher than that at room temperature. With increasing the testing temperature, a different pattern from the vein appeared on the fracture surface, which is viscous flow layer. This fracture feature is most likely due to the external heat fields and the adiabatic heating created by plastic flow. As the testing temperature increases, the fracture angle correspondingly increases as well. The normal stress-dependent yield criterion (i.e., the Mohr-Coulomb criterion) should be used to elucidate the controlling fracture mechanisms of metallic glass deformed under various testing temperatures.
     The mechanical properties of pre-deformed Ti-based metallic glass have been examined. With increasing pre-strain, the plasticity of the pre-deformed sample initially increases, and then decreases with further increasing pre-strain. The hardness of the pre-deformed samples exhibits the reverse trend. For the case of 10 % pre-strain, the pre-deformed sample exhibits the largest plastic strain prior to failure. At the same time, as the pre-strain increases, the quantity of shear bands observed on the outer surface and the density of vein patterns shown in macroscopical fracture surface also increases initially and then decreases. The thermal analysis results reveal that the 10 % pre-strained sample possesses the largest quantity of free volume. The saturation of free volume in metallic glassy sample during pre-deformation can be successfully interpreted based on the free volume theory proposed by Spaepen.
     The time-dependent plastic deformation properties of Ti40Zr25Ni3Cu12Be20 bulk and ribbon metallic glass were investigated using nanoindentation technique at room temperature. The stress exponent n, defined asε? =Aσn, has been derived from the load-displacement curve and is used as a measure of the creep resistance. It was found that the measured stress exponent increases rapidly with increasing indentation size, exhibiting a positive size effect. The size effect in n obtained from the bulk sample is more pronounced than that obtained from the ribbon sample.
     The reverse plasticity of Ti-based bulk metallic glasses was investigated using cyclic nanoindentation tests. The deviation between the unloading and reloading curves gradually diminishes with the increasing number of cycles for the Ti40Zr25Ni3Cu12Be20 metallic glass. Smaller loading/unloading rate leads to a larger deviation between the unloading and reloading curves for the Ti40Zr25Ni3Cu12Be20 metallic glass. Metallic glasses with high Tg show smaller deviation between the unloading and reloading curves.
引文
1 W. Klement, R.H. Willens, P. Duwez. Non-Crystalline Structure in Solidified Gold-Silicon Alloys. Nature. 1960, 187: 869~870.
    2 F.E.卢博斯基.非晶态金属合金.冶金工业出版社, 1989: 1~10; 201~315.
    3 H.S. Chen. Thermodynamic Considerations on the Formation and Stability of Metallic Glasses. Acta Metall. Mater. 1974, 22 (12): 1505~1511.
    4 A. Inoue. Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys. Acta Mater. 2000, 48: 279~306.
    5 A. Peker, W.L. Johnson. A Highly Processable Metallic Glass Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 1993, 63(17): 2342~2344.
    6 T. Zhang, A. Inoue. Ti-based Amorphous Alloys with a Large Supercooled Liquid Region. Mater. Sci. Eng. 2001, A304-306: 771~774.
    7 A. Inoue, K. Kohinate, K. Ohtera. Mg-Ni-La Amorphous with a Wide Supercooled Region. Mater. Trans. 1989, 30: 378~381.
    8 A. Inoue, T. Zhang, N.Nishiyama. Preparation of 16 mm Diameter Rod of Amorphous Zr65Al7.5Ni10Cu17.5 Alloy. Mater. Trans. 1993, 34(12): 1234~1237.
    9 Y. He, S.J. Poon, G.J. Shiflet. Synthesis and Properties of Metallic Glasses that Contain Aluminum. Science. 1988, 241: 1640~1642.
    10 J. Shen, Q.J. Chen, J.F. Sun, H.B. Fan, G. Wang. Exceptionally High Glass-Forming Ability of an FeCoCrMoCBY Alloy. Appl. Phys. Lett. 2005, 86 (15): 151907-1~151907-3.
    11 K.Q. Qiu, H.F. Zhang, A.M. Wang, B.Z. Ding, Z.Q. Hu. Glass-forming Ability and Thermal Stability of Nd70?xFe20Al10Yx Alloys. Acta Mater. 2002, 50: 3567~3578.
    12 A. Inoue, B.L. Shen, H. Koshiba, H. Kato, A.R. Yavari. Cobalt-based Bulk Glassy Alloy with Ultrahigh Strength and Soft Magnetic Properties. Nature Mater. 2003, 2: 661~663.
    13 D.H. Xu, G. Duan, W.L. Johnson, C. Garland. Formation and Properties of New Ni-Based Amorphous Alloys with Critical Casting Thickness up to 5mm. Acta Mater. 2004, 52 (12): 3493~3497.
    14 B. Zhang, M.X. Pan, D.Q. Zhao, W.H. Wang.“Soft”Bulk Metallic Glasses Based on Cerium. Appl. Phys. Lett. 2004, 85 (1): 61~63.
    15 J. Schroers, W.L. Johnson. Ductile Bulk Metallic Glass. Phys. Rev. Lett. 2004, 93: 255506-1~255506-4 .
    16 D.H. Xu, B. Lohwongwatana, G. Duan, W.L. Johnson, C. Garland. Bulk Metallic Glass Formation in Binary Cu-Rich Alloy Series-Cu10-xZrx (x=34, 36, 38.2, 40 at. %) and Mechanical Properties of Bulk Cu64Zr36 Glass. Acta Mater. 2004, 52 (9): 2621~2624.
    17 A. Inoue, N. Nishiyama, H. Kimura. Preparation and Thermal Stability of Bulk Amorphous Pd40Cu30Ni10P20 Alloy Cylinder of 72 mm in Diameter. Mater. Trans. 1997, 382: 179~183.
    18 Z.P. Lu, T.T. Goh, Y. Li, S.C. Ng. Glass Formation in La-based La-Al-Ni-Cu-(Co) Alloys by Bridgman Solidification and their Glass Forming Ability. Acta Mater. 1999, 47 (7): 2215~2224.
    19 F.Q. Guo, S.J. Poon, G.J. Shiflet. Metallic Glass Ingots Based on Yttrium. Appl. Phys. Lett. 2003, 83 (13): 2575~2577.
    20 F.Q. Guo, S.J. Poon, G.J. Shiflet. CaAl-based Bulk Metallic Glasses with High Thermal Stability. Appl. Phys. Lett. 2004, 84: 37~39.
    21 C.L. Ma, H. Soejima, S. Ishihara, K. Amiya, N. Nishiyama, A. Inoue. New Ti-based Bulk Glassy Alloys with High Glass-forming Ability and Superior Mechanical Properties. Mater. Trans. 2004, 45 (11): 3223~3227.
    22 C.L. Ma, S. Ishihara, H. Soejima, N. Nishiyama, A. Inoue. Formation of New Ti-based Metallic Glassy Alloys. Mater. Trans. 2004, 45 (5): 1802~1806.
    23夏明许,郑红星,马朝利,李建国. Ti53Cu15Ni18.5Al7M3Si3B0.5 (M=Zr, Hf, Sc)高强度块体金属玻璃的制备及其性能.金属学报. 2005, 41 (2): 199~202.
    24 Y.C. Kim, J.H. Na, J.M. Park, D. H. Kim, J.K. Lee, W.T. Kim. Role of Nanometer-scale Quasicrystals in Improving the Mechanical Behavior of Ti-based Bulk Metallic Glasses. Appl. Phys. Lett. 2003, 83 (15): 3093~3095.
    25 Y.C. Kim, W.T. Kim, D. H. Kim. Glass Forming Ability and Crystallization Behavior in Amorphous Ti50Cu32-xNi15Sn3Bex(x=0, 1, 3, 7) Alloys. Mater. Trans. 2002, 43 (5): 1243~1247.
    26 L.Q. Ma, L.M. Wang, T. Zhang, A. Inoue. Bulk Glass Formation of Ti-Zr-Hf-Cu-M (M=Fe, Co, Ni) Alloys. Mater. Trans. 2002, 43 (2): 277~280.
    27 Y.C. Kim, W.T. Kim, D.H. Kim. A Development of Ti-based Bulk Metallic Glass. Mater. Sci. Eng. 2004, A375-377: 127~135.
    28 Y.C. Kim, D.H. Bae, W.T. Kim, D.H. Kim. Glass Forming Ability and Crystallization Behavior of Ti-based Amorphous Alloys with High Specific Strength. J. Non-crys. Solids. 2003, 325: 242~250.
    29 M.X. Xia, C.L. Ma, H.X. Zheng, J.G. Li. Preparation and Crystallization of Ti53Cu27Ni12Zr3Al7Si3B1 Bulk Metallic Glass with Wide Supercooled Liquid Region. Mater. Sci. Eng. 2004, A 390 (1-2): 372~375.
    30夏明许,郑红星,马朝利,李建国. Ti基大块非晶合金的制备及热稳定性.稀有金属材料与工程. 2005, 34 (8): 1235~1238.
    31 T. Zhang, A. Inoue. Preparation of Ti-Cu-Ni-Si-B Amorphous Alloys with a Large Supercooled Liquid Region. Mater. Trans. 1999, 40 (4): 301~306.
    32 Y.C. Kim, J.M. Park, J.K. Lee, D.H. Bae, W.T. Kim, D.H. Kim. Amorphous and Icosahedral Phases in Ti-Zr-Cu-Ni-Be Alloys. Mater. Sci. Eng. 2004, A375-377: 749~753.
    33 G.J. Yang, T. Zhang, A. Inoue. Effects of Ta, Nb and Mo Additions on Glass-forming Ability of Ti50Ni20Cu25Sn5 Amorphous Alloy. Rare Metal Mater. Eng. 2003, 32 (11): 880~884.
    34 F.Q. Guo, H.-J. Wang, S.J. Poon, G.J. Shiflet. Ductile Titanium-based Glassy Alloy Ingots. Appl. Phys. Lett. 2005, 86: 091907-1~091907-3.
    35 J.M. Park, H.J. Chang, K.H. Han, W.T. Kim, D.H. Kim. Enhancement of Plasticity in Ti-rich Ti-Zr-Be-Cu-Ni Bulk Metallic Glasses. Scr. Mater. 2005, 53 (1): 1~6.
    36 T. Zhang, A. Inoue. Thermal and Mechanical Properties of Ti-Ni-Cu-Sn Amorphous Alloys with a Wide Supercooled Liquid Region before Crystallization. Mater. Trans. 1998, 39 (10): 1001~1006.
    37 Y.C. Kim, W.T. Kim, D.H. Kim. Synthesis of Bulk Metallic Glass in the Ti-rich Part of the Ti-Cu-Ni-Sn-Be-Zr Alloy System. Ann. Chim. Sci. Mat. 2002, 27 (5): 11~17.
    38 J.M. Park, Y.C. Kim, W.T. Kim, D.H. Kim. Ti-Based Bulk Metallic Glasses with High Specific Strength. Mater. Trans. 2004, 45 (2): 595~598.
    39 H. Men, S.J. Pang, A. Inoue, T. Zhang. New Ti-Based Bulk Metallic Glasses with Significant Plasticity. Mater. Trans. 2005, 46 (10): 2218~2220.
    40 H. Men, S.J. Pang, T. Zhang. Glass-forming Ability and Mechanical Properties of Cu50Zr50-xTix Alloys. Mater. Sci. Eng. 2005, A408: 326~329.
    41 M.X. Xia, H.X. Zheng, J. Liu, C.L. Ma, J.G. Li. Thermal Stability and Glass-forming Ability of New Ti-based Bulk Metallic Glasses. J. Non-Cryst. Solids. 2005, 351: 3747~3751.
    42 S.L. Zhu, X.M. Wang, F.X. Qin, M. Yoshimura, A. Inoue. Effects of Si Addition on the Glass-Forming Ability, Glass Transition and Crystallization Behaviors of Ti40Zr10Cu36Pd14 Bulk Glassy Alloy. Intermetallics 2008, 16: 609~614.
    43 X.F. Wu, Z.Y. Suo, Y. Si, L.K. Meng, K.Q. Qiu. Bulk Metallic Glass Formation in a Ternary Ti–Cu–Ni Alloy System. J. Alloys Compd. 2008, 452: 268~272.
    44 G. Duan, A. Wiest, M.L. Lind, A. Kahl, W.L. Johnson. Lightweight Ti-based Bulk Metallic Glasses excluding Late Transition Metals. Scr. Mater. 2008, 58: 465~468.
    45 A. Wiest, G. Duan, M.D. Demetriou, L.A. Wiest, A. Peck, G. Kaltenboeck, B. Wiest, W. L. Johnson. Zr–Ti-based Be-bearing Glasses Optimized for High Thermal Stability and Thermoplastic Formability. Acta Mater. 2008, 56: 2625~2630.
    46 L.E. Tanner, R. Ray. Physical Properties of Ti50Be40Zr10 Glass. Scr. Mater. 1977, 11(9): 783~789.
    47 L.E. Tanner, R. Ray. Metallic Glass Formation and Properties in Zr and Ti Alloyed with Be—I the Binary Zr-Be and Ti-Be Systems. Acta Mater. 1979, 27: 1727~1747.
    48 D.E. Polk, A. Calka, B.C. Giessen. The Preparation and Thermal and Mechanical Properties of New Titanium Rich Metallic Glasses. Acta Mater. 1978, 26: 1097~1103.
    49 A. Inoue, H.M. Kimura, T. Masumoto, C. Suryanarayana, A. Hoshi. Superconductivity of Ductile Ti-Nb-Si Amorphous Alloys. J. Appl. Phys. 1980, 51: 5475~5482.
    50 G.J. Hao, Y. Zhang, J.P. Lin, Y.L. Wang, Z. Lin, G.L. Chen. Bulk MetallicGlass Formation of Ti-based Alloys from Low Purity Elements. Mater. Lett. 2006, 60: 1256~1260.
    51 V. Bengus, E. D. Tabachnikova, P. Duhaj, V. Ocelik. Low Temperature Mechanical Properties of Metallic Glasses Connection with Structure. Mater. Sci. Eng. 1997, A 226-228: 823~832.
    52 V. Bengus, E. Tabachnikova, K. Csach, J. Miskuf, V. Ocelik. Possible Local Superplasticity of Amorphous Metallic Alloys in the Catastrophic Shear Band under Low Temperature Ductile Shear Failure. Scr. Mater. 1996, 35: 781~784.
    53 H. Li, C. Fan, K. Tao, H. Choo, P.K. Liaw. Compressive Behavior of a Zr-Based Metallic Glass at Cryogenic Temperatures. Adv. Mater. 2006, 18: 752~754.
    54 C. Fan, H. Li, L.J. Kecskes, K. Tao, H. Choo, P.K. Liaw, C.T. Liu. Mechanical Behavior of Bulk Amorphous Alloys Reinforced by Ductile Particles at Cryogenic Temperatures. Phys. Rev. Lett. 2006, 96: 145506-1~145506-4.
    55王刚. Zr41.25Ti13.75Ni10Cu12.5Be22.5大块非晶合金纳米晶化及力学行为研究.哈尔滨工业大学工学博士学位论文. 2005: 3~100.
    56 A. Leonhard, L.Q. Xing, M. Heilmaier, A. Gebert, J. Eckert, L. Schultz. Effect of Crystalline Precipitations on the Mechanical Behavior of Bulk Glass Forming Zr-based Alloys. Nanostru. Mater. 1998, 10 (5): 805~817.
    57 F. Spaepen. A Microscopic Mechanism for Steady State Inhomogenous Flow in Metallic Glasses. Acta Metall. 1977, 25: 407~415.
    58 P.S. Steif, F. Spaepen, J.W. Hutchinson. Strain Localization in Amorphous Metals. Acta Mater. 1982, 30 (2): 447~455.
    59 J. Leamy, H.S. Chen, T.T. Wang. Plastic Flow and Fracture of Metallic Glass. Metall. Trans. 1972, 3: 699~708.
    60 W.J. Wright, R.B. Schwarz, W.D. Nix. Localized Heating during Serrated Plastic Flow in Bulk Metallic Glasses. Mater. Sci. Eng. 2001, A 319-321: 229~232.
    61 G. He, J. Eckert, W. L?ser. Stability, Phase Transformation and Deformation Behavior of Ti-base Metallic Glass and Composites. Acta Mater. 2003, 51: 1621~1631.
    62 G. He, W. L?ser, J. Eckert. Devitrification and Phase Transformation of (Ti0.5Cu0.25Ni0.15Sn0.05Zr0.05)100-xMox Metallic Glasses. Scr. Mater. 2004, 50: 7~11.
    63 Y.C. Kim, E. Fleury, J.-C. Lee, D.H. Kim. Origin of the Simultaneous Improvement of Strength and Plasticity in Ti-based Bulk Metallic Glass Matrix Composites. J. Mater. Res. 2005, 20 (9): 2474~2479.
    64 I.K. Jeng, P.Y. Lee. Synthesis of Ti-based Bulk Metallic Glass Composites Containing WC Particles. Mater. Trans. 2005, 46 (12): 2963~2967.
    65 Y.F. Sun, Y.R. Wang, B.C. Wei, W.H. Li, C.H. Shek. Effect of Carbon Addition on Microstructure and Mechanical Properties of Ti-based Bulk Metallic Glass Forming Alloys. Trans. Nonferrous Met. Soc. China. 2005, 15 (4): 727~732.
    66 L.Q. Ma, L. Wang, X. Guo, T. Zhang, A. Inoue. Enhanced Glass-forming Ability and Microhardness of Ti45Zr5Cu25Ni20Sn5 Amorphous Alloy by Addition of TiC Particles. J. Mater. Sci. Lett. 2002, 21: 1435~1437.
    67马立群,廖恒成,郭新权. TiC颗粒增强非晶钛合金基复合材料的热稳定性.材料研究学报. 2000, 14 (S1): 186~188.
    68 Y. Zhang, W.H. Wang, A.L. Greer. Making Metallic Glasses Plastic by Control of Residual Stress. Nature Mater. 2006, 10: 1~4.
    69 Y. Yokoyama, K. Yamano, K. Fukaura, H. Sunada, A. Inoue. Ductility Improvement of Zr55Cu30Al10Ni5 Bulk Amorphous Alloy. Scr. Mater. 2001, 44: 1529~1533.
    70 Y. Yokoyama, K. Inoue, K. Fukaura. Cold-rolled Zr55Cu30Al10Ni5 Bulk Amorphous Alloys with Tensile Plastic Elongation at Room Temperature. Mater. Trans. 2002, 43 (12): 3199~3205.
    71 T. Masumoto, R. Maddin. The Mechanical Properties of Palladium 20 a/o Silicon Alloy Quenched from the Liquid State. Acta Metall. 1971, 19 (7): 725~741.
    72 C.A. Pampillo, D.E. Polk. The Strength and Fracture Characteristics of Fe, Ni-Fe and Ni-base Glasses at Various Temperatures. Acta Metall. 1974, 22 (6): 741~749.
    73 L.A. Davis, S. Kavesh. Deformation and Fracture of an Amorphous Metallic Alloy at High Pressure. J. Mater. Sci. 1975, 10: 453~459.
    74 H.A. Bruck, T. Christman, A.J. Rosakis, W.L. Johnson. Quasi-static Constitutive Behavior of Zr41.2Ti13.8Ni10Cu12.5Be22.5 Bulk Amorphous Alloys. Scr. Mater. 1994, 34 (4): 429~434.
    75 P.E. Donovan. A Yield Criterion for Pd40Ni40P20 Metallic Glass. Acta Metall. 1989, 37 (2): 445~456.
    76 P.E. Donovan. Compressive Deformation of Amorphous Pd40Ni40P20. Mater. Sci. Eng. 1988, 98: 487~490.
    77 Z.F. Zhang, J. Eckert, L. Schultz. Difference in Compressive and Tensile Fracture Mechanisms of Zr59Cu20Al10Ni8Ti3 Bulk Metallic Glass. Acta Mater. 2003, 51: 1167~1179.
    78 Z.F. Zhang, G. He, J. Eckert, L. Schultz. Fracture Mechanisms in Bulk Metallic Glassy Materials. Phys. Rev. Lett. 2003, 91: 045505-1~045505-4.
    79 Z.F. Zhang, J. Eckert. Unified Tensile Fracture Criterion. Phys. Rev. Lett. 2005, 94: 094301-1~094301-4.
    80 C.A. Schuh, A.C. Lund. Atomistic Basis for the Plastic Yield Criterion of Metallic Glass. Nature Mater. 2003, 2: 449~452.
    81 E. Bakke, R. Busch, W.L. Johnson. The Viscosity of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 Bulk Metallic Glass Forming Alloy in the Supercooled Liquid. Appl. Phys. Lett. 1995, 67 (22): 3260~3262.
    82 R. Busch, E. Bakke, W.L. Johnson. Viscosity of the Supercooled Liquid and Relaxation at the Glass Transition of the Zr46.75Ti8.25Ni10Cu7.5Be27.5 Bulk Metallic Glass Forming Alloy. Acta Mater. 1998, 46 (13): 4725~4732.
    83 Y. Kawamura, T. Nakamura, A. Inoue. Superplasticity in Pd40Ni40P20 Metallic Glass. Scr. Mater. 1998, 39 (3): 301~306.
    84 Y. Kawamura, T. Nakamura, H. Kato, H. Mano, A. Inoue. Newtonian and Non-Newtonian Viscosity of Supercooled Liquid in Metallic Glasses. Mater. Sci. Eng. 2001, A 304-306: 674~678.
    85 Y. Kawamura, T. Itoi, T. Nakamura, A. Inoue. Superplasticity in Fe-based Metallic Glass with Wide Supercooled Liquid Region. Mater. Sci. Eng. 2001, A304-306: 735~739.
    86 J. Lu, G. Ravichandran, W.L. Johnson. Deformation Behavior of the Zr41.2Ti13.8Ni10Cu12.5Be22.5 Bulk Metallic Glass over a Wide Range of Strain-rates and Temperatures. Acta Mater. 2003, 51: 3429~3443.
    87 W.L. Johnson, J. Lu, M.D. Demetriou. Deformation and Flow in Bulk Metallic Glasses and Deeply Undercooled Glass Forming Liquids-a Self Consistent Dynamic Free Volume Model. Intermetallics. 2002, 10: 1039~1046.
    88 Q. Jing, R.P. Liu. G.J. Shao, W.K. Wang. Preparation and Super-plastic Deformation of the Zr-based Bulk Metallic Glass. Mater. Sci. Eng. 2003, A359: 402~404.
    89张志豪,刘新华,周成,谢建新. Zr基大块非晶合金的超塑性成形性能.中国有色金属学报. 2004, 14 (7): 1073~1077.
    90 X.S. Xiao, S.S. Fang, Q. Wang, G.M. Wang, Q. Hua, Y.D. Dong. Effect of Hot Rolling on Thermal Stability and Microstructure of Zr52.5Al10Ni10Cu15Be12.5 Bulk Metallic Glass. Mater. Lett. 2004, 58(19): 2357~2360.
    91 G.M. Wang, S.S. Fang, X.S. Xiao, Q. Hua, J.Z. Gu, Y.D. Dong. Microstructure and Properties of Zr65Al10Ni10Cu15 Amorphous Plates Rolled in the Supercooled Liquid Region. Mater. Sci. Eng. 2004, A373: 217~220.
    92 G. Wang, J. Shen, J.F. Sun, Y.J. Huang, J. Zou, Z.P. Lu, Z.H. Stachurski, B.D. Zhou. Superplasticity and Superplastic Forming of Zr-based Bulk Metallic Glass in the Supercooled Liquid Region. J. Non-Cryst. Solids. 2005, 351: 209~217.
    93 W.J. Kim, Y.K. Sa, J.B. Lee, H.G. Jeong. High-strain-rate Superplasticity of Zr65Al10Ni10Cu15 Sheet Fabricated by Squeeze Casting Method. Intermetallics. 2006, 14 (4): 377~381.
    94 Y. Kawamura, T. Shibata, A. Inoue, T. Masumoto. Workability of the Supercooled Liquid in the Zr65Al10Ni10Cu15 Bulk Metallic Glass. Acta Mater. 1998, 46 (1): 253~263.
    95 D.H. Bae, J.M. Park, J.H. Na, D.H. Kim, Y.C. Kim, J.K. Lee. Deformation Behavior of Ti-Zr-Ni-Cu-Be Metallic Glass and Composite in the Supercooled Liquid Region. J. Mater. Res. 2004, 19(3): 937~942.
    96 Y. Saotome, T. Hatori, T. Zhang, A. Inoue. Superplastic Micro/ nano-formability of La60Al20Ni10Co5Cu5 Amorphous Alloy in Supercooled Liquid State. Mater. Sci. Eng. 2001, A 304-306: 716~720.
    97 Y. Saotome, S. Miwa, T. Zhang, A. Inoue. The Micro-formability of Zr-basedAmorphous Alloys in the Supercooled Liquid State and their Application to Micro-dies. J. Mater. Proc. Tech. 2001, 113: 64~69.
    98 Y. Saotome, K. Itoh, T. Zhang, A. Inoue. Superplastic Nanoforming of Pd-based Amorphous Alloy. Scr Mater. 2001, 44: 1541~1545.
    99 Y. Saotome, K. Imai, S. Shioda, S. Shimizu, T. Zhang, A. Inoue. The Micro-nanoformability of Pt-based Metallic Glass and the Nanoforming of Three-dimensional Structure. Intermetallics. 2002, 10: 1241~1247.
    100 Th. Zumkley, S. Suzuki, M. Seidel, S. Mechler, M.-P. Macht. Superplastic Forging of ZrTiNiCuBe-Bulk Glass for Shaping of Microparts. Mater. Sci. Forum. 2002, 386-388: 541~546.
    101 Y. Kawamura. Liquid Phase and Supercooled Liquid Phase Welding of Bulk Metallic Glasses. Mater. Sci. Eng. 2005, A375-377: 112~119.
    102 Y. Kawamura, Y. Ohno. Superplastic Bonding of Bulk Metallic Glasses using Friction. Scr Mater. 2001, 45 (3): 279~285.
    103 W.C. Oliver, G.M. Pharr. An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 7: 1564~1583.
    104 H. Bei, Z.P. Lu, E.P. George. Theoretical Strength and the Onset of Plasticity in Bulk Metallic Glasses Investigated by Nanoindentation with a Spherical Indenter. Phys. Rev. Lett. 2004, 93: 125504-1~125504-4.
    105 C.A. Schuh, T.G. Nieh. A Nanoindentation Study of Serrated Flow in Bulk Metallic Glasses. Acta Mater. 2003, 51: 87~99.
    106 T.G. Nieh, C. Schuh, J. Wadsworth, Y. Li. Strain rate-dependent Deformation in Bulk Metallic Glasses. Intermetallics. 2002, 10: 1177~1182.
    107 C.A. Schuh, A. C. Lund, T.G. Nieh. New Regime of Homogeneous Flow in the Deformation Map of Metallic Glasses: Elevated Temperature Nanoindentation Experiments and Mechanistic Modeling. Acta Mater. 2004, 52: 5879~5891.
    108 Yu.I. Golovin, V.I. Ivolgin, V.A. Khonik, K. Kitagawa, A.I. Tyurin. Serrated Plastic Flow during Nanoindentation of a Bulk Metallic Glass. Scr. Mater. 2001, 45: 947~952.
    109 A.L. Greer, A. Castellero, S.V. Madge, I.T. Walker, J.R. Wilde. Nanoindentation Studies of Shear Banding in Fully Amorphous and PartiallyDevitrified Metallic Alloys. Mater. Sci. Eng. 2004, A375-377: 1182~1185.
    110 Y. Liu, H. Bei, C.T. Liu, E.P. George. Cooling-rate Induced Softening in a Zr50Cu50 Bulk Metallic Glass. Appl. Phys. Lett. 2007, 90: 071909-1~071909-3.
    111 W.H. Jiang, F.X. Liu, Y.D. Wang, H.F. Zhang, H. Choo, P.K. Liaw. Comparison of Mechanical Behavior between Bulk and Ribbon Cu-based Metallic Glasses. Mater. Sci. Eng. 2006, A 430: 350~354.
    112 Y. Shi, M.L. Falk. Stress-induced Structural Transformation and Shear Banding during Simulated Nanoindentation of a Metallic Glass. Acta Mater. 2007, 55: 4317~4324.
    113 Y. Shi, M.L. Falk. Simulations of Nanoindentation in a Thin Amorphous Metal Film. Thin Solid Films. 2007, 515: 3179~3182.
    114 R. Vaidyanathan, M. Dao, G. Ravichandran, S. Suresh. Study of Mechanical Deformation in Bulk Metallic Glass through Instrumented Indentation. Acta Mater. 2001, 49: 3781~3789.
    115王海龙,王秀喜,王宇,梁海弋.压痕过程中非晶Cu形变诱导晶化行为的原子模拟.金属学报. 2007: 43(3): 259~263.
    116 J.C.M. Li. Impression Creep and Other Localized Tests. Mater. Sci. Eng. 2002, A322: 23~42.
    117 A. Concustell, J. Sort, A. L. Greer, M. D. Baró. Anelastic Deformation of a Pd40Cu30Ni10P20 Bulk Metallic Glass during Nanoindentation. Appl. Phys. Lett. 2006, 88: 171911-1~171911-3.
    118 W.H. Li, K. Shin, C.G. Lee, B.C. Wei, T.H. Zhang, Y.Z. He. The Characterization of Creep and Time-dependent Properties of Bulk Metallic Glasses using Nanoindentation. Mater. Sci. Eng. 2008, A478: 371~375.
    119 Q. Zheng, S. Cheng, J.H. Strader, E. Ma, J. Xu. Critical Size and Strength of the Best Bulk Metallic Glass Former in the Mg-Cu-Gd Ternary System. Scr. Mater. 2007, 56: 161~164.
    120 C. J. Lee, J. C. Huang, T. G. Nieh. Sample Size Effect and Microcompression of Mg65Cu25Gd10 Metallic Glass. Appl. Phys. Lett. 2007, 91: 161913-1~161913-3.
    121 Y.H. Lai, C.J. Lee, Y.T. Cheng, H.S. Chou, H.M. Chen, X.H. Du, C.I. Chang, J.C. Huang, S.R. Jian, J.S.C. Jang, T.G. Nieh. Bulk and MicroscaleCompressive Behavior of a Zr-based Metallic Glass. Scr. Mater. 2008, 58: 890~893.
    122 B.E. Schuster, Q. Wei, M.H. Ervin, S.O. Hruszkewycz, M.K. Miller, T.C. Hufnagele, K.T. Ramesh. Bulk and Microscale Compressive Properties of a Pd-based Metallic Glass. Scr. Mater. 2007, 57: 517~520.
    123 Z. W. Shan, J. Li, Y. Q. Cheng, A. M. Minor, S. A. Syed Asif, O. L. Warren, E. Ma. Plastic Flow and Failure Resistance of Metallic Glass: Insight from in situ Compression of Nanopillars. Phys. Rev. B 2008, 77: 155419-1~155419-6.
    124 A. Grimberg, H. Baur, P. Bochsler, F. Bühler, D.S. Burnett, C.C. Hays, V.S. Heber, A.J.G. Jurewicz, R. Wieler. Solar Wind Neon from Genesis: Implications for the Lunar Noble Gas Record. Science. 2006, 314: 1133~1135.
    125 A. Inoue. Bulk Glassy and Nonequilibrium Crystalline Alloys by Stabilization of Supercooled Liquid: Fabrication, Functional Properties and Applications (part 2). Proc. Japan Acad. 2005, 81: 171~188.
    126 C.L. Ma, N. Nishiyama, A. Inoue. Fabrication and Characterization of Coriolis Mass Flowmeter Made from Ti-based Glassy Tubes. Mater. Sci. Eng. 2005, A407: 201~206.
    127 J.-J. Oak, A. Inoue. Attempt to Develop Ti-based Amorphous Alloys for Biomaterials. Mater. Sci. Eng. 2007, A 449-451: 220~224.
    128 S.L. Zhu, X.M. Wang, F.X. Qin, A. Inoue. A New Ti-based Bulk Glassy Alloy with Potential for Biomedical Application. Mater. Sci. Eng. A. 2007, 459: 233~237.
    129 A.L. Greer. Metallic Glasses. Science. 1995, 267: 1947~1953.
    130 W.H. Wang, C. Dong, C.H. Shek. Bulk Metallic Glasses. Mater. Sci. Eng. R. 2004, 44: 45~89.
    131 W. L. Johnson. Bulk Glass-Forming Metallic Alloys: Science and Technology. MRS Bull. 1999, 24: 42~56.
    132 G. He, J. Eckert, W. L?ser. Novel Ti-base Nanostructure–Dendrite Composite with Enhanced Plasticity. Nature Mater. 2003, 2: 33~37.
    133 J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, J. Eckert. ``Work-Hardenable'' Ductile Bulk Metallic Glass. Phys. Rev. Lett.2005, 94: 205501-1~205501-4.
    134 C.C. Hays, C.P. Kim, W.L. Johnson. Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing in situ Formed Ductile Phase Dendrite Dispersions. Phys. Rev. Lett. 2000, 84: 2901~2904.
    135 M.D. Uchic, D.M. Dimiduk, J.N. Florando, W.D. Nix. Sample Dimensions Influence Strength and Crystal Plasticity. Science. 2004, 305: 986~989.
    136 R. D. Conner, W. L. Johnson, N. E. Paton, W. D. Nix. Shear Bands and Cracking of Metallic Glass Plates in Bending. J. Appl. Phys. 2003, 94: 904~911.
    137 Z.F. Zhang, G. He, H. Zhang, J. Eckert. Rotation Mechanism of Shear Fracture Induced by High Plasticity in Ti-based Nano-structured Composites Containing Ductile Dendrites. Scr. Mater. 2005, 52: 945~949.
    138 J. Eckert, J. Das, K.B. Kim, F. Baier, M.B. Tang, W.H. Wang, Z.F. Zhang. High Strength Ductile Cu-base Metallic Glass. Intermetallics.2006, 14: 876~881.
    139 A.S. Argon. Plastic Deformation in Metallic Glasses. Acta Metall. 1979, 27: 47~58.
    140 T. Nozaki, Masao Doyama, Y. Kogure. Simulation of High Speed Deformation of Copper Single Crystals. Mater. Sci. Eng. 2003, A 350: 233~237.
    141 J.A. Paquette, S. Kyriakides. Plastic Buckling of Tubes under Axial Compression and Internal Pressure. Int. J. Mech. Sci. 2006, 48: 855~867.
    142 C.T. Liu, L. Heatherly, D.S. Eaton, C.A. Carmichael, J.H. Schneibel, C.H. Chen, J.L. Wright, M.H. Yoo, J.A. Horton, A. Inoue. Test Environments and Mechanical Properties of Zr-base Bulk Amorphous Alloys. Metall. Mater. Trans. 1998, 29A: 1811~1820.
    143 M.H. Cohen, D. Turnbull. Molecular Transport in Liquids and Glasses. J. Chem. Phys. 1959, 31: 1164~1169.
    144 D. Turnbull, M.H. Cohen, On the Free-Volume Model of the Liquid-Glass Transition. J. Chem. Phys. 1970, 52: 3038~3041.
    145 A.van den Beukel. On the Kinetics of Structural Relaxation in Metallic Glasses. Key Eng. Mater. 1993, 81-83: 3~16.
    146 X.H. Lin, W.L. Johnson. Formation of Ti-Zr-Cu-Ni Bulk Metallic Glass. J. Appl. Phys. 1995, 78 (11): 6514~6519.
    147 R. Bhowmick, R. Raghavan, K. Chattopadhyay, U. Ramamurty. Plastic Flow Softening in a Bulk Metallic Glass. Acta Mater. 2006, 54: 4221~4228.
    148 A.van Den Beukel, J. Seitsma. The Glass Transition as a Free Volume Related Kinetics Phenomenon. Acta Metall. Mater. 1990, 38: 383~389.
    149 A. Slipenyuk, J. Eckert. Correlation between Enthalpy Change and Free Volume Reduction during Structural Relaxation of Zr55Cu30Al10Ni5 Metallic Glass. Scr. Mater. 2004, 50: 39~44.
    150 P. Murali, U. Ramamurty. Embrittlement of a Bulk Metallic Glass due to sub-Tg Annealing. Acta Mater. 2005, 53: 1467~1478.
    151 B.P. Kanungo, S.C. Glade, P. Asoka-Kumar, K.M. Flores. Characterization of Free Volume Changes Associated with Shear Band Formation in Zr- and Cu-based Bulk Metallic Glasses. Intermetallics. 2004, 12: 1073~1080.
    152 Y.M. Wang, E. Ma. Temperature and Strain Rate Effects on the Strength and Ductility of Nanostructured Copper. Appl. Phys. Lett. 2003, 83: 3165~3167.
    153 Y.M. Wang, E. Ma. Three Strategies to Achieve Uniform Tensile Deformation in a Nanostructured Metal. Acta Mater. 2004, 52: 1699~1709.
    154 H. Li, K. Tao, C. Fan, P.K. Liaw, H. Choo. Effect of Temperature on Mechanical Behavior of Zr-based Bulk Metallic Glasses. Appl. Phys. Lett. 2006, 89: 041921-1~041921-3.
    155 L.C. Zhang, H.B. Lu, C. Michel, J. Eckert. Ductile Untrafine-grained Ti-based Alloys with High Yield Strength. Appl. Phys. Lett. 2007, 91: 051906-1~051906-3.
    156 R. Huang, Z. Suo, J.H. Prevost, W.D. Nix. Inhomogeneous Deformation in Metallic Glasses. J. Mech. Phys. Solids. 2002, 50: 1011~1027.
    157 J.J. Lewandowski, A.L. Greer. Temperature Rise at Shear Bands in Metallic Glasses. Nature Mater. 2006, 5: 15~18.
    158 F. Spaepen. Must Shear Bands be Hot? Nature Mater. 2006, 5: 7~8.
    159 B. Yang, M.L. Morrison, P.K. Liaw, R.A. Buchanan, G. Wang, C.T. Liu, M. Denda. Dynamic evolution of nanoscale shear bands in a bulk-metallic glass. Appl. Phys. Lett. 2005, 86: 141904-1~141904-3.
    160 H. Chen, Y. He, G.J. Shiflet, S.J. Poon. Deformation-induced NanocrystalFormation in Shear Bands of Amorphous Alloys. Nature. 1994, 367: 541~543.
    161 J.-J. Kim. Y. Choi, S. Suresh, A.S. Argon. Nanocrystallization during Nanoindention of a Bulk Amorphous Metal Alloy at Room Temperature. Science. 2002, 295: 654~657.
    162 S.W. Lee, M.Y. Huh, S.W. Chae, J.C. Lee. Mechanism of the Deformation-Induced Nanocrystallization in a Cu-based Bulk Amorphous Alloy under Uniaxial Compression. Scr. Mater. 2006, 54: 1439~1444.
    163 A. Inoue, T. Zhang. Novel Superplasticity of Supercooled Liquid for Bulk Amorphous Alloy. Mater. Sci. Forum. 1997, 243-245: 197~206.
    164 T.G. Nieh, T. Mukai, C.T. Liu, J. Wadsworth. Superplastic Behavior of a Zr–
    10Al–5Ti–17.9Cu–14.6Ni Metallic Glass in the Supercooled Liquid Region, Scr. Mater. 1999, 40(9): 1021~1027.
    165 J. Shen, G. Wang, J.F. Sun, Z.H. Stachurski, M. Yan, L. Ye, B.D. Zhou. Superplastic Deformation Behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 Bulk Metallic Glass in the Supercooled Liquid Region. Intermetallics. 2005, 13: 79~85.
    166 C.L. Chiang, J.P. Chu, C.T. Lo, T.G. Nieh, Z.X. Wang, W.H. Wang. Homogeneous Plastic Deformation in a Cu-based Bulk Amorphous Alloy. Intermetallics. 2004, 12: 1057~1061.
    167 H.S. Chen, H. Kato, A. Inoue. A Fictive Stress Model and Nonlinear Viscoelastic Behaviors in Metallic Glasses. Mater. Trans. 2001, 42: 597~605.
    168 Y. Kawamura, T. Shibata, A. Inoue, T. Masumoto. Stress Overshoot in Stress-strain Curves of Zr65Al10Ni10Cu15 Metallic Glass. Appl. Phys. Lett. 1997, 71(6) : 779~781.
    169 B. Yang, C.T. Liu, T.G. Nieh. Unified Equation for the Strength of Bulk Metallic Glasses. Appl. Phys. Lett. 2006, 88: 221911-1~221911-3.
    170 W. L. Johnson and K. Samwer. A Universal Criterion for Plastic Yielding of Metallic Glasses with a (T/Tg)2/3 Temperature Dependence. Phys. Rev. Lett. 2005, 95: 195501-1~195501-4.
    171 H. Kato, Y. Kawamura, A. Inoue, H.S. Chen. Newtonian to Non-Newtonian Master Flow Curves of a Bulk Glass Alloy Pd40Ni10Cu30P20. Appl. Phys. Lett.. 1998, 73(25): 3665~3667.
    172 K.C. Chan, Q. Chen, L. Liu. Deformation Behavior of Zr55.9Cu18.6Ta8Al7.5Ni10 Bulk Metallic Glass Matrix Composite in the Supercooled Liquid Region. Intermetallics. 2007, 15: 500~505.
    173 A. Reger-Leonhard, M. Heilmaier, J. Eckert. Newtonian Flow of Zr55Cu30Al10Ni5 Bulk Metallic Glassy Alloys. Scr. Mater. 2000, 43: 459~464.
    174 M. Bletry, P. Guyot, Y. Brechet, J.J. Blandin, J.L. Soubeyroux. Homogeneous Deformation of Bulk Metallic Glasses in the Super-cooled Liquid State. Mater. Sci. Eng. 2004, A387-389: 1005~1011.
    175 Q. Wang, J.M. Pelletier, J.J. Blandin, M. Suéry. Mechanical Properties over the Glass Transition of Zr41.2Ti13.8Cu12.5Ni10Be22.5 Bulk Metallic Glass. J. Non-cryst. Solids. 2005, 351: 2224~2231.
    176 P. de Hey, J. Sietsma, A.van den Beukel. Structural Disordering in Amorphous Pd40Ni40P20 Induced by High Temperature Deformation. Acta Mater. 1998, 46: 5873~5882.
    177 B.van Aken, P.de Hey, J. Sietsma. Structural Relaxation and Plastic Flow in Amorphous La50Al25Ni25. Mater. Sci. Eng. 2000, A278: 247~254.
    178 B. Gun, K.J. Laws, M. Ferry. Elevated Temperature Flow Behaviour of a Mg-based Bulk Metallic Glass. Mater. Sci. Eng. 2007, A471: 130~134.
    179张庆生,张海峰,王爱民,丁炳哲,胡壮麒. Zr55Al10Ni5Cu30块体非晶合金的高温压缩断裂.金属学报. 2002, 38: 835~838.
    180 A. Molinari. Collective Behavior and Spacing of Adiabatic Shear Bands. J. Mech. Phys. Solids. 1997, 45 (9): 1551~1575.
    181 G. Wang, J. Shen, J.F. Sun, Z.P. Lu, Z.H. Stachurski, B.D. Zhou. Compressive Fracture Characteristics of a Zr-based Bulk Metallic Glass at High Test Temperatures. Mater. Sci. Eng. 2005, A398: 82~87.
    182 D.C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M.D. Demetriou, W.L. Johnson. Designing Metallic Glass Matrix Composites with High Toughness and Tensile Ductility. Nature. 2008, 451: 1085~1089.
    183 L.Q. Xing, Y. Li, K.T. Ramesh, J. Li, T.C. Hufnagel. Enhanced Plastic Strain in Zr-based Bulk Amorphous Alloys. Phys. Rev. B 2001, 64: 180201-1~180201-4.
    184 K.F. Yao, F. Ruan, Y.Q. Yang, N. Chen. Superductile Bulk Metallic GlassAppl. Phys. Lett. 2006, 88: 122106-1~122106-3.
    185 Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang. Super plastic Bulk Metallic Glasses at Room Temperature. Science. 2007, 315: 1385~1388.
    186 L.Y. Chen, Z. D. Fu, G. Q. Zhang, X. P. Hao, Q. K. Jiang, X. D.Wang, Q. P. Cao, H. Franz, Y. G. Liu, H. S. Xie, S. L. Zhang, B.Y. Wang, Y.W. Zeng, and J. Z. Jiang. New Class of Plastic Bulk Metallic Glass. Phys. Rev. Lett. 2008, 100: 075501-1~075501-4.
    187 J.C. Oh, T. Ohkubo, Y.C. Kim, E. Fleury, K. Hono. Phase Separation in Cu43Zr43Al7Ag7 Bulk Metallic Glass. Scr. Mater. 2005, 53: 165~169.
    188 M. Calin, J. Eckert, L. Schultz. Improved Mechanical Behavior of Cu–Ti-based Bulk Metallic Glass by in situ Formation of Nanoscale Precipitates. Scr. Mater. 2003, 48: 653~658.
    189 T.C. Hufnagel, P. El-Deiry, R.P. Vinci. Development of Shear Band Structure during Deformation of a Zr57Ti5Cu20Ni8Al10 Bulk Metallic Glass. Scr. Mater. 2000, 43: 1071~1075.
    190 C. A. Pampillo, A. C. Reimschuessel. The Fracture Topography of Metallic Glasses. J. Mater. Sci. 1974, 9: 718~724.
    191哈宽富.金属力学性质的微观理论.科学出版社. 1983: 10~138.
    192 H.S. Chen, S.Y. Chuang. Structural Investigation of Cold-rolled Metallic Glasses using Positron Annihilation Methods. Appl. Phys. Lett. 1975, 27(6): 316~317.
    193 Q.P. Cao, J.F. Li, Y.H. Zhou, A. Horsewell, J.Z. Jiang. Free-volume Evolution and Its Temperature Dependence during Rolling of Cu60Zr20Ti20 Bulk Metallic Glass. Appl. Phys. Lett. 2005, 87: 101901-1~101901-3.
    194 H. Bei, S. Xie, E.P. George. Softening Caused by Profuse Shear Banding in a Bulk Metallic Glass. Phys. Rev. Lett. 2006, 96: 105503-1~105503-4.
    195 X. Hu, S.C. Ng, Y.P. Feng, Y. Li. Cooling-rate Dependence of the Density of Pd40Ni10Cu30P20 Bulk Metallic Glass. Phys. Rev. B, 2001, 64: 172201-1~172201-4.
    196 C. Nagel, K. R?tzke, E. Schmidtke, F. Faupel, W. Ulfert. Positron-Annihilation Studies of Free-volume Changes in the Bulk Metallic Glass Zr65Al7.5Ni10Cu17.5 during Structural Relaxation and at the Glass TransitionPhys. Rev. B. 1999, 60: 9212~9215.
    197 H. Bei, E.P. George, J.L. Hay, G.M. Pharr. Influence of Indenter Tip Geometry on Elastic Deformation during Nanoindentation. Phys. Rev. Lett. 2005, 95: 045501-1~045501-4.
    198 A.C. Fischer-Cripps. A Simple Phenomenological Approach to Nanoindentation Creep. Mater. Sci. Eng. 2004, A 385: 74~82.
    199 W.B. Li, R. Warren. A Model for Nano-indentation Creep. Acta Metall. 1993, 41: 3065~3069.
    200 H. Li, A.H.W. Ngan. Size Effects of Nanoindentation Creep. J. Mater. Res. 2004, 19: 513~522.
    201 Z.Q. Cao, X. Zhang. Nanoindentation Creep of Plasma-enhanced Chemical Vapor Deposited Silicon Oxide Thin Films. Scr. Mater. 2007, 56: 249~252.
    202 B.C. Wei, T.H. Zhang, W.H. Li, D.M. Xing, L.C. Zhang, Y.R. Wang. Indentation Creep Behavior in Ce-based Bulk Metallic Glasses at Room Temperature. Mater. Trans. 2005, 46: 2959~2962.
    203 R. W. Evans, B. Wilshire. Creep of Metals and Alloys (Institute of Metals, London, 1985: 1~30.
    204 A.F. Bower, N.A. Fleck, A. Needleman, N. Ogbonna. Indentation of a Power Law Creeping Solid. Proc. R.Soc. Lond. A. 1993, 441: 97~124.
    205 R.J. McCabe, M.E. Fine. Creep of Tin, Sb-Solution-Strengthened Tin, and SbSn-Precipitate-Strengthened Tin. Metall. Mater. Trans. 2002, 33A: 1531~1539.
    206 M.L. Falk, J.S. Langer. Dynamics of Viscoplastic Deformation in Amorphous Solids. Phys. Rev. E. 1998, 57: 7192~7205.
    207 W.D. Nix, H. Gao. Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity. J. Mech. Phys. Solids. 1998, 46: 411~425.
    208 D.C.C. Lam, A.C.M. Chong. Model and Experiments on Strain Gradient Hardening in Metallic Glass. Mater. Sci. Eng. 2001, A318: 313~319.
    209 F. Yang, K. Geng, P.K. Liaw, G. Fan, H. Choo. Deformation in a Zr57Ti5Cu20Ni8Al10 Bulk Metallic Glass during Nanoindentation. Acta Mater. 2007, 55: 321~327.
    210 H. Zhang, X. Jing, G. Subhash, L.J. Kecskes, R.J. Dowding. Investigation of Shear Band Evolution in Amorphous Alloys beneath a Vickers Indentation.Acta Mater. 2005, 53: 3849~3859.
    211 D. J. Shuman, A.L.M. Costa, M.S. Andrade. Calculating the Elastic Modulus from Nanoindentation and Microindentation Reload Curves. Mater. Charac. 2007, 58: 380~389.
    212 M.F. Doerner, W.D. Nix. A Method for Interpreting the Data from Depth-sensing Indentation Instruments. J. Mater. Res. 1986, 1:601~609.
    213 R. Rodríguez, I. Gutierrez. Correlation between Nanoindentation and Tensile Properties Influence of the Indentation Size Effect. Mater. Sci. Eng. 2003, A361: 377~84.
    214 T.D. Raju, K. Nakasa, M. Kato. Relation between Delamination of Thin Flims and Backward Deviation of Load–displacement Curves under Repeating Nanoindentation. Acta Mater. 2003, 51: 457~467.
    215 D. Pan, T.G. Nieh, M.W. Chen. Strengthening and Softening of Nanocrystalline Nickel during Multistep Nanoindentation. Appl. Phys. Lett. 2006, 88: 161922-1~161922-3.
    216 B.X. Xu, Z.F. Yue, J. Wang. Indentation Fatigue Behaviour of Polycrystalline Copper. Mech. Mater. 2007, 39: 1066~1080.
    217 Z.H. Xu, X.D Li. Influence of Equi-biaxial Residual Stress on Unloading Behaviour of Nanoindentation. Acta Mater. 2005, 53: 1913~1919.
    218 S. Chowdhury, M.T. Laugier. The Use of Non-contact AFM with Nanoindentation Techniques for Measuring Mechanical Properties of Carbon Nitride Thin Films. Appl. Surf. Sci. 2004, 233: 219~226.
    219 Y.J. Huang, J. Shen, J.F. Sun, X.B. Yu. A New Ti–Zr–Hf–Cu–Ni–Si–Sn Bulk Amorphous Alloy with High Glass-forming Ability. J. Alloys. Compd. 2007, 427: 171~175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700