用户名: 密码: 验证码:
基于扫描探针显微镜的纳米加工相关理论及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术是当代科学发展的一个新兴领域,它的最终目标就是在纳米尺度上制造出具有特定功能的产品。纳米技术的核心是纳米加工技术。纳米加工技术水平的提高将对微型机械、信息存储、微电子技术、生物科学等技术领域产生巨大的影响。扫描探针显微镜(包括扫描隧道显微镜(STM)和原子力显微镜(AFM))因其具有原子和纳米尺度的检测和加工能力,在纳米加工技术的发展中占有极其重要的地位。
     纳米加工机理是纳米加工技术研究的重要内容。目前基于SPM的纳米加工技术虽已能实现纳米级厚度的材料去除,得到具有纳米级加工精度的被加工表面,但是对纳米加工过程机理的研究还有许多亟待解决的问题。在纳米加工的尺度范围内,SPM针尖-样品相互作用区域存在的量子效应不能被忽略,继续使用宏观经典理论来描述加工过程中的微观机理已不再合适,必须依靠量子物理学等理论来研究加工过程中的相互作用,进而深入描述纳米加工过程中的微观物理机制。此外,对于切削过程中的材料变形和剥离机理、表面与亚表面材料性能以及切削刀具与工件之间的相互作用等方面还缺乏深入的了解。对于纳米加工最终可达到的精度和纳米切削机理,如切屑的去除机理和加工表面的形成机理等问题还有待深入研究。本文针对现有的纳米加工微观机理研究的不足,采用密度泛函理论的第一性原理计算研究纳米加工表面形成过程中的内部微观输运机制,进一步揭示纳米加工过程的本质和基本规律。在此基础上,利用扫描探针显微镜等纳米加工设备进行了纳米级加工实验。研究结果对纳米加工过程的微观机理做出新的解释,为现有的纳米加工技术方法提供理论解释,并为进一步探索新的纳米加工技术手段提供理论依据,具体研究内容包括如下几个方面:
     为了从原子尺度研究纳米加工过程的本质,在充分阐述纳米物理体系的基本特征和纳米尺度的表征手段的基础上,结合密度泛函理论的第一性原理计算,在纳米加工机理中考虑了量子效应的影响,从针尖、样品表面原子的微观形貌和电子云分布特征出发,对SPM扫描、加工过程中针尖-样品相互作用的微观机制进行了研究,揭示了SPM纳米加工过程的本质和基本规律,为今后的实验奠定了理论基础。
     为了研究纳米加工过程中针尖原子和样品表面原子间的相互作用,构建了适用于电场加工的STM纳米加工系统,在该系统上对金薄膜和单晶硅材料进行了纳米级结构的微细加工,研究了大气状态下STM纳米加工时探针与试件表面间的相互作用机理,分析了脉冲个数、电流反馈环的开关、隧道间隙等参数在SPM电场加工中的作用机制。
     为了研究纳米级材料去除过程,本文应用AFM和纳米压痕仪(Nanoindenter)进行了材料的纳米刻划实验,分析了材料从弹性变形到塑性变形的过程,得出了划痕产生的刻划临界载荷值以及最小极限切削厚度。在研究纳米划痕形成过程的基础上,重点探讨了加载速率、最大加载值对划痕形成、刻划临界载荷值的影响规律。
     为了进一步研究SPM纳米刻划过程,以典型的一维纳米材料-碳纳米管为研究对象,采用纳米压痕仪刻划模式对多壁碳纳米管的径向结构稳定性进行了实验研究。通过分析划入过程摩擦系数随施加载荷值的变化趋势,证明了多壁碳纳米管受机械刻划作用,从发生弹性变形、进而发生塑性变形,最终导致断裂的过程,给出了碳纳米管径向断裂的临界载荷值,为碳纳米管力学性能研究提供了一种实验研究的方法,拓宽了扫描探针显微技术在纳米技术研究中的应用范围。
     在系统地研究了基于SPM的纳米刻划过程的基础上,应用AFM金刚石针尖对金属材料进行了纳米级凹坑的加工试验,研究了纳米尺度加工中切屑形成的过程。通过SEM和AFM分析了被加工表面质量和切屑形态,较为系统地研究了垂直载荷、刻划速度、横向进给量、加工次数、针尖进给方向、材料的力学性能等因素对材料去除过程、切屑形成的影响,为在纳米尺度上实现稳定、可控的材料去除提供了实验依据。
Nanotechnique is one of the novel fields among current techniques, which aims to manufacture products with specific functions in nanometer. Advances in nanomachining technique can lead to significantly improvements in research fields such as micromachine, information storage, microelectronic technique and biotechnique. Scanning probe microscope (including Scanning Tunneling Microscope (STM) and Atomic Force Microscope (AFM)) are becoming regarded as the manipulation technique in nanomachining technique due to its atomic and nanoscaled analytical and nanomachining efficient.
     Nanomachining mechanism is the key issue in nanomachining technique.Existing results of nanomachining studies based on SPM could fulfill both nanoscaled material removal and nanoscaled machining accuracy, however, there are still problems about the instinct principle of nanomachining mechanism. When the objects are scaled down to the nanometer scale, there are many significant changes in the physics and properties of nanomachining process. It’s inaccuracy using the continuum mechanics to describe the nanomachining mechanism ignoring the quantum effect of SPM probe-sample interaction. Quantum physics approach is advantageous to disclosure the nature of nanomachining mechanism. In addition, studyies on material deformation, surface-sbusurface properties and cutting tool-sample interaction of nanomachining process are scarce. To better understand the nanomachined surface accuracy and nanomechanism, more investigations on chip formation and nanomachined surface formation mechanisms are necessary. To solve these problems, density-functional theory is used to simulate the transport mechanism in nanoscale process with first-principle calculation, to disclosure the basic principle of nanomachining process. In addition, nanomachining experiments using scanning probe microscope have been carried out to study the nanomachining mechanism, give theoretical explanation of current namomachining tehnciques, and provide theoretical promotion of novel naomachining methods. The detailed contents of this thesis contain:
     First-principle calculation of density-functional theory was carried out to simulate SPM scanning process and probe-sample interaction during nanomachining process. The simulations took into account the quantum efforts and analyzed the probe-sample micro-pattern and distributions of their electron clouds. The results provide a basic principle of SPM nanomachining process, and theorticial foundation for future experimental studies.
     To study the interaction of probe-sample atomics during nanomachining process, STM nanofabrication system using electric-field method was established. And nanofabrication experiments were conducted on Au thin film and crystal silicon to study the STM probe-sample interaction mechanism in the state of atmosphere, to investigate the influences of impulse quantities, current feedback control, current distance on stability of nanofabricated microstructures.
     Nanoscratching experiments were performed using AFM and Nanoindenter to obtain minimum thickness of scratching data and to determine the critical loads at which scratching tracks initiated. The influences of loading rate and maximum normal load on scratching process and critical load were studied by analyzing the scratching process from elastic recovery to plastic deformation.
     To further stuy nanoscratching process, scratch resistance of carbon nanotube-typical one-dimension material, was studied using Nanoindenter scratching mode. The radial structure of carbon nanotube was proved to be scratched breakage. The revolution of friction coefficient as a function of normal load helped in identifying the deformation process of carbon nanotubes, from elastic recovery, plastic deformation and finally scratched breakage, and helped in determine the scratch critical load of carbon nanotube. This experimental study brings a new method to study carbon nanotube mechanical properties.
     Nanomachining experiments using AFM diamond probe were conducted furrowed surfaces to investigate the influences of normal loads, speed, lateral feed, multiple scratching, probe feed direction, sample mechanical properties on removal material, chip formation. The nanomachined surface roughness and chip behaivour were detected by SEM and AFM. The experiment results helped a better understanding to increase the reliability, stability and controllability of this nanomachining technique.
引文
1宫建茹,万立骏,白春礼.扫描探针纳米加工技术的现状与发展趋势.大学化学. 2003, 18(1): 7~111
    2 Landman U, Luedtke W D, Burnham N A, et. Atomistic Mechanisms and Dynamics of Adhesion, Nanoidentation and Fracture. Science. 1990, (248):454~461.
    3杨小震.分子模拟与高分子材料.科学出版社. 2002:60~64
    4 N Ikawa, S Shimada, R R Donaldson, et al. Minimum Thickness of Cut in Micromachining. Preprint of 1987 Autumn Conference of JSPE Osaca, 1987: 465~466.
    5 Q. X. Pei, C. Lu, F. Z. Fang. Nanometric Cutting of Copper: A Molecular Dynamics Study. Computation Materials Science. 2006, 37(4):434~441
    6 Tersoff J. Modeling Solid-state Chemistry: Interatomic Potentials for Multicomponent Systems. Physical Review B. 1989, 39(8):5566~5568
    7 Bakes M I. Modified embedded-atom Potentials for Cubic Materials and Impurities. Physical Review B. 1992, 46(5):2727~2742
    8 Doyama M, Kogure Y. Computer Simulation of Creation and Motion of Dislocations during Plastic Deformation in Copper. Materials Science and Engineering A 2001, 39-310:451~455.
    9 Li D, Dong S, Liang YC, et al. MDS Study on the Effect of Cutting Edge Radius of Diamond Tools in Nanometric Cutting Process for Brittle Materials.
    10th International Conference on Precision Engineering[C]. Yokohama: Inasaki I, 2001: 294~298.
    10 Rentsch R. On the On-set of Chip Formation and the Process Stability in Cutting at Atomic Level. 10th International Conference on Precision Engineering. Yokohama: Inasaki I, 2001:274~278.
    11 Shimada S, Ikawa N, Ohmori G, et al. Molecular Dynamics Analysis as Compared with Experimental Result of Micromachining. Annals of the CIRP. 1992, 41(1):117~120
    12 Hoover W G, Hoover C G, Stowers I F et al. Interface Tribology via Nonequilibum Molecular Dynamics Simulation. Material ResearchSymposium. 1989,140:119~124
    13 Belak I F, Hoover W G, Hoover C G et al. Molecular Dynamics Modeling Applied to Indentation and Metal Cutting Problems. Thrust Area Reps.1990, 89:4~8
    14 Belak J, Boercher D B, Stowers I F. Simulation of Nanometer-scale Deformation of Metallic and Ceramic Surface. MSR Bulletin, 1993, 18 (5): 55~60.
    15 R Komanduri, N Chandrasekaran, L M Raff. MD Simulation of Exit Failure in Nanometric Cutting. Materials Science and Engineering. 2001, A311:1~12
    16 R Komanduri, N Chandrasekaran, L M Raff. Molecular Dynamics Simulation of Atomic-scale Friction. Physical Review B. 2000, 61, (20):14007~14019
    17 Liangchi Zhang, Hiroaki Tanaka. Atomic Scale Deformation in Silicon Monocrystals Induced by Two-body and Three-body Contact Sliding. Tribology International. 1998, 31 (8):425
    18罗熙淳,梁迎春,董申.单晶铝纳米切削过程分子动力学模拟技术研究.中国机械工程, 2000, 8:860~862
    19罗熙淳,梁迎春,董申.单晶硅纳米加工机理的分子动力学研究.航空精密制造技术, 2000, 6:21~24
    20唐玉兰,梁迎春,霍德鸿,程凯.基于分析动力学单晶硅纳米切削机理研究.微细加工技术. 2003, 6:76~80
    21林滨,吴辉等.纳米磨削过程中加工表面形成与材料去除机理的分子动力学仿真.纳米技术与精密工程2004, 6: 136~140
    22 Shimada S. Ikawa N. Suppression of Tool Wear in Diamond Turning of Copper under Reduced Oxygen Atmosphere. CIRP Annals-Manufacturing Technology. 2000, 49(1):21~24
    23 T. Inamura, N. Takezawa, N. Taniguchi. Atomic-scale Cutting in a Computer Using Crystal Models of Copper and Diamond. CIRP Annals-Manufacturing Technology. 1992, 44:121~124
    24陈时锦,初文江,孙西芝.多晶体纳米切削的分子动力学仿真研究.机械设计与制造. 2006, 4:117~119.
    25 Shimada S, Tanaka H, Ikawa N. Atomistic Mechanism of Surface Generation in Micromachining of Monocrystalline Silicon. Proceeding of the 1st International Euspen Conference. Bremen: Shaker Verlag, 1999: 230~233.
    26 D Mulliah, S D Kenny, Roger Smith, et al. Molecular Dynamic Simulations of Nanoscratching of Silver(100). Nanotechnology. 2004,15:243~249
    27 Bharat Bhushan, Gaurav B Agrawal. Stress Analysis of Nanostructures Using a Finite Element Method. Nanotechnology. 2002,13:515~523
    28罗熙淳,梁迎春,董申.分子动力学在纳米机械加工技术中的应用.中国机械工程. 1999, 6:692~696
    29 ZoneChing Lin, JenChing Huang. A Nano-orthogonal Cutting Model Based on a Modified Molecular Dynamics Technique. Nanotechnology. 2004, 15:510~519
    30 Sumomogi T, Endo T, Kuwahara K. Nanoscale Layer Removal of Metal Surface by Scanning Probe Microscope Scratching. J. Vac. Sci. Technol. 1995,B13(3):1257~1260
    31 Bhusan B, Koinkar V N. Nanoindentation Hardness Measurements using Atomic Force Mircroscopy. Appl. Phys. Lett. 1994, (64):1653~1655
    32 Zhao Xingzhong, Bharat Bhushan. Material Removal Mechanisms of Single Crystal Silicon on Nanoscale and at Ultralow Loads. Wear. 1998,(223):66~78
    33 Sriram Sundararajan, Bharat Bhushan. Micro/nanotribology of Ultra-thin Hard Amorphous Coatings using Atomic/friction Force Microscopy. Wear. 1999, (225~229):678~689
    34袁哲俊.纳米科学与技术.哈尔滨工业大学出版社.2005
    35 Kazuya Unno, Yasutaka Kitamoto, Takayuki Shibata, Eiji Makino. Smart Nano-machining and Measurement System with Semiconductive Diamond Probe. Smart Materials and Structures. 2001,10:730~735
    36 F. S. Chien, Y. C. Chou. Nano-oxidation of Silicon Nitride Films with an Atomic Force Microscope: Chemical Mapping, Kinetics, Applications. Journal of Applied Physics. 2001, 89(4): 2465~2472
    37黄笃之,陈卫兵等. STM在Au表面上的微细加工.湘潭师范学院学报, 2003,3: 19~21
    38陈津平,胡晓东等.大气状态下STM电场加工机理分析.仪器仪表学报2001, 10:494~497
    39 Y. Gotoh, K. Matsumoto, T. Maeda, E. B. cooper, S. R. Manalis, etc. Sci. Technol. A 2000,18:1321
    40谢兆熊,毛秉伟等. STM针尖诱导铜表面纳米刻蚀与沉积.高等学校化学学报1999, 12:1957~1959.
    41 H.J. Mamin, S. Chiang, H. Birk. Gold Deposition from a Scanning Tunneling Microscope Tip. Journal of Vacuum Science and Technology. 1991, 9(B):1398~1402
    42 S. Hosoki, S. Hosaka, T. Hasegawa. Surface Modification of MoS2 using an STM. Engineering and Science. 1992, 60(3): 534~647
    43 Li. W. J, Wirtannen J. A, Penner R M. Phys, 1992, 60 (4): 1181
    44 Doyama M, Kogure Y. Embedded Atom Potentials in Fcc and Bcc Metals Computationas. Materials Science.1999, 14:80~83
    45 Doyama M, Kogure Y. Computer Simulation of Creation and Motion of Dislocations during Plastic Deformation in Copper. Materials Science and Engineering A. 2001,39~310:451~455
    46 P. Miao, A. W. Robinson, R.E. Palmer. Nano-machining of Silicon Phthalocyanine Dichloride Films on H-passivated Si (111). J. Phys.D:Appl. Phys. 1998,31:37~40
    47吉贵军,刘安伟等.利用扫描隧道显微镜制造纳米级结构.天津大学学报. 1998, 6: 701~705.
    48卢章辉,王华兰.利用STM进行石墨表面纳米结构的研究.零陵学院学报. 2004, 6: 85~87.
    49 C F Quate, Barrett R C. Optical Scan-correction System Applied to Atomic Force Microscopy. Review of Scientific Instruments. 1991,62(6): 1393~1399
    50 Dai H, Franklin N, Han J. Exploiting the Properties of Carbon Nanotubes for Nanolithography. Appl Phys Lett, 1998, 73 (11): 1508~1510.
    51 Abadal G, Perez-Murano F, etal Field Induced Oxidation of Silion by SPM: Study of the Mechanism at Negative Sample Voltage by STM, ESTM and AFM. Apply Phys, 1998, A 66(7): 791~795.
    52 K. Matusmoto, S. Takahashi, M. Ishii, et al. Extended Abstract of 1994 International Conference of Solid State Device and Materials, Yokohama, Japan, 1994, 46
    53 Y. Gotoh, K.Matsumoto,T. Maeda, E.B.Copper, et al. J.Vac. Sci.Technol. A2000,18:1321
    54匡登峰,刘庆纲等.AFM加工的Ti纳米氧化钛线的直线度分析.光电子激光. 2005,12:1417~1420
    55 Lemeshko S, Gavrilov S, et al. Investigation of Tip-induced Ultra Thin Ti Film Oxidation Kinetics. Nanotechnology, 2001,12:273~276
    56黄德欢.纳米技术与应用.中国纺织大学出版社. 2001
    57 J.A. Dagata, J. Schneir, H.H. Harary. Modification of Hydrogen-Passivated Silicon by a Scanning Tunneling Microscope Operating in Air. Application Physics. 1990, 56(20): 2001~2003
    58 Kazuhiko Matsumoto. STM/AFM Nano-Oxidation Process to Room-Temperat ure-Operated Single-Electron Transistor and other Devices. Proceedings of the IEEE. 1997, 85(4): 612~628
    59姚婔,齐小丁,胡小唐. STM电压脉冲法纳米超微加工机理的研究.天津大学学报. 1996, 15(6): 601~605
    60吴际,王琛,裘晓辉等.脉冲宽度导致的石墨表面纳米结构尺度变化的STM观察.电子显微学报. 1999, 18(1): 61~64
    61 S. C. Street, A. Rar, J. N. Zhou, W. J. Liu, J. Barnard. Chem. Mater. 2001, 13:3669~3677
    62 F. T. Xu, P. P. Ye, M. Curry, J. A. Barnard, S. C. Street. Tribol. Lett. 2002, 12:189~193
    63 C. Charitidis, Y. Panayiotatos, S. Logothetidis. A Quantitative Study of the Nano-scratch Behaviour of Boron and Carbon Nitride Films. Diamond and Related Materials. 2003, 12: 1088~1092
    64 C. Charitidis, M. Gioti. Comparision of the Nanomechanical and Nanoscratch Performace of Antiscratch Layers on Organic Lenses. Surface and Coatings Technology. 2004, 180~181: 358~361
    65 Li-Ye Huang, Ke-Wei Xu, Jian Lu. Evaluation of Scratch Resistance of Diamond-like Carbon Films on Ti Alloy Substrate by Nano-scratch Technique. Diamond and Related Materials. 2002, 11:1505~1510
    66 A. Karimi, Y. Wang. Fracture Mechanisms in Nanoscale Layered Hard Thin Films. Thin Solid Films. 2002, 240~421: 275~280
    67 G. Wei, T. W. Scharf. Nanotribology Studies of Cr, Cr2N and CrN Thin Films using Constant and Ramped Load Nanoscratch Techniques. Surface and Coatings Technology. 2001, 146~147: 357~362
    68 S. W. Youn, C. G. Kang. A Study of Nanoscratch Experiments of the Silicon and Borosilicate in Air. Materials Science and Engineerings. 2004(384):275~283
    69 Bhushan B, Koinkar V N. Tribological Studies of Silicon for Magnetic Recording Applications. Appl Phys. 1994, 75: 5741~5746
    70 Bhushan B, Koinkar V N. Ruan J. Microtribology of Magnetic Media. Proc Inst Mech Engrs, Part J: J Eng Tribol, 1994, E208: 17~29.
    71 Landman U, Luedtke W D, et al.. Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation and Fracture. Science, 1990, (248): 454~461.
    72 Vincent Jardret, Pierre Morel. Viscoelastic Effects on the Scratch Resistance of Polymers: Relationship between Mechanical Properties and Scratch Properties at Various Temperatures. Progress in Orgnic Coatings. 2003, 48:322~331
    73 S. Roche, S. Pavan, J. L. Loubet, Ph. Barbeau, B. Magny. Influence of the Substrate Characteristics on the Scratch and Indentation Properties of UV-cured Clearcoats. Process in Organic Coatings. 2003,47:37~48
    74 C. A. Schuh, T. G. Nieh, T. Yamasaki. Hall-petch Breakdown Manifested in Abrasive Wear Resistance of Nanocrystalline Nickel. Scripta Materialia. 2002,46:735~740
    75 A. Karimi, Y. Wang, T. Cselle, M. Morstein. Frature Mechanisms in Nanoscale Layered Hard Thin Films. Thin Solid Films. 2002, 420~421:275~280
    76 Li-Ye Huang, Ke-Wei Xu. Evaluation of Scratch resistance of Diamond-like Carbon Films on Ti Alloy Substrate by Nano-scratch Technique. Diamond and Related Materials. 2002, 11: 1505~1510
    77 Metin Sitti, Hideki Hashimoto. Teleoperated touch feedback from the surfaces at the nanoscale: modeling and experiments. IEEE/ASME Transactions on mechatronics, 2003,6: 287~298
    78 Amrinder S Nain, Metin Sitti. 3-D nano-fiber manufacturing by controlled pulling of liquid polymers using nano-probes. IEEE, 2003:60~63
    79 TeHua Fang, Winjin Chang. Effects of AFM-based nanomachining process on aluminum surface. Journa l of physics and chemistry of solids, 2003, 64:913~918
    80 Te-Hua Fang, Win-Jin Chang, Cheng-I Weng. Surface Analysis of Nanomachined Films using Atomic Force Microscopy. Materials Chemistryand Physics. 2005,92:379~383
    81 Te-Hua Fang, Win-Jin Chang, Cheng-I Weng. Nanoindentation and Nanomachining Charateristics of Gold and Platinum Thin Films. Materials Science& Engineering A. 2006,430:332~340
    82 Kaneto R. JSME, Inter J.1994, C37: 1~6
    83 T Sumomogi, T Endo and K Kuwahara. Nanoscale Layer Removal of Metal Surface by Scanning Probe Microscope Scratching. J Vac Sci Technol. 1995, B13(3): 1257~1260
    84 T Sumomogi, T Endo and K Kuwahara. Micromachining of Metal Surface by Scanning probe microscope. J Vac Sci Technol. 1994, B12(3): 1876~1880
    85赵清亮,梁迎春,程凯,董申.基于AFM微加工的单晶硅表层性质的研究.微纳电子技术. 2003, 6: 261~266
    86赵清亮,梁迎春,王景贺,王洪祥.应用原子力显微镜对单晶硅进行纳米级加工.微细加工技术. 2001, 2:61~66
    87傅惠南,王晓红,刘雄伟.纳米加工和材料去除机理研究.机械工程学报. 2002,6:36~39
    88傅惠南,李锻能,王成勇,王晓红.纳米机械加工与材料表面性质研究.电子显微学报.2003,2:210~212
    89傅惠南.纳米切削实验研究.中国机械工程.2001,8:965~968
    90 J.Cayer-Barrioz, D. Mazuyer, A. Tonck, et al. Nanoscratch and Friction: An Innovative Approach to Understand the Tribological Behaviour of Poly(amide) Fibres. Tribology International. 2006,39:62~69
    91 T. Sumomogi, T. Endo, K.Kuwahara. Mircomachining of Metal Surface by Scanning Probe Microscope. Journal of Vacuum Science&Technolog76y B. 1994, 12(3): 1876~1880
    92 Z. G. Xing, C. J. Lu, D.B.Bogy, et al. An Investigation of the Experimental Conditions and Characteristics of a Nano-wear Test. Wear. 1995, 181(2):777~783
    93 I. H. Sung, J.C.Yang, D. E. Kim, et al. Micro/nano-tribological Characteristics of Self-assembled Monolayer and its Application in Nano-structure Fabrication. Wear. 2003, 255(7-12):808~818
    94 J.E. Headick, M. Armstrong, J. Cratty, et al. Nanoscale Patterning of Alkyl Monolayers on Silicon Using the Atomic Force Microscope. Langmuir. 2005,21(9): 4117~4122
    95 T. H. Fang, W. J. Chang, S. L. Tsai. Nanomechanical Charaterization of Polymer using Atomic Force Microscope and Nanoindentation. Microelectronics Journal. 2005,36(1):55~59
    96 J. A. Blach, G. S. Watson, C.L. Brown, et al. A Mechanistic Approach to Tip-induced Nano-lithography of Polymer Surface. Thin Solid Films. 2004, 459(1-2):95~99
    97 Q. L. Zhao, T. Sun, S. Dong. Investigation of an Atomic Force Microscope Diamond Tip Wear in Micro/nano-machining. Key Engineering Materials Engineering. 2001, 202-203:315~320
    98 Q. L. Zhao, T. Sun, S. Dong. Micro/nano-machining on Silicon Surface with a Modified Atomic Force Microscope. Chinese Journal of Mechanical Engineering. 2001, 14(3): 207~211
    99 D. Emmanuel, J.L. Bubbendorff. Nanometer Scale Lithography on Silicon, Titanium and PMMA Resist using Scanning Probe Microscopy. Solid-state Electronics. 1999,43(6):1085~1089
    100温诗铸.纳米摩擦学.北京:清华大学出版社. 1998
    101杨志伊.纳米科技.机械工业出版社.2004:50~57
    102刘吉平.纳米科学与技术.科学出版社.2002
    103薛增泉.纳米电子学. 2004:9
    104舒启清.电子隧穿原理.科学出版社. 1998
    105王琛,白春礼.表面科学中的电子隧道效应.华中师范大学出版社. 1998
    106徐光宪.量子化学:基本原理和从头计算法.科学出版社, 2007
    107李正中.固体理论.第二版.高等教育出版社. 2002
    108林梦海.量子化学计算方法与应用.科学出版社.2004
    109王顺金.高等量子论与量子多体理论.四川大学出版社.2005
    110李如生.平衡和非平衡统计力学.清华大学出版社.1995
    111 Warren E. Pickett. Pseudopotential Methods in Condensed Matter Applications. Computer Physics Reports. 1989, 9(1): 115-198
    112谢希德,陆栋.固体能带理论.复旦大学出版社,1998
    113 G. Binning, H. Rohrer. Surface studies by scanning tunneling microscope. Physics. 1982, 49(1): 57-61
    114 Snow E S, Jernigah G G, et al. The Kinetics and Mechanism of ScannedProbe Oxidation of Si. Phys Lett. 2000, 76(13): 1782~1784
    115 Qian Dong, Wagner Gregory J, Liu Wing Kam.碳纳米管的力学. Advances in Mechanics. 2004, 34 (1): 97~138
    116 S. Gwo. Scanning Probe Oxidation of Si3N4 Masks for Nanoscale Lithography, Micromachining, and Selective Epitaxial Growth on Silicon. Journal of Physics and Chemistry of Solids. 2001, 62 (9-10):1673~1687
    117 D. Emmanuel, J. L. Bubbendorff. Nanometer Scale Lithography on Silicon, Titanium and PMMA Resist Using Scanning Probe Microscopy. Solid-State Electronics. 1999, 43(6): 1085~1089
    118 K. Morimoto, F. Perez-Murano, J. A. Dagata. Density Variations in Scanned Probe Oxidation. Applied Surface Science. 2000, 158(3):205~216
    119 X. D. Hu, T. Guo, X. Fu. Nanoscale Oxide Structures Induced by Dynamic Electic Field on Si with AFM. Applied Surface Science. 2003, 217(1-4): 34~38
    120 Bolshakov A, Pharr G M. Influence of Pile-up on the Measurement of Mechanical properties by Load and Depth Sensing Indentation Techniques. Mater Res. 1998, 13:1049~1058
    121 Hertel T, Walkup RE, Avouris P. Single Charge Tunneling: Coulomb Blockade Phenomena in Nano-structures. Phys Chem Solid. 1993, 54:587
    122 H. R. Shea,R. Martel, T. Hertel, et al. Manipulation of Carbon Nanotubes and Properties of Nanotube Field Effect Transistors and Rings. Microelectronic Engineering. 1999, 46: 101~104
    123 Stone AJ, Wales Dj. Chem Phys Lett. 1986,128:501
    124 Y Y Ye, R Biswas, J R Morris et al. Molecular Dynamics Simulation of Nanoscale Machining of Copper. Nanotechnology. 2003,14:390~396
    125吴其胜.材料物理性能.华东理工大学出版社, 2006:5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700