用户名: 密码: 验证码:
预浸织物细观变形机理及本构关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间充气展开结构作为一种新型的航天工程结构,由于其质量轻、折叠后体积小、展开可靠性高等优点,使空间充气展开结构成为未来航天工程构建大型空间结构的有效途径。预浸织物是空间充气展开结构的关键结构材料。由于预浸织物材料中包含未固化的树脂,因此其变形特性与机理既不同于纯织物材料,也不同于传统的复合材料——固化后的织物复合材料。用来描述纯织物材料和固化后的织物复合材料的本构方程不能适用于预浸织物材料,那么就需要根据本构原理来建立预浸织物的本构方程。预浸织物由织物和未固化的树脂组成,因此在研究中应同时考虑固体增强相与流体的作用,这是一个新的力学问题,对复合材料力学起到扩展的作用。对预浸织物本构方程的研究为空间充气展开结构的结构设计以及静力学、动力学和热分析等研究提供了理论基础。
     本文研究预浸织物的剪切变形。通过像框剪切试验来测定预浸织物的剪切性能。由于预浸织物是粘弹性材料,变形与时间有关,因此本文进行了不同加载速率的试验。通过对试验曲线的分析进一步验证了预浸织物在发生剪切变形时具有明显的非线性和阶段性的规律。
     通过对预浸织物各个组分材料之间的相互作用及变形机理的分析,本文将预浸织物的剪切变形分为剪切锁定前和剪切锁定后两个阶段,并且分别建立了不同阶段的各组分材料的细观分析模型。在剪切锁定前阶段,建立树脂的阻尼计算模型,经、纬向纤维束在交叉处的摩擦的计算模型。随着剪切的继续进行,树脂被不断的从纤维束的孔隙中挤压出去,直至纤维束之间相互接触。进入剪切锁定后阶段,建立纤维束的挤压力矩模型,通过这些计算模型建立了剪切锁定前和剪切锁定后的力矩平衡方程,通过对力矩平衡方程的计算得到了理论分析曲线,最后通过试验曲线对理论分析结果进行验证。结果表明,理论分析曲线与试验曲线吻合的较好。
     从热力学第二定律出发,根据预浸织物的性质设定Helmholtz自由能函数由5个变量表示,根据不变量理论推导出由这5个变量组成的能够反映预浸织物的粘弹特性的不变量。依据本构方程的基本原理通过这些不变量建立了预浸织物材料的宏观本构方程。此本构方程既描述了经、纬向纤维束的单独作用,又描述了纤维束之间的耦合作用,较好地反映了预浸织物的非线性的粘弹性的性质。最后,通过不同加载速率的像框剪切试验结果对本构方程的理论计算结果进行验证,本构方程理论结果与试验结果符合较好。
The space inflatable structure is a novel structure applied in space engineering. Because of the light mass, small folded volume and high deployment reliability and so on, it becomes a valid path for building large space structure in future space engineering. Pre-impregnated fabric is the key material used in the space inflatable structure. However, because the resin of the pre-impregnated fabric is uncured, its deformation character and mechanism differ from the pure fabric material and the cured fabric composite. Consequently, the constitutive equations of pure fabric and the cured fabric composite can not be applicable to pre-impregnated fabric. Therefore, a constitutive equation is needed to be established according to the constitutive principle. The pre-impregnated fabric is made of fabric and uncured resin. As a result, the strengthened solid and fluid should be concerned in the research. This is a new mechanical problem. It extends composite material mechanics. Investigations on the constitutive equation of pre-impregnated fabric will provide the theories for designing and the statics, dynamics and thermal analysis research of the space inflatable structure.
     Shear finite deformation is the sole concern of this paper. Picture frame experiment is adopted to test the shear properties of fabric materials. Because pre-impregnated fabric is the viscoelastic material, of which deformation is associated with time, the present paper carries on the different displacement rate experiments. Obviously, nonlinearity and phases when pre-impregnated fabric is deformed can be further verified through experiment curve, which provides the basis for the establishment of the mesoscopic analytical model and the constitutive equation of the pre-impregnated fabric.
     Through analysis of every constituent mutual interacting and deformation mechanism of the pre-impregnated fabric, the shear deformation is divided by shear and compaction phases and some analytical models are built according to different phases. These models are the resin damping function and the crossover friction of the warp and weft tows in the shearing phase. Along with shearing, resin will be driven from the inter-tow region and the tows are interacted. In the compaction phase, a lateral compaction shear resistance moment is occurred. A balanced equation is built through these analytical models and a theoretical curve is obtained. The picture frame experiment curve is used to verify the theoretical curve and the two curves are well coincided.
     According to the properties of pre-impregnated fabric, Helmholtz free energy function is indicated by 5 variables from the second law of thermodynamics. On the principle of invariables, several invariants have been deduced which can describe the viscoelastic properties of pre-impregnated fabric. In response to basic theory of constitutive equation, a constitutive equation is obtained. This constitutive equation can objectively describe the viscoelastic properties of pre-impregnated fabric. At last, different displacement rates of picture frame experiments are used to verify the constitutive equation and the two curves are well coincided.
引文
1 P .K. Mallick. Fiber-reinforced Composite. New York: Marcel Dekker Inc.,1988
    2 W. L. Wu, H. Hamada, Z. Maekawa. Computer Simulation of the Deformation of Weft-knitted Fabric for Composite Materials. J. Text. Inst. 1994, 85(2): 198~214
    3陶肖明,冼杏娟,高冠勋.纺织结构复合材料.科学出版社, 2001: 1~74
    4 D. Cadogan, J. Stein, M.Grahne. Inflatable Composite Habitate Structures for Lunar Mars Exploration. Acta Astronautica. 1999, 44: 339~406
    5 R. E. Freeland, G. D. Bilyeu, G. R. Veal, M. M. Mikulas. Inflatable Deployable Space Structures Technology Summary. The 49th International Astronautical Congress Sept 28-Oct 2, Melbourne, Australia, IAF-98-I.501. 1998, 1~16
    6 M. Salama, M. Lou and H. Fang. Development on Inflatable Space Structures: A Review of Recent Developments. AIAA 2000-1730
    7 D. P. Cadogan, S. E. Scarborough. Rigidizable Materials for Use in Gossamer Space Inflatable Structures. 42rd AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics and Materials Conference. Seattle, USA, April 16-19, 2001, 2: 12~25
    8 H. Tsunoda, Y. Senbokuya. Rigidizable Membranes for Space Inflatable Structures. Collection of Technical Papers- 43rd AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics and Materials Conference. Denver, USA, April 22-25, 2002: 1264~1270
    9 Paul V. Cavallaro, Matthew E. Johnsona, Ali M. Sadegh. Mechanics of Plain-woven Fabrics for Inflated Structures. Composite Structures. 2003, 61: 375~393
    10朱波,余同希,陶肖明.机织复合材料的本构关系与成形性研究.力学进展. 2004, 34(3): 327~329
    11 P. Boisse, M. Borr, K. Buet, A. Cherouat. Finite Element Simulation of Textile Composite Forming Including the Biaxial Fabric Behaviour. Composites Part B. 1997, 28: 453~464
    12 P. Boisse, A. Gasser, G. Hivet. Analysis of Fabric Tensile Behaviour: Determination of Biaxial Tension-strain Surfaces and Their Use in Forming Simulations. Composites Part A. 2001, 32: 1395~1414
    13 F. T. Peirce. The Geometry of Cloth Structure. J. Text. Inst. 1937, 28: 45~97
    14 F. T. Peirce. Geometrical Principles Applicable to the Design of Functional Fabrics. Text. Res. J. 1947, 17: 123~147
    15 J. W. S. Hearle, et al. Structural Mechanics of Fibers, Yarns and Fabrics. New York: 1969
    16 P. Vacher, S. Dumoulin, R. Arrieux. Determination of the Forming Limit Diagram from Local Measurement Using Digital Image Analysis. Int. J. Forming Progress. 1999, 2: 395~408
    17 K. Buet-Gautier, P. Boisse. Experimental Analysis and Modeling of Biaxial Mechanical Behavior of Woven Composite Reinforcement. Exp. Mech. 2001, 41(3): 260~269
    18 A. Cherouat, J. L. Billo?t. Finite Element Model for the Simulation of Preimpregnated Woven Fabric by Deep-drawing and Lay-up Process. J. Adv. Mater. 2000, 32: 42~53
    19 P. Boisse, B. Zouari, A. Gasser. A Mesoscopic Approach for the Simulation of Woven Fibre Composite Forming. Composites Science and Technology. 2005, 65(3-4): 429~436
    20 G. A. V. Leaf. Model of the Plain-knitted Loop. J. Text. Inst. 1960, 51: 49~58
    21 G. A. V. Leaf. Geometry of a Plain-knitted Loop. J. Text. Inst. 1955, 46: 587~605
    22 G. A. V. Leaf. The Initial Load-Extension Behavior of Plain-woven Fabrics. J. Text. Inst. 1980, 71: 1~7
    23 T. Komori. A Model Analysis of the Compressibility of Fiber Assemblies. Text. Res. J. 1992, 62(10): 567~574
    24今冈春树.织物的变形解析.纤维学会志. 1998, 44(5): 342~228
    25 J. R. Collier. Drape Prediction by Means of Finite-element Analysis. J. Text. Inst. 1991, 82(1): 96~107
    26 C. J. Luijk. Finite Element Analysis of Yarns. J. Text. Inst. 1984, 75(5): 342~362
    27 V. K. Kathari. Shear Behavior of Woven Fabrics. Text. Res. J. 1989, 59(3):142~150
    28张义同.织物力学研究的新进展.力学进展. 2003, 33(2): 217~225
    29 J. Amirbayat, J. W. S. Hearle. The Analogy of Textile Fabrics: Drape and Conformability. J. Text. Inst. 1989, 80(1): 51~68
    30 J. H. Kim. Fabric Mechanics Analysis Using Large Deformation Orthotropic Shell Theory. Dept of Mechanical and Aerospace Engineering, 1991
    31 Y. T. Zhang, Y. B. Fu. A Micro-mechanical Model of Woven Fabric and Its Application to the Analysis of Buckling under Uniaxial Tension. PartⅠ. The Micro-mechanical Model. Int. J. Engng. Sci. 2000, 38(17): 1895~906
    32 Y. T. Zhang, Y. B. Fu. A Micro-mechanical Model of Woven Fabric and Its Application to the Analysis of Buckling under Uniaxial Tension. Part Ⅱ.Buckling Analysis. Int. J. Engng. Sci. 2001, 39(1): 1~13
    33张义同,谢宇新.变形构形下织物的细观线性本构方程.天津大学学报. 2003, 36: 271~275
    34 S. Bazhenov. Dissipation of Energy by Bulletproof Aramid Fabric, J. Mat. Sci. 1997, 32: 4167~4173
    35 E. N. Kuznetsov. Underconstrained Structural Systems, Springer-verlag. New York: 1991
    36 B. Nadler, David J.Steigmann. A Model for Frictional Slip in Woven Fabrics. C. R. Mecanique. 2003, 331: 797~804
    37 Y. Q. Wang, X. K. Sun. Digital Element Simulation of Textile Processes. J. Comp. Sci. Tech. 2001, 63: 311~320
    38 G. M. Zhou, X. K. Sun, Y. Q. Wang. Multi-chain Digital Element Analysis in Textile Mechanics. Comp. Sci. Tech. 2004, 64: 239~244
    39 O. Brookstein. Evolution of Fabric Performs for Fibre Composite. Journal of Applied Polymer Science: Applied Polymer Symposium. 1991, 47: 487~500
    40 A. Dasgupta, R. K. Agarwal, S. M. Bhandarkar. Three-dimensional Modeling of Woven-fabric Composites for Effective Thermo-mechanical and Thermal Properties. Composites Science and Technology. 1996, 56: 209~223
    41 G. B. Mckenna. Interlaminar Effects in Fiber-reinforced Plastics-a Review. Polymer-plastics Technology Engineering. 1975, 5(1): 23
    42 Y. J. Wang, J. Li, D. M. Zhao. Mechanical Properties of Fiber Glass and Kevlar Woven Fabric Reinforced Composites. 1995, 5(9):1159~1175
    43 W. D. Bascom, J. L. Bitner, R. J. Moulton, A. R. Siebert. The Interlaminar Fracture of Organic-matrix, Woven Reinforcement Composites. Composites. 1980, 11(1): 9~18
    44 B. Z. Jang. Fracture Behavior of Fiber-resin Composites Containing a Controlled Interlaminar Phase. Sci. Engng compos. Mater. 1991, 2(1): 29
    45 D. C. Phillips, A. S. Tetelman. The Fracture Toughness of Fiber Composites. Composites. 1972, 3: 216~223
    46 T. Ishikawa, T. W. Chou. One-dimensional Micromechanical Analysis of Woven Fabric Composites. AIAA J. 1983, 21: 1714~1721
    47 T. Ishikawa, T. W. Chou. Stiffness and Strength Behaviour of Woven Fabric Composites. J. Mater. Sci. 1982, 17: 3211~3220
    48 T. Ishikawa, T. W. Chou. Elastic Behavior of Woven Hybrid Composites. Journal of Composite Materials. 1982, 16: 2~19
    49 S. Ramakrishna, H. Hamada, K. B. Cheng. Analytical Procedure for the Prediction of Elastic Properties of Plain Knitted Fabric-reinforced Composites. Composites Part A. 1997, 28A: 25~37
    50 N. K. Naik, V. K. Ganesh. Prediction of On-axes Elastic Properties of Plain Weave Fabric Composites. Comp. Sci. Tech. 1992, 45: 135~152
    51 J. D. Whitcomb. Three-dimensional Stress Analysis of Plain Weave Composites. Composite Materials. Fatigue and Fracture (3rd volume), ASTMATP 1110, T K O’Brien ED. American Society for Testing and Materials, Philadelphia, 1991: 417~438
    52 Y. C. Zhang, J. Harding. A Numerical Micromechanics Analysis of the Mechanical Properties of a Plain Weave Composite. Comp. Struct. 1990, 36: 839~844
    53 W. R. Yu, F. Pourboghrat, K. Chung, et al. Non-orthogonal Constitutive Equation for Woven Fabric Reinforced Thermoplastic Composites. Composites: Part A. 2002, 33(8): 1095~1105
    54 H. S. Ryou, K. S. Chung, W. R. Yu. Constitutive Modeling of Woven Composites Considering Asymmetric/Anisotropic, Rate Dependent and Nonlinear Behavior. Composites: Part A. 2007,38(12): 2500~2510
    55 W. R. Yu, M. Zampaloni, F. Pourboghrat, et al. Analysis of Flexible Bending Behavior of Woven Preformusing Non-orthogonal Constitutive Equation.Composites: Part A. 2005, 36: 839~850
    56 W. R. Yu, P. Harrison, A. Long. Finite Element Forming Simulation for Non-crimp Fabrics Using a Non-orthogonal Constitutive Equation. Composites: Part A. 2005, 36(8): 1079~1093
    57 P. Xue, X. Q. Peng, J. Cao. A non-orthogonal Constitutive Model for Characterizing Woven Composite. Composites: Part A. 2003, 34: 183~193
    58 S. W. Hsiao, N. Kikuchi. Numerical Analysis and Optimal Design of Composite Thermoforming Process. Comput. Meth. Appl. Mech. Eng. 1999, 177(31): 4~8
    59 X. Q. Peng, J. Cao. A Dual Homogenization and Finite Element Approach for Material Characterization of Textile Composites. Composites: Part B. 2002, 33: 45~56
    60 X. Q. Peng, J. Cao. A Continuum Mechanics-based Non-orthogonal Constitutive Model for Woven Composite Fabrics. Composites: Part A. 2005, 36: 859~874
    61 P. Xue, J. Cao, J. Chen. Integrated Micro/macro-mechanical Model of Woven Fabric Composites under Large Deformation. Composite Structures. 2005, 70: 69~80
    62 A. H. Nayfeh, G. R. Kress. Non-linear Constitutive Model for Plain-weave Composites. Composites: Part B. 1996, 627~634
    63 B. Nedjar. An anisotropic viscoelastic Fibre-matrix Model at Finite Strains: Continuum Formulation and Computation Aspects. Computer Methods in Applied Mechanics and Engineering. 2007, 196: 1745~1756
    64 K. Chung, H. Ryou. Development of Viscoelastic/Rate-sensitive-plastic Constitutive Law for Fiber-Reinforced Composites and Its Applications Part I: Theory and Material Characterization. Composites Science and Technology.2007, dio: 10.1016/j. composcitech.2007.06.003
    65 H. Ryou, K. Chung. Development of Viscoelastic/Rate-sensitive-plastic Constitutive Law for Fiber-Reinforced Composites and Its Applications Part II: Numerical Formulation and Verification. Composites Science and Technology. 2007, dio: 10.1016/j. composcitech.2007.06.025
    66 L. Dong, C. Lekakou, M. G. Bader. Processing of Composites: Simulation of the Draping of Fabrics with Updated Material Behavior Law. J. Comp. Mater.2001, 35:138~163
    67 S. B. Sharma, M. P. F. Sutcliffe, S. H. Chang. Characterisation of Material Properties for Draping of Dry Woven Compoiste Material. Composites Part A. 2003, 34: 1167~1175
    68 A. S. Milani, J. A. Nemes, R. C. Abeyaratne, G. A. Holzapfel. A Method for the Approximation of Non-uniform Fiber Misalignment in Textile Composites Using Picture Frame Test. Composites Part A. 2007, 38(6): 1493~1501
    69 A. S. Milani, J. A. Nemes. An Intelligent Inverse Method for Characterization of Textile Reinforced Thermoplastic Composites Using a Hyperelastic Constitutive Model. Composites Science and Technology. 2004, 64: 1565~1576
    70 T. G. Rogers. Rheological Characterization of Anisotropic Materials. Composite. 1989, 20(1): 21~27
    71 A. F. Johnson. Rheological Model for the Forming of Fabric-reinforced Thermoplastic Sheets. Composites Manufacturing. 1995, 6(3-4): 153~160
    72 G. B. McGuiness, C.M.óBrádaigh. Development of Rheological Models for Forming Flows and Picture-frame Shear Testing of Fabric Reinforced Thermoplastic Sheets. J. Non-Newtonian Mech.1997, 73:1~28
    73 C. L. Tucker. Fundamentals of Computer Modeling for Polymer Processing. Hanser, Munich, 1989
    74 A. J. M. Spencer. Plasticity Theory for Fibre-reinforced Composites. J. Eng. Math. 1992, 26: 107~118
    75 A. J. M. Spencer. Theory of Fabric-reinforced Viscous Fluids. Composites: Part A. 2000, 31: 1311~1321
    76 A. J. M. Spencer. A Theory of Viscoplasticity for Fabric-reinforced Composites. J. Mech. Phys. Solids. 2001, 49: 2667~2687
    77王友善.预浸织物复合材料本构关系研究.哈尔滨工业大学博士学位论文. 2005: 21~92
    78林国昌.织物/粘性树脂复合材料本构行为研究.哈尔滨工业大学博士学位论文. 2007: 31~78
    79 P. Tan, L. Tong, G. P. Steven. A Three-dimensional Modelling Technique for Predicting the Linear Elastic Property of Opened-packing Woven Fabric UnitCells. Composite Structures. 1997, 38: 261~271
    80乔生儒.复合材料细观力学性能.西北工业大学出版社,1997: 170
    81 D. S. Lussier, J. Chen, S. Chow. A Fabric Mechanics Approach to Draping of Woven and Non-crimp Reinforcements. Preceeding of the American Society for Composites. 16th Annual Technical Conference, Blacksburg, Virginia, 2001
    82 J. Wang, J. R. Page, R. Paton. Experimental Investigation of the Draping Properties of Reinforcement Fabrics. Composite Science and Technology. 1998, 58: 229~237
    83 J. L. Hu, Y. T. Zhang. The KES Shear Test for Fabrics. Textile Research Journal. 1997,67 (9): 654~664
    84 S. M. Spivak, L. R. G. Treloar. The Behavior of Fabrics in Shear, PartⅢ: The Relation between Bias Extension and Simple Shear. Textile Research Journal. 1968, 38:963~971
    85 G. Lebrun, J. Denault. Influence of the Temperature and Loading Rate on the Interply Shear Properties of Polypropylene Fabric. Proceeding of the American Society for Composites. 15th Annual Technical Conference, College Station, Texas, 2000
    86 N. G. Ly, D. H. Tester, P. Buckenham, A. F. Rocznoik, A. L. Adriaanson, F. Scaybrook, S. De Jong. Simple Instruments for Quality Control by Finishers and Taylors. Physique Chimie Astronomie. 1996, 323(8): 503~509
    87 K. L. Yick, K. P. Chen, R.C. Dhingra, Y. L. How. Comparison of Mechanical Properties of Shirting Materials Measured on the KES-F and FAST Instruments. Textile Research Journal. 1996, 66(10): 622~633
    88 P. Buckenham. Bias-extension Measurements on Woven Fabrics. Journal of the Textile Institute. 1997, 88(1): 33~40
    89 P. Boisse, K. Buet, A. Gasser, S. Hanklar, J. Launay. Biaxial Mechanical Behaviour of Textile Composite Reinforcements. Mecanique Industrielle et Materiaux. 1997, 50(3): 140~144
    90 P. Boisse, M. Barr. Experimental Study of Biaxial Behaviour in Fabrics Comptes Rendus de l Academie de Sciences, Serie II. Mecanique Physique Chimie Astronomie. 1996, 323(8): 503~509
    91 J. C. Gelin, A. Cherouat, P. Boisse, H. Sabhi. Manufacture of Thin CompositeStructures by the RTM Process: a Numerical Simulation of the Shaping Operation. Composites Science and Technology. 1996, 56: 711~718
    92 S. Farboodmanesh. Parametric Studies of Coated Fabric Shear Behavior: Fabric Construction and Coating Penetration Effects. Tehran Polytechnic University. Dissertation for the Doctoral Degree. 2003:12~14
    93 U. Mohammed, C. Lekakou, L. Dong, M. G. Bader. Shear Deformation and Micromechanics of Woven Fabrics. Composites: Part A. 2000, 31: 299~308
    94 K. Weissenberg. The Use of a Trellis Model in the Mechanics of Homogeneous Materials. Journal of the Textile Institute. 1949, 40(2): 89~107
    95 K. Weissenberg, G. Chadwick, S. Shorter. A Trellis Model for the Application and Study of Simple Pulls in Textile Materials. Journal of the Textile Institute. 1949, 40(2): 108~160
    96 R. Rivlin. Plane Strain of a Net Formed by Inextensible Cords. Journal of Rational Mechanics and Analysis. 1955, 4: 951~974
    97 G. B. McGuinness, C. M.óBrádaigh. Characterization of Thermoplastic Composite Melts in Rhombus-shear: the Picture-frame Experiment. Composites Part A. 1998, 29A: 115~132
    98 M. Nguyen, I. Herszberg, R. Paton. The Shear Properties of Woven Carbon Fabric. Composite Structures.1999, 47: 767~779
    99赵渠森.预浸料技术及其设备.玻璃钢/复合材料. 1994, 1: 31~36
    100 P. Harrison, M. J. Clifford. Shear Characterization of Viscous Woven Textile Composites: a Comparison between Picture Frame and Bias Extension Experiments. Comp. Sci. Tech. 2004, 64: 1453~1465
    101 X. Q. Peng, J. Cao, J. Chen, P. Xue, D.S. Lussier, L.Liu. Experimental and Numerical Analysis on Normalization of Picture Frame Tests for Composite Materials. Composites Science and Technology. 2004, 64: 11~21
    102余寿文.断裂损伤与细观力学.力学与实践. 1988, 10(6): 12~18
    103杨卫.细观力学与细观损伤力学.力学进展. 1992, 22(1): 1~9
    104郑长卿等.韧性断裂细观力学的初步研究及其应用.西北工业大学出版社, 1988
    105苏祖君,曾金芳,王华强.中温固化环氧树脂基体研究进展.玻璃钢/复合材料. 2004,4:50~53
    106 A. Tabiei, Y. Jiang. Woven Fabric Composite Material Model with Material - 107 -Nonlinearity for Nonlinear Finite Element Simulation. International Journal of Solids and Structures. 1999, 36: 2757~2771
    107 P. Grosberg, A. V. Leaf, B. J. Park. The Mechanical Properties of Woven Fabrics, Part VI: The Elastic Shear Modulus of Plain-weave Fabrics. Text Res J 1968, 1085~1100
    108 P. Grosberg, B. J. Park. The Mechanical Properties of Woven Fabrics, Part V: The Initial Modulus and the Frictional Restraint in Shearing of Plain Weave Fabrics. Text Res J. 1966, 420~431
    109 U. Breuer, M. Neitzel, K. V. Reinicke. Deep Drawing of Fabric Reinforced Thermoplastics: Wrinkle Formation and Their Reduction. Polym Compos 1996, 17(4): 643~647
    110 P. Badel, E. Vidal-Sallé, P. Boisse. Computational Determination of In-plane Shear Mechanical Behaviour of Textile Composite Reinforcements. Computational Meterials Science. 2007, 40(4): 439~448
    111 A.G. Prodromou, J. Chen. On the Relationship of Shear Angle and Wrinkling of Textile Composite Preforms. Composites, Part A: Applied Science and Manufacturing. 1997, 28A: 491~203
    112 V. R. Aitharaju, R. C. Averill. Three-dimensional Properties of Woven-fabric Composites. Composites Science and Technology. 1999, 59: 1901~1911
    113 L. Liu. Formability of Structural Thermoplastic Textile Composites. University of Massachusetts Lowell. Dissertation for the Doctoral Degree. 2005: 63~70
    114 L. Liu, J. Chen, X. Li, J. Sherwood. Two-dimensional Macro-mechanics Shear Models of Woven Fabrics. Composites: Part A. 2005, 36: 105~114
    115 L. Liu, J. Chen, J. Gorczyca, J. Sherwood. Modeling of Friction and Shear in Thermostamping of Composites-Part II. J. Compos. Mater. 2004, 38 (21): 1931~1947
    116周筑宝.最小耗能原理及其应用.科学出版社, 2001: 83~88
    117蔡峨.粘弹性力学基础.北京航空航天大学出版社, 1989:1~2
    118李松年,黄执中.非线性连续统力学.北京航空学院出版社, 1987: 185~187
    119吕洪生,曾新吾.连续介质力学基础.国防科技大学出版杜, 1999: 133~135
    120吴其哗,巫静安.高分子材料流变学.高等教育出版社,2005: 73~75
    121周光泉,刘孝敏.粘弹性理论.中国科学技术大学出版社,1996: 1~7
    122范镜泓,高芝晖.非线性连续介质力学基础.重庆大学出版社, 1987: 134~135
    123 A. C. Eringen.不变量理论.钱伟长,叶开沅,朱兆祥等.江苏科学技术出版社, 1982: 1~40
    124黄筑平.连续介质力学.高等教育出版社,2003: 196~197
    125 G. A. Holzapfel, T. C. Gasser. A Viscoelastic Model for Fiber-reinforced Composites at Finite Strains: Continuum Basis, Computational Aspects and Applications. Computation Methods in Applied Mechanics and Engineering. 2001, 190: 4379~4403
    126 R. S. Jones, R. W. Roberts. Ply Reorientation in Compression. Compos. Manuf. 1991, 2(3/4): 259~266
    127 S. F. Shuler, S. G. Advani. Transverse Squeeze Flow of Concentrated Aligned Fibers in Viscous Fluids. J. Non-Newtonian Fluid Mech. 1996, 65:47~74
    128 A. B. Wheeler, R. S. Jones. Numerical Simulation of Fibre Reorientation in the Consolidation of a Continuous Fibre Composite Material. Compos. Manuf. 1995, 6: 263~268
    129 A. B. Wheeler, R. S. Jones. A Characterisation of Anisotropic Shear Flow in Continuous Fibre Composite Materials. Compos. Manuf. 1991, 3: 192~196
    130 R. W. Roberts, R. S. Jones. Rheological Characterisation of Continuous Fibre Composites in Oscillatory Flow. Compos. Manuf. 1995, 6: 161~167
    131 D. J. Groves, D. M. Stocks. Rheology of Thermoplastic Composite Carbon Fibre Composite in the Elastic and Viscoelastic States. Compos. Manuf. 1991,2(3/4): 179~184
    132 P. Harrison, M. J. Clifford, A. C. Long, C. D. Rudd. A Constituent-base Predictive Approach to Modelling the Rheology of Viscous Textile Composites. Composites: Part A. 2004, 35: 915~931
    133 R. M. Christensen. Effective Viscous Flow Properties for Fibre Suspensions under Concentrated Conditions. J. Rheol. 1993, 37(1): 103~121
    134 G. B. McGuinness, R. A. Canavan, T. A. Nestor, et al. A Picture-frame Intraply Shearing Test for Unidirectional and Fabric Reinforced Composite Melts. Proceedings of the ASME Materials Division MD, San Francisco.1995
    135 J. Hofstee, H. De Boer, F. Van Keulen. Elastic Stiffness Analysis of a Thermo-formed Plain-weave Fabric Composite: Part I: Geometry. Compos. Sci. Technol. 2000, 60(7): 1041~1053
    136 J. L. Daniel, D. Soulat, F. Doumont, B. Zouari, P. Boisse, A. C. Long. Forming of a Very Unbalanced Fabric Experiment and Simulation. Int. J. Forming Process. 2003, 6(3/4): 465~480

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700