用户名: 密码: 验证码:
陕北黄土高原全新世气候影响下的黄土沉积速率
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陕北黄土高原是世界上水土流失最严重的地区之一,该地区的黄土沉积速率是确定容许土壤流失量的基础。全新世以来气候波动变化,对黄土的沉积和发育造成一定影响,而该时期形成的土壤与人类关系最为密切,因此需要探讨全新世气候影响下的黄土沉积速率。可为容许土壤流失量的确定以及进行黄土高原土壤侵蚀危险度评价提供理论基础及数据支撑。
     本研究在陕北黄土高原南部洛川县、中部延长县、北部横山县分别设置A、B、C、D共4个土壤剖面,通过分层采集土壤样品,利用~(14)C测年技术,对全新世以来各剖面不同气候影响下的黄土沉积速率进行了研究。其主要研究结果如下:
     (1)通过对塬面剖面A、B、D的土壤颗粒组成、土壤有机质含量、土壤pH值以及土壤CaCO_3含量进行分析,发现土壤颗粒组成和土壤CaCO_3含量随土壤年龄变化,反映出地质时期的气候变化对成土作用产生影响;而土壤有机质含量和土壤pH值随纬度的变化均表明成土作用由南向北逐渐减弱。该结果为进一步进行全新世气候变化以及黄土沉积速率时空变异的研究奠定了基础。
     (2)分别计算各种气候替代指标的Hurst指数和分形维数,并对各气候指标进行相关分析,探讨了各气候替代指标对各气候要素的指示关系。选取磁化率、碳酸钙含量、总有机碳含量和0.01~0.05 mm粗粉粒含量作为气候替代指标,利用小波分析方法研究了A、B、D三个剖面全新世以来气候变化情况。结果表明,总体上,A和B剖面10000 a B.P.~8500 a B.P.为变暖期;8500 a B.P.~3000 a B.P.温湿大暖期;3000 a B.P.以来为变冷干期;而D剖面表现为,8000 a B.P.~4000 a B.P.为温湿大暖期,4000 a B.P.以来为变冷干期,其时间差异可能是由于D剖面比A、B剖面相同时期的埋藏土壤年龄偏老而造成的。
     (3)运用土壤深度-年龄曲线法,得到各剖面全新世以来不同气候条件下黄土沉积速率,A、B、D剖面全新世平均黄土沉积速率为0.0179 cm/a、0.0153 cm/a、0.0213 cm/a。该研究区黄土沉积速率分布图表明,黄土沉积速率由西北向东南逐渐减小,并且在中部出现了极低值点。利用磁化率重建历史时期降雨量变化状况,并根据降雨量与土壤侵蚀强度的关系分析了地质时期土壤侵蚀情况,详细讨论了土壤侵蚀对各气候时期的沉积速率的影响,发现此极低值是由该地区地质时期土壤侵蚀造成的。因此,黄土沉积速率受到土壤侵蚀作用的影响。土壤深度-年龄曲线法得到的黄土沉积速率可以对这一综合结果进行精确地定量表达。
     (4)首次通过塬面和坡面对比研究,利用土壤年龄、黄土沉积速率以及气候替代指标,复原了12000 a B.P.以前C剖面所处坡面的地貌,并且发现该坡面12000 a B.P.以来由于受到自然侵蚀和人为加速侵蚀的共同作用,导致土壤侵蚀速率大于沉积速率,为定量研究地质时期土壤侵蚀及地貌提供了新的思路和方法。
     (5)通过计算土壤流失量与黄土沉积量的比值,定量探索了区域及流域土壤侵蚀危险度。结果表明,洛川县、延长县和横山县土壤侵蚀危险度分别为14.1、43.3和24.8,均远远大于1,因此该地区为水土流失重点防治区域。随着对燕沟流域治理度的增加,土壤侵蚀危险度Vdan值由1997年的28.8逐渐降低到2007年的0.2,土壤侵蚀已不具危险性,因此治理效果较好。
     本论文研究为确定土壤容许流失量以及明确土壤的发生、发育规律提供了理论基础;为定量研究地质时期地貌提供了新的思路和方法;黄土沉积速率在土壤侵蚀危险度评价方面的应用可以为环境治理决策提供理论依据。
Soil loss in loess plateau in northern Shaanxi is the most serious all over the world. The loess deposition rate in this region is the base for determination of soil loss tolerance. Unstable climate in the Holocene affects on loess deposition and formation. Meanwhile, the loess formed in this period has the closest relationship with human. Thus, it is necessary to research the loess deposition rate under influence of climate in the Holocene. This study could provide theoretical basis and data supporting for determination of soil loss tolerance and assessment of soil erosion risk.
     Four soil profiles A, B, C and D were located in three locations in north, middle and south of loess plateau in northern Shaanxi. The loess deposition rates were researched by analysis of soil ~(14)C age in every layer of the profiles. The main results were that: (1) Particle size distribution, TOC, pH and CaCO_3 content of A, B, D profiles on tableland were analyzed. The variation of particle size distribution and CaCO_3 content showed that the climate affected on soil formation. The changing of TOC and pH with latitude indicated that the degree of pedogenesis decreased from south to north in this region. These results laid a foundation for researches on climate changes and tempo-spatial variations of loess deposition rate.
     (2) The Hurst index and fractal dimension of seven climatic indexes were calculated, and correlation analysis was done between all the climatic indexes. The indexical relation between the climatic indexes and climatic elements was discussed. Finally, four indexes (χIf, CaCO_3 content, TOC and the content of 0.01~0.05 mm particles) were selected, and wavelet analysis was used to analyze variations of paleoclimate. In total, in A and B profile, 10000 a B.P.~8500 a B.P. was warming period, 8500 a B.P.~3000 a B.P. was warm period, 3000 a B.P.~ present was cooling period; in D profile, 8000 a B.P.~4000 a B.P. was warm period, 4000 a B.P.~ present was cooling period. The differences between them may be caused by the older age of the soil deposited at the same period in D profile than in A and B profile.
     (3) The loess deposition rate in different climate period was calculated by depth and age of soil in every layer. The average loess deposition rate of A, B and D profile in the Holocene was 0.0179 cm/a、0.0153 cm/a、0.0213 cm/a, respectively. The distribution of loess depostion rate in this region showed that, it decreased from northwest to southeast, and the minimum was in the middle of region. The soil erosion in the Holocene was analyzed by the annual rainfall which was calculated by magnetic susceptibility. The influences of soil erosion on soil deposition rate were discussed. The minimum in the middle of region was caused by soil erosion. Therefore, the loess deposition rate was comprehensive results of deposition, erosion and other pedogenesis. The loess depotition rate derived from soil depth and age could show the comprehensive result quantitatively.
     (4) Soil age, loess accumulation rate and climate indexes of B and C profile were used to reconstruct the landforms on the slope where the C profile on before 12000 a B.P.. The soil eosion rate was lager than loess deposition rate, and it was proved that this method could be used to research on soil erosion and reconstruct the landforms in geological period.
     (5) Soil erosion risk of the research region and a watershed was assessed by the ratio of soil loss to soil deposition. The soil erosion risk in Luochuan, Yanchang and Heangshan was 14.1、43.3 and 24.8, much larger than critical value 1, so this region should be an important protection and control area. With the growth of management degree, the soil erosion risk dropped from 28.8 in 1997 to 0.2 in 2007 in Yan’gou watershed. The soil erosion was under control.
     This study could provide theoretical basis for determination of soil loss tolerance, soil genesis and development. It would provide new idea and method for quantificationally research on reconstruct the landforms in geological period. The application of loess deposition rate on assessment of soil erosion risk could provide theoretical basis for environmental treatment decision.
引文
[1] Anon.. Soil and trouble[J]. Science, 2004, 304(5677): 1614-1615.
    [2]唐克丽,等.中国水土保持[M].北京:科学出版社, 2004.
    [3] Dunne T. Rates of chemical denudation of silicate rocks in tropical catchments[J]. Nature, 1978,274(5668): 244-246.
    [4] Owens L B, Watson J P. Rates of weathering and soil formation on Granite in Rhodesia[J]. Soil Science Society of America Jouranl, 1979, 43(1): 160-166.
    [5] Kirkby M J, Morgan R P C. Soil erosion[M]. John Wiley and Sons Ltd., 1980.
    [6] Schumm S A, Harvey M D. Natural erosion in the USA[C]. In: Determinants of Soil Loss Tolerance. Madison, Wisconsin: American Society of Agronomy, Soil Science Society of America Jouranl, 1982,45: 15-22.
    [7] Alexander E B. Rates of soil formation: implications for soil tolerance[J]. Soil Science, 1988,145(1): 37-45.
    [8] Patsukevich Z V, Gennadiev A N, Gerasimova M I. Soil loss tolerance and self-rehabilitation of soils[J]. Eurasian soil science, 1997, 30(5): 557-563.
    [9] Hudson N. Soil Conservation[M]. USA: Iowa State University Press, 1995.
    [10] McCormack D E, Young K K, Kimberlin L W Current criteria for determining soil loss tolerance [C]. Determinants of Soil Loss Tolerance. Madison, Wisconsin: American Society of Agronomy, Soil Science Society of America Jouranl, 1982, 45: 95-112.
    [11] Johnson L C. Soil loss tolerance: Fact of myth[J]. Journal of Soil and Water Conservation, 1987, 42(3): 155-160.
    [12]刘东生.黄土与环境[M].北京:科学出版社, 1985.
    [13]朱显谟.黄土高原的形成与整治对策[J].水土保持通报, 1991, 11(1): 1-17.
    [14] Heller F, Liu T S. Magnetostratigraphical dating of loess deposits in China[J]. Nature, 1982, 300(5891): 431-433.
    [15]王永焱,等.黄土与第四纪地质[M].陕西:陕西人民出版社, 1982.
    [16] Kukla G, An Z S, Melice J L, et al. Magnetic susceptibility record of Chinese Loess[J]. Earth Sciences, 1990, 81(4): 263-288.
    [17]黄春长.环境变迁[M].北京:科学出版社, 1998.
    [18]张宗祜,等.中国北方晚更新世以来地质环境演化与未来生存环境变化趋势预测[M].北京:地址出版社, 1998.
    [19]曹伯勋,等.地貌学及第四纪地质学[M].武汉:中国地质大学出版社, 1995.
    [20] Huang C C, Zhou J, Pang J L, et al. A regional aridity phase and its possible cultural impact during the Holocene Megathermal in the Guanzhong Basin, China[J]. The Holocene, 2000, 10(1):135-142.
    [21] Orlova L A, Zykina V S. Radiocarbon dating of buried Holocene soils in Siberia[J]. Radiocarbon,2002,44(1): 113-122.
    [22] Jenny H. Factors of Soil Formation[M]. New York: McGraw-Hill, 1941.
    [23] Scarciglia F, Pulice I, Robustelli G, et al. Soil chronosequences on Quaternary marine terraces along the northwestern coast of Calabria (Southern Italy)[J]. Quaternary International, 2006,156-157: 133-155.
    [24] Scharpenseel H W, Schiffmann H. Soil radiocarbon analysis and soil dating [J]. Geophysical Surveys, 1977, 3(2): 143-156.
    [25] Kusumgar S, Agrawal D P, Krishnamurthy R V. Studies on the loess deposits of the Kashmir Valley and 14C dating[J]. Radiocarbon, 1980, 22(3): 757-762.
    [26] Brown R H. 14C depth profiles as indicators of trends of climate and 14C/12C ratio [J]. Radiocarbon, 1986, 28(2A): 350-357.
    [27] Trumbore S. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics[J]. Ecological Applications, 2000, 10(2): 399-411.
    [28] Schmitt A, Rodzik J, Zglobicki W, et al. Time and scale of gully erosion in the Jedliczny Dolgully system, south-east Poland[J]. Catena, 2006, 68(2-3): 124-132.
    [29] Becker-Heidmann P. Requirements for an international radiocarbon soils database [J].Radiocarbon, 1996, 38(2): 177-180.
    [30]水利部水土保持司. SL190-96土壤侵蚀分类分级标准[S].北京:中国水利水电出版社, 1997.
    [31] Morgan R P C, Davidson D A. Soil erosion and conservation[M]. Essex: Longman Scientific &Technical, 1986.
    [32] Rabenhorst M C. The chrono-continuum: an approach to modeling pedogenesis in marsh soilsalong transgressive coastlines [J]. Soil Science, 1997, 162(1): 2-9.
    [33] Pillans B. Soil development at snail's space: evidence from a 6 Ma soil chronosequence on basaltin north Queensland, Australia[J]. Geoderma, 1997, 80(1-2): 117-128.
    [34] Kohnke H, Bertrand A. Soil conservation[M]. New York: Book Company, Inc., 1959.
    [35] Troeh F R, Hobbs J A, Donahue R L. Soil and water conservation for productivity and environmental protection[M]. New Jersey: Prentice-Hall, Englewood Cliffs, 1980.
    [36]陈廉杰.森林土壤允许流失量的研究[J].水土保持学报, 1993, 7(1): 18-22.
    [37]韦启潘.我国南方喀斯特区土壤侵蚀特点及防治途径[J].水土保持研究, 1996, 3(4): 72-76.
    [38]柴宗新.试论广西岩溶区的土壤侵蚀[J].山地研究, 1989, 7(4): 255-259.
    [39] Stamey W L, Smith R M. A conservation definition of erosion tolerance[J]. Soil Science, 1964,97(3): 183-186.
    [40] Bain D C, Mellor A, Robertson-Raintoul M S E, et al. Variations in weathering processes and rates with time in a chronosequence of soils from Glen Feshie, Scotland[J]. Geoderma, 1993,57(3): 275-293.
    [41] Sverdrup H, Warfvinge P. Weathering of primary silicate minerals in the natural soil environment in relation to a chemical weathering model[J]. Water, Air, & Soil Pollution, 1988, 38(3-4):387-408.
    [42] Egli M, Fitze P. Formulation of pedologic mass balance based on immobile elements a revision[J].Soil Science, 2000, 165(5): 437-443.
    [43] Langley-Turnbaugh S J, Bockheim J G Mass balance of soil evolution on late Quaternary marine terraces in coastal Oregon[J]. Geoderma, 1998, 84(4): 265-288.
    [44] Barth T F W Abundance of the elements, areal averages, and geochemical cycles [J]. Geochimica etCosmochimicaActa, 1961,23(1-2): 1-8.
    [45] Alexander E B. Rate of soil from bedrock or consolidated sediment[J]. Physical Geography, 1985,6(1): 25-42.
    [46]阮伏水,吴雄海,施悦忠,等.福建省花岗岩地区土壤允许侵蚀量的确定[J].福建水土保持, 1995, 2: 26-31.
    [47]阮伏水.花岗岩坡地土壤侵蚀强度分级参考指标探讨[J].水土保持研究, 1997, 4(1): 113-119.
    [48]段雷,郝吉明,叶雪梅,等.中国土壤风化速率研究[J].环境科学学报, 2000, 20(增刊): 1-7.
    [49]续海金,马昌前.地壳风化速率研究综述[J].地球科学进展, 2002, 17(5): 670-678.
    [50] Langbein W B, Dawdy D R. Occurrence of dissolved solids in surface waters in the United Stated[C]. USDI Geological Survey, Professional Paper 501-D: 115-117.
    [51] Warfvinge P, Sverdrup H. Calculating critical loads of acid deposition with PROFILE -Asteady-state soil chemistry model[J]. Water, Air, & Soil Pollution, 1992, 63(1-2): 119-143.
    [52] Hodson M E, Langan S J, Wilson MJ. A sensitivity analysis of the PROFILE model in relation to the calculation of soil weathering rates[J]. Applied Geochemistry, 1996, 11(6): 835-844.
    [53] Hodson M E, Langan S J, Wilson M J. A critical evaluation of the use of the profile model in calculating mineral weathering rates [J]. Water, Air, & Soil Pollution, 1997, 98(1-2): 79-104.
    [54] Eggenberger U, Kurz D. A soil acidification study using the PROFILE model on two contrasting regions in Switzerland[J]. Chemical Geology, 2000, 170(1-4): 243-257.
    [55] Boyle J F. Simulating loss of primary silicate minerals from soil due to long-term weathering using Allogen: Comparison with soil chronosequence, lake sediment and river solute flux data[J].Geomorphology, 2007, 83(1-2): 121-135.
    [56] Jonsson C, Warfvinge P, Sverdrup H. Uncertainty in predicting weathering rate and environmental stress factors with the profile model[J]. Water, Air, & Soil Pollution, 1995,
    [57] Sverdrup H, Warfvinge P. Critical loads of acidity for Swedish forest ecosystems [J]. Ecological Bulletins, 1995, 44: 75-89.
    [58] Gerasimov I P. The age of recent soils[J]. Geoderma, 1974, 12(1-2): 17-25.
    [59] Huggett R J. Soil chronosequences, soil development, and soil evolution: a critical review[J].Catena, 1998, 32(3-4): 155-172.
    [60]唐克丽,贺秀斌.第四纪黄土剖面多元古土壤形成发育信息的揭示[J].土壤学报, 2002, 39(5): 609-617.
    [61] Aitken M J. Thermoluminescence dating[M]. London: Academic Press, 1985.
    [62]李虎侯.释光技术测定年龄的现状[J].第四纪研究, 1997, 3: 240-257.
    [63] Kukla G, Heller F, Liu X M, et al. Pleistocene climates in China dated by magnetic susceptibility [J]. Geology, 1988, 16(9): 811-814.
    [64]聂高众,刘嘉麒,郭正堂.渭南黄土剖面十五万年以来的主要地层界限和气候事件-年代学方面的证据[J].第四纪研究, 1996, 3: 221-231.
    [65] Li W X, Lundberg J, Dickin A P, et al. High-precision mass-spectrometric uranium-series dating of cave deposits and implications for palaeoclimate studies[J]. Nature, 1989, 339(6225): 534-536.
    [66] Ludwig K R, Paces J B. Uranium-series dating of pedogenic silica and carbonate, Crater Flat,Nevada[J]. Geochimica et Cosmochimica Acta, 2002, 66(3): 487-506.
    [67]沈承德,易惟熙,刘东生.高分辨10Be记录与黄土地层定年[J].第四纪研究, 1994, 3: 203-213.
    [68] Gosse J C, Klein J, Lawn B, et al. Beryllium-10 dating of the duration and retreat of the lastPinedale glacial sequence[J]. Science, 1995, 268(5215): 1329-1333.
    [69]仇士华,蔡连珍. 14C测年技术进展[J].第四纪研究, 1997, 3: 222-229.
    [70]仇士华.碳十四断代的加速器质谱计数方法[J].考古, 1987, 6: 562-567.
    [71] Taylor R E. Fifty years of radiocarbon dating[J]. American Scientist, 2000, 88(1): 60-67.
    [72]陈庆强,沈乘德,孙彦敏,等.鼎湖山土壤有机质深度分布的剖面演化机制[J].土壤学报, 2005, 42(1): 1-8.
    [73] Benoit G J, Turekian K K, Benninger L K. Radiocarbon dating of a core from Long Island Sound[J]. Estuarine and Coastal Marine Science, 1979, 9(2): 171-180.
    [74] Muhs D R. A soil chronosequence on quaternary marine terraces, San Clemente Island, California[J]. Geoderma, 1982, 28(3-4), 257-283.
    [75] Shen C D, Beer J, Ivy-Ochs S, et al. 10Be, 14C distribution, and soil production rate in a soilprofile of a grassland slope at Heshan Hilly Land, Guangdong[J]. Radiocarbon, 2004, 46(1):445-454.
    [76] Scharpenseel H M. Radiocarbon dating of soils-Problem, troubles, hopes[C]. Yaalon D H.Paleopedology origin, Nature and dating of paleosols. Jerusalem: Israel Universities Press, 1971:77-88.
    [77] Rafael H, Tamers M A. Radiocarbon dating of tropical soil associations in Venezuela[C]. Yaalon D H. Paleopedology origin, Nature and dating of paleosols. Jerusalem: Israel Universities Press,1971: 109-116.
    [78]刑长平,沈承德,孙彦敏,等.鼎湖山亚热带森林土壤有机质14C年龄初步研究[J].地球化学, 1998, 27(5): 493-499.
    [79]刘良梧,茅昂江.我国土壤放射性碳年龄[J].土壤学报, 2001, 38(4): 506-513.
    [80]中国科学院贵阳地球化学研究所14C实验室. 14C年龄测定方法及其应用[M].北京:科学出版社, 1977.
    [81]仇士华,陈铁梅,蔡莲珍.中国14C年代学研究[M].北京:科学出版社, 1990.
    [82]沈承德,黄宝林. 14C年龄测定的液体闪烁计数法[J].地球化学, 1980, 3: 278-281.
    [83] Zhou W J, Head M J, Kaihola L. Small sample dating in China[J]. Radiocarbon, 1994, 36(1): 47-49.
    [84]刘克新.加速器质谱及应用[J].现代仪器, 2003, 5: 1-4.
    [85]卢雪峰.高精度AMS14C测年技术研究及其在全球变化中的应用[D].北京:中国科学院博士学位论文, 2006.
    [86] Libby W F. Dosages from natural radioactivity and cosmic rays[J]. Science, 1955, 122(3158):57-58.
    [87] Libby W F. Radiocarbon dating: The method is of increasing use to the archeologist, the geologist, the meteorologist, and the oceanographer[J]. Science, 1961, 133(3453): 621-629.
    [88] Damon P E, Lerman J C, Long A, et al. Report on the workshop on the calibration of the radiocarbon time scale[J]. Radiocarbon, 1980, 22(3): 947-949.
    [89] Damon P E. The history of the calibration of radiocarbon dates by dendrochronology[C]. In:Aurenche 0, Evin J, Hours F, editors. Chronologies in the Near East: relative chronologies and absolute chronology 16,000-4,000 B.P Lyon, France: BAR International Series 379,Archaeological Series 3: 61-104.
    [90]郭兆元.陕西土壤[M].北京:科学出版社, 1992.
    [91]白岗栓,杜社妮,白延红.陕北丘陵沟壑区退耕还林中有关问题探讨[J].水土保持研究, 2003, 10(4): 286-289.
    [92]陕西省农业区划委员会办公室.陕西省综合农业区划[M].西安:西安地图出版社, 1989.
    [93]梅福生,余景荣.陕北丘陵沟壑区农业气候资源及其开发利用[C].农业气象研究论文集.西安:陕西科学技术出版社, 1994
    [94]范高功.陕北地区生态环境建设与水资源合理开发利用问题研究[J].西安工程学院学报, 2001, 23(2): 21-25.
    [95]白岗栓,李志禧.陕北丘陵沟壑区经济林果发展战略[J].水土保持研究, 2000, 7(2): 143-146.
    [96]史念海.黄土高原森林与草原的变迁[M].西安:陕西人民出版社, 1985
    [97]张厚华,黄占斌.黄土高原生物气候分区与该区生态系统的恢复[J].干旱区资源与环境, 2001, 1: 64-71.
    [98]吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社, 1998.
    [99]侯庆春,韩蕊莲,李宏平.关于黄土丘陵典型地区植被建设中有关问题的研究[J].水土保持研究, 2000, 7(2): 102-110.
    [100] Zhu Xianmo, Li Yushan, Peng Xianglin, et al. Soils of the loess region in China[JJ. Geoderma, 1983, 29(3): 237-255.
    [101]张维祥,胡双熙.陇东黄土塬区黑垆土形成的时代与过程[J].科学通报, 1989, 1252-1255.
    [102]胡双熙.陇东和陇中黑垆土的发生与演变[J].土壤学报, 1994, 31(3): 295-304.
    [103]陈晓远,乌力更,李绍良,等.全新世以来乌盟南部地区黑垆土的发生与演变规律[J].土壤通报, 1998, 29(6): 241-244.
    [104]王波雷,马孝义,范严伟,等.近51a西安气候变化的R/S分析[J].干旱区资源与环境, 2007, 21(12): 121-125.
    [105]冯新灵,罗隆诚,邱丽丽.成都未来气候变化趋势的R/S分析[J].长江流域资源与环境, 2008, 17(1): 83-87.
    [106]罗碧瑜,陈映强,贺汉清,等.梅州近50年气候变化特征及未来变化趋势[J].气象科技, 2008, 36(3): 289-292.
    [107]崔锦泰.小波分析导论[M].西安:西安交通大学出版社, 1995.
    [108]秦前清,杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社, 1998.
    [109]李建平,唐远炎.小波分析方法的应用[M].重庆:重庆大学出版社, 1999.
    [110]熊毅,李庆逵.中国土壤(第二版)[M].北京:科学出版社, 1987.
    [111]周卫健,卢雪峰,武振坤,等.西安加速器质谱中心多核素分析的加速器质谱仪[J].核技术, 2007, 30(8): 702-708.
    [112] Hurst H E, Black R P, Simaika Y M. Long-term storage: An experimental study[M]. London:Constable, 1965.
    [113] Mandelbrot B B, Wallis J R. Some long-run properties of geophysical records[J]. Water Resources Research, 1969, 5(2): 321-340.
    [114] Mandelbrot B B, Wallis J R. Robustness of the rescales range R/S in the measurement of noncyclic long-run statistical depondence[J]. Water Resources Research, 1969, 5(5): 967-988.
    [115]倪化勇,刘希林.自然灾害发生时间序列的分形特征及R/S分析[J].自然灾害学报, 2005,
    [116] Mandelbrot B B, Wallis J R. Noah, Joseph, and operational hydrology [J]. Water Resources Research, 1968, 4(5): 909-918.
    [117] Mandelbrot B B, Wallis J R. Computer experiments with fractional Gaussian noises, parts 1, 2,and 3[J]. Water Resources Research, 5(1): 228-267.
    [118] Mandelbrot B B. How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science, 1967, 156(3775): 636-638.
    [119] Scholz C H, Mandelbrot B B. Special Issue: Fractals in Geophysics[M]. Pure and Applied Geophyisics, 1989, 131 (1-2).
    [120]郝柏林.分形与分维[J].科学, 1986, 38(1): 9-17.
    [121] Farge M. Wavelet transforms and their applications to turbulence[J]. Annual Review of FluidMechanics, 1992, 24: 395-457.
    [122] Arneodo A, Grasseau G, Holschneider M. Wavelet transform of multifractals[J]. Physical Review Letters, 1988, 61(20): 2281-2284.
    [123] Meyer Y, Bartram J F. Wavelets and applications [J]. Journal of the Acoustical Society of America, 1992, 92(5): 3023-3023.
    [124] Walker T W The factor time in soil formation[J]. New Zealand Soil News, 1966, 6: 153-167.
    [125] Stevens P R, Walker T W The chronosequence concept and soil formation[J]. The Quarterly Review of Biology, 1970, 45: 333-350.
    [126] Vreeken W J. Principal kinds of chronosequences and their significance in soil history[J].European Journal of Soil Science, 1975, 26(4): 378-394.
    [127] Yaalon D H. Climate, time and soil development[C]. In: Wilding L P, Smeck N E, Hall G F.Pedogenesis and Soil Taxonomy: I. Concepts and Interactions. Amsterdam: Elsevier, 1983:223-251.
    [128] Bockheim J G Solution and use of chronofunctions in studying soil development^]. Geoderma,1980, 24(1): 71-84.
    [129] Harden J W A quantitative index of soil development from field descriptions: examples from a chronosequence in central California[J]. Geoderma, 28(1): 1-28.
    [130] Vincent K R, Bull W B, Chadwick O A. Construction of a soil chronosequence using the thickness of pedogenic carbonate coatings[J]. Journal of Geological Education, 1994, 42: 316.
    [131] Birkeland P W Soil-geomorphic research-a selective overview[J]. Geomorphology, 1990, 3(3-4):207-224.
    [132] Birkeland P W Quaternary soil chronosequences in various environments-extremely arid to humid tropical[C]. In: Martini I P, Chesworth W Weathering, Soils and Paleosols (Developmentsin Earth Surface Processes, 2). Amsterdam: Elsevier, 1992: 261-281.
    [133] Birkeland P W Holocene soil chronofunctions, Southern Alps, New Zealand[J]. Geoderma, 1984,34(2): 115-134.
    [134] Huggett R J. Soil chronosequences, soil development, and soil evolution: a critical review[J].Catena, 1998, 32(3-4): 155-172.
    [135] Schaetzl R J, Barrett L R, Winkler J A. Choosing models for soil chronofunctions and fitting them to data[J]. European Journal of Soil Science, 1994, 45(2): 219-232.
    [136] Torrent J, Nettleton W D. A simple textural index for assessing chemical weathering in soils[J].Soil Science Society of America Journal, 1979, 43(2): 373-377.
    [137] VandenBygaart A J, Protz R. Soil genesis on a chronosequence, Pinery Provincial Park, Ontario[J]. Canadian Journal of Soil Science, 1995, 75:63-72.
    [138] Langley-Turnbaugh J, Bockheim J G. Time-dependent changes in pedogenic processes on marine terraces in coastal Oregon[J]. Soil Science Society of America Journal, 1997, 61(5): 1428-1440.
    [139] Bartoli F, Philippy R, Doirisse M, et al. Structure and self-similarity in silty and sandy soils: the fractal approach[J]. European Journal of Soil Science, 1991, 42(2): 167-185.
    [140] Tylaer S W, Wheatcraft S W. Fractal scaling of soil particle-size distributions: analysis and limitations [J]. Soil Science Society of America Journal, 1992, 56(2):362-369.
    [141]杨培岭,罗远培,石元春.用粒径的重量分布特征的土壤分形特征[J].科学通报,1993, 38(20): 1896-1899.
    [142]吴承祯,洪伟.不同经营模式土壤团粒结构的分形特征研究[J].土壤学报, 1999, 36(2): 162-166.
    [143] Turcotte D L. Fractal and fragmentation[J]. Journal of Geophysical Research, 1986, 91: 1921-1926.539-546.
    [144]侯春梅,刘小伟,李明,等.甘肃黄土的粒度分维特征及意义[J].地质科学, 2005, 40(4): 539-546.
    [145]李德成,张桃林.中国土壤颗粒组成的分形特征研究[J].土壤与环境, 2000, 9(4): 263-265.
    [146]宫阿都,何毓蓉.金沙江干热河谷区退化土壤结构的分形特征研究[J].水土保持学报, 2001, 15(3): 112-115.
    [147]赵文智,刘志民,程国栋.土地沙质荒漠化过程的土壤分形特征[J].土壤学报, 2002, 39(5): 877-881.
    [148]程先富,史学正,王洪杰.红壤丘陵区耕层土壤颗粒分形研究[J].地理科学, 2003, 23(5): 617-621.
    [149]苏永中,赵哈林.科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J].生态学报, 2004, 24(1): 71-74.
    [150]刘永辉,催德杰.长期定位施肥对潮土分形维数的影响[J].土壤通报, 2005, 36(3): 324-327.
    [151] Clifton J, McDonald P, Plater A, et al. An investigation into the efficiency of particle size separation using Stokes's Law[J]. Earth Surface Processes and Landforms, 1999, 24(8): 725-730.
    [152] Martin M A, Montero E. Laser diffraction and multifractal analysis for the characterization of drysoil volume-size distributions[J]. Soil and Tillage Research, 2002, 64(1-2): 113-123.
    [153]王国梁,周生路,赵其国.土壤颗粒的体积分形维数及其在土地利用中的应用[J].土壤学报, 2005, 42(4): 546-550.
    [154]曾宪勤,刘和平,路炳军,等.北京山区土壤粒径分布分形维数特征[J].山地学报, 2008, 26(1): 65-70.
    [155]杨金玲,李德成,张甘霖,等.土壤颗粒粒径分布质量分形维数和体积分形维数的对比[J].土壤学报, 2008, 45(3): 413-419.
    [156] Bronger A, Heinkele T. Micromorphology and genesis of paleosols in the Luochuan loess section,China: Pedostratigraphic and environmental implications [J]. Geoderma, 1989, 45(2): 123-143.
    [157] Lichter J. Rates of weathering and chemical depletion in soils across a chronosequence of Lake Michigan sand dunes [J]. Geoderma, 1998, 85(4): 255-282.
    [158]黄昌勇.土壤学[M].中国农业出版社, 2000.
    [159] Sauer D, Schellmann G, Stahr K. A soil chronosequence in the semi-arid environment of Patagonia (Argentina)[J]. Catena, 2007, 71(3): 382-393.
    [160] Vidic N J. Soil-age relationships and correlations: comparison of chronosequences in the Ljubjana Basin, Slovenia and USA[J]. Catena, 1998, 34(1-2): 113-129.
    [161]黄承敏,龚子同.海南岛北部玄武岩上土壤发育过程的定量研究[J].地理科学, 2000, 20(4): 337-342.
    [162]何磊,唐亚.海螺沟冰川退化迹地土壤序列的发育速率[J].西南大学学报(自然科学版), 2007, 29(7): 139-145.
    [163]于天仁.土壤化学原理[M].北京:科学出版社. 1987.
    [164]赵景波.风化淋滤带地质新理论-CaCO3淀积深度理论[J].沉积学报, 2000, 18(1): 29-35.
    [165] Thompson R, Oldfield F. Environmental Magnetism[M]. London: Allen & Unwin, 1986: 11-18.
    [166] Maher B A. Magnetic properties of some synthetic sub-micron magnetics[J]. Geophysical Journal International, 1988, 94: 83-96.
    [167]韩家懋, Hus J J,刘东生,等.马兰黄土和离石黄土的磁学性质[J].第四纪研究, 1991, 12(4): 310-325.
    [168]刘秀铭,刘东生, Heller F,等.中国黄土磁化率与第四纪古气候研究[J].地质科学, 1992, 12: 279-285.
    [169]鸟居雅之,福间浩司,苏黎,等.黄土-古土壤磁化率评述[J].海洋地质与第四纪地质, 1999, 19(3): 83-96.
    [170]安芷生,王俊达,李华梅.洛川黄土剖面的古地磁研究[J].地球化学, 1977, 4: 239-249.
    [171] Fine P, Singer M J, La Ven R, et al. Geoderma, 1989, 44(4): 287-306.
    [172] Ding Z L, Rutter N, Han J T, et al. A coupled environmental system formed at about 2.5 Ma in East Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 94: 223-242.
    [173] Heller F, Shen C D, Beer J, et al. Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeoclimatic implications [J]. Earth and planetary science letters,1993, 114(2-3): 385-390.
    [174]吕厚远,韩家懋,吴乃琴,等.中国现代土壤磁化率分析及其古气候意义[J].中国科学(B辑), 1994, 24(12): 1290-1297.
    [175] Banerjee S K, Hunt C P, Liu X M. Separation of local signals from the regional paleomonsoon record of the Chinese Loess Plateau: A rock-magnetic Approach[J]. Geophysical Research Letters,1993, 20(9): 843-846.
    [176]赵景波.黄土地层中的CaCO3与环境[J].沉积学报, 1993, 11(1): 136-142.
    [177]孙建中,赵景波等.黄土高原第四纪[M].北京:科学出版社, 1991.
    [178]管东红,奚晓霞,郝永萍,等.北塬剖面碳酸钙记录的末次冰期气候不稳定性[J].冰川冻土, 1996, 18(2): 119-124.
    [179]王建力,李吉均,方小敏.临夏盆地早更新世东山古湖沉积的高分辨率气候记录[J]. 1998, 18(2): 349-354.
    [180]文启忠等.中国黄土地球化学[M].北京:科学出版社, 1989.
    [181]文启忠,刁桂仪,贾蓉芳,等.黄土剖面中古气候变化的地球化学记录[J].第四纪研究, 1995, 3: 223-231.
    [182] Rampino M R, Ambrose S H. Volcanic winter in the Garden of Eden: The Toba supereruption and the late Pleistocene human population crash[C]. In: McCoy F W, Heiken G Volcanic Hazards and Disasters in Human Antiquity. Colorado: Boulder, Geological Society of America Special Paper 345,2000:71-82.
    [183]刁桂仪.黄土中游离氧化铁的古气候意义[J].地质地球化学, 1982, 9: 58-59.
    [184]魏明建,孙建中,封达庄,等.黄土中的铁与25万年来的古气候[J].西安地质学院学报, 1988, 3: 93-99.
    [185]张宗祜,魏明建.黄土中全氧化铁与气候指标定量关系[J].科学通报, 1995, 40(13): 1219-1221.
    [186]杨石岭,丁仲礼. 70 Ma以来中国北方风尘沉积的游离铁/全铁值变化及其古季风指示意义[J].科学通报, 2000, 45(22): 2453-2456.
    [187]顾兆炎,丁仲礼,熊尚发,等.灵台红粘土和黄土-古土壤序列的地球化学演化[J].第四纪研究, 1999, 4: 357-363.
    [188]丁仲礼,余志伟,刘东生.中国黄土研究新进展(三)时间标尺[J].第四纪研究, 1991, 4: 336-348.
    [189] Kohfeld K E, Harrison S P. Glacial-interglacial changes in dust deposition on the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2003, 22(18-19): 1859-1878.
    [190]叶玮,董光荣,袁玉江,等.新疆伊犁地区末次冰期气候的不稳定性[J].科学通报, 2000, 45(6): 641-645.
    [191]孙有斌,鹿化煜,安芷生.黄土-古土壤中石英颗粒的粒度分布[J].科学通报, 2000, 45(19): 2094-2097.
    [192]孙东怀,鹿化煜, David R,等.中国黄土粒度的双峰分布及其古气候意义[J].沉积学报, 2000, 18(3): 327-335.
    [193]康建成.甘肃临夏北塬黄土剖面的粒度特征及其气候意义[J].兰州大学学报(自然科学版), 1990, 26(1): 93-102.
    [194]沈永平,康建成.十五万年来临夏黄土粒度变化的气候记录[J].干旱区地理, 1992, 15(3): 44-49.
    [195] Xiao J L,Porter S C, An Z S, et al. Grain size of quartz as an indicator of winter monsoon strength on the loess plateau of central China during the last 130000 Yr[J].Quaternary Research, 1995, 43(1): 22-29.
    [196]戴雪荣,李吉均,俞立中,等.兰州风尘沉积的粒度分布模式及其古气候意义[J].沉积学报, 2000, 18(1): 36-42.
    [197]曹军骥,张小曳,程燕,等.晚新生代红粘土的粒度分布及其指示的冬季风演变[J].海洋地质与第四纪地质, 2001, 21(3): 99-106.
    [198]丁仲礼,孙继敏,余志伟,等.黄土高原过去130 ka来古气候事件年表[J].科学通报, 1998, 43(6): 567-574.
    [199]华东师大,河北师大,华中师大,等.第四纪地质学[M].石家庄:河北师范大学出版社, 1984.
    [200] Porter S C, An Z S. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 375(6529): 305-308.
    [201]张兰生,方修齐,任国玉.全球变化[M].北京:高等教育出版社, 2000.
    
    [202]朱诚,于世永,刘晓宁.分形方法在庐山第四纪沉积环境研究中的应用[J].地理研究, 1996, 15(3): 64-69.
    [203] Fluegeman R H, Snow R S. Fractal analysis of long-range paleoclimatic data: oxygen isotope record of Pacific core V28-239[J]. Pure and Application Geophys, 1989, 131(1-2): 307-313.
    [204] Porter S C, An Z S. Correlation between climate events in the North Atlantic and China during the lastglaciation[J]. Nature, 1995, 375(6529): 305-308.
    [205] Chamberlin T C. Soil wastage[C]. In: Proceeding of a conference of governors in the White House, Washington, D. C, 1908, U. S. Congress 60th, 2nd Session, House Document 1425, 1909:75-83.
    [206] Bennett H H. Soil conservation[M]. New York: McGraw-Hill Book Company, Inc., 1939.
    [207] Buol S W, Hole F D, McCracken R J. Soil classification and genesis[M]. Ames (USA): Iowa State University Press, 1989.
    [208] Kliment'ev A I, Tikhonov V E. Ecohydrological Analysis of Soil Loss Tolerance inAgrolandscapes[J]. Eurasian Soil Science 2001, 34(6): 673-682.
    [209] Kufmann C. Soil types and eolian dust in high-mountainous karst of the Northern Calcareous Alps (Zugspitzplatt, Wetterstein Mountains, Germany)[J]. Catena, 2003, 53(3): 211-227.
    [210] Wei C F, Ni J P, Gao M, et al. Anthropic pedogenesis of purple rock fragments in Sichuan Basin,China[J]. Catena, 2006, 68(1): 51-58.
    [211]何毓蓉,等.中国紫色土(下篇)[M].北京:科学出版社, 2003.
    [212]袁道先,蔡桂鸿.岩溶环境学[M].重庆:重庆科技出版社, 1988.
    [213]王世杰,季宏兵,欧阳自远,等.碳酸盐岩风化成土作用的初步研究[J].中国科学D辑,1999, 29(5): 441-449.
    [214]徐炯心.降水-植被耦合关系及其对黄土高原侵蚀的影响[J].地理学报, 2006, 61(1): 57-65.
    [215]桑广书.黄土高原历史时期地貌与土壤侵蚀演变研究[D].陕西:陕西师范大学, 2003.
    [216]史念海.河山集(二集)[M].北京:生活·读书·新知三联书店, 1981.
    [217]王元林.历史时期黄土高原腹地塬面变化[A].黄土高原地区历史环境与治理对策会议文集,中国历史地理论丛, 2001(增刊): 71-82.
    [218]史念海.周原的变迁[J].陕西师范大学学报(社哲版), 1976, 2: 111-120.
    [219]张洲.周原地区新生代地貌特征略论[J].西北大学学报(自然科学版), 1990, 20(3): 69-77.
    [220] Meyer L D. Evaluation of the universal soil loss equation[J]. Journal of Soil and Water Conservation, 1984, 39: 99-104.
    [221] Laflen J M, Lwonard J L, Foster G R. WEPP a new generation of erosion prediction technology[J]. Journal of Soil and Water Conservation, 1991, 46(1): 34-38.
    [222] Branca M, Voltaggio M. Erosion rate in badlands of central Italy: Estimation by radiocaesium isotope ratio from Chernobyl nuclear accident[J]. Applied Geochemistry, 1993, 8(5): 437-445.
    [223] Darryl E, Granger, James W, et al. Spatially averaged long-time erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment[J]. The Journal of Geology, 1996, 104:249-257.
    [224]刘刚,刘普灵,杨明义,等.土壤侵蚀危险度评价研究进展[J].中国水土保持科学, 2008, 6(5): 100-105.
    [225] Lobo D, Lozano Z, Delgado F. Water erosion risk assessment and impact on productivity of a Venezuelan soil[J]. Catena, 2005, 64: 297-306.
    [226]杨胜天,朱启疆,张卫国.基于大尺度动态监测的土壤侵蚀危险程度评价[J].水土保持学报, 2002, 16(1): 1-4, 12.
    [227] Kliment’ev A I, Tikhonov V E. Ecohydrological analysis of soil loss tolerance in agrolandscapes[J]. Eurasian Soil Science, 2001, 34(6): 673-682.
    [228]水土保持统计数据.黄土高原水土保持数据库[DB]. http://www.loess.csdb.cn/stat/index.jsp.
    [229]田均良,梁一民,刘普灵.黄土高原丘陵区中尺度生态农业建设探索[M].郑州:黄河水利出版社, 2003.
    [230]薛智德,杨光,梁一民,等.燕儿沟人工植被营造模式与快速建设研究[J].水土保持研究, 2000, 7(2): 128-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700