用户名: 密码: 验证码:
海上风机桶形基础安装与支撑结构动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海上风能是一种安全、清洁、稳定的可再生能源,是缓解当前能源短缺、解决环境污染问题的战略选择。我国具有漫长的海岸线,海上风能储量大,开发前景好。随着风能开发从陆上走向海洋并逐渐向深海发展,特殊而恶劣的海洋环境对风机基础和整体结构的施工和运行提出了更高的要求。因此,海上风机建造的技术难度和经济成本也将显著提高,并成为制约其快速发展的瓶颈。吸力式桶形基础(简称吸力桶或桶形基础),因其具有安装简便、抗倾覆承载力高、节约材料、可重复利用等优点而将逐渐成为今后海上风机基础形式之一。而海上风机支撑结构,因其高且柔的结构特点和质量与刚度的分布规律,决定了它是一种自身动力特性受环境荷载、基础刚度等因素影响异常敏感的结构物。
     桶形基础的吸力安装和海上风机支撑结构动力特性研究涉及到海洋工程和岩土工程的交叉领域,许多问题是在当前国内大力发展海上风电背景下亟待解决的关键技术难题,具有重要的科学研究意义和工程应用价值。因此,本文针对这些问题,分别从理论分析、数值模拟和模型试验等方面进行了系统的研究和探索,具体工作主要包括以下几方面的内容:
     1.利用室内桶形基础安装模型试验平台,开展了一系列粉土中吸力桶负压安装的模型试验,结合桶体端部和桶内土体中水力梯度变化趋势,系统分析了桶内吸力所引起的渗流对桶体沉贯阻力和土塞稳定性的影响;针对试验中观察到的土塞失稳现象并结合其失稳机理,提出了吸力安装中引入由土工织物和砾石组成的反滤装置改善桶形基础的吸力安装质量,并通过试验结果评估了该反滤装置的适用性,进而给出了相应的工程应用的建议。
     2.基于考虑底部耦合刚度影响的风机结构整体模型,系统研究了水平刚度、转动刚度、耦合刚度和顶部竖向轴压力等参数对支撑结构前四阶自振频率的影响;并引入了考虑底端弹性约束的风机支撑结构自振频率近似计算理论;针对实际风机塔架“底部直径大、顶部直径小”的体型结构特点,研究了风机支撑结构动力特性中“锥化效应”影响;通过具体工程实例及本文模型试验结果验证了改进后的解析计算理论和近似计算方法的可靠性,并就相关参数对计算结果的敏感性做了分析。
     3.基于无量纲化的相似性理论,在风机动力特性模型试验平台上,利用改进的循环加载装置,系统研究了由单桩支撑的结构模型,在不同特性循环荷载下的支撑结构自振频率和系统阻尼的变化规律;利用简化的数学计算模型,并结合土体的微观力学行为特性,解释了试验中所观察到的支撑结构自振频率变化规律;在此模型试验平台上还研究了由重力式浅基础、不同长径比的吸力桶基础、对称与非对称三脚架结构及四脚导管架等“多足”基础所支撑的模型结构动力特性及在循环荷载下动力特性变化规律;并基于试验结果给出了实际工程中有关风机基础选型及支撑结构设计上的相关建议。
Offshore wind is a safe, clean and stable source of renewable energy, which is a strategic option to overcome the problems of energy shortage and environment contamination. China is rich of offshore wind energy along the east and southeast coastline, so, it is promising to invest into the offshore wind farm. With the wind turbines shifting from onshore to offshore, and moving into deeper and deeper water area, high requirements for the construction as well as the service of the foundation and the overall wind turbine structure are necessary to meet the adverse offshore environment. Therefore, the difficulty of the technology and the cost to construct the offshore wind turbines are remarkably increasing. And it will become an obstacle to develop the offshore wind energy. Suction caisson, because of its advantages such as simplicity of installation, high bearing capacity against overturning moment and ease of retrieval for reutilization, will be becoming one of the most popular foundation options for the offshore wind turbines in future. Because of its high and slender nature, accompanied with the mass and stiffness distribution, offshore wind turbines are dynamically sensitive structures. Its dynamic properties are also subjected to change under the effects of environmtal loading and foundation stiffness.
     The suction installation behavior of suction caisson, the dynamic behavior of the overall wind turbine structure supported on different types of foundations, involving the crossing field of ocean engineering and geotechnical engineering, there still exist many unresolved problems, which urgently needs to be studied under current circumstances of rapid development of offshore wind energy. Aiming to investigate these critical issues, studies about suction caisson installation in silt and dynamic behavior of integrated support structure had been conducted in this thesis, which could be listed as follows:
     1. Based on the model tests platform, a series of suction caisson installation tests were carried out in silt. According to the development trend of external side friction, internal friction, tip resistance, as well as the average hydraulic gradient around the tip and internal soil plug, a systematic analysis as to the effects from the suction induced seepage on the soil resistance and stability of soil plug was given; an innovative concept of filter layer consisting of geotextile and gravel was introduced to improve the quality of caisson installation, the feasibility and advantage of this kind of filter layer were proved by the tests results, some advice to its real applicability in field were also given.
     2. The cross coupling stiffness was considered in the improved analytical method, a systematical investigations were carried out to study the influence from the lateral stiffness, rotational stiffness and cross coupling stiffness on the first four orders of natural frequency of the whole wind turbine structure; an approximate method was introduced to calculate the first order natural frequency, as to the real turbine tower, the'taper effects'were taken into account in the calculation; the improved analytical and approximate method were verified by some real field examples, and relevant sensitivity analysis on several parameters were also carried out.
     3. Scaled model tests were carried out to investigate the dynamic behavior of monopile supported wind turbine model in sand bed; based on the simplified model along with the sand behavior under cyclic loading, an sound explanation to its observed phenomenon of dynamic development trend was given; tests were also performed to investigate the dynamic behaviour of turbine model founded on different types of foundations; according to the similitudes and the tests results, suggestions as to the foundation and structure selection for the prototype wind turbine were given.
引文
Achmus M., Kuo Y. S., Raham K. A.,2009. Behaviour of monopile foundations under cyclic lateral load [J]. Computers and Geotechnics, Vol.36:725-735.
    Adhikari S., Bhattacharya S.,2011.Vibrations of wind-turbine considering soil-structure interaction [J].Wind and Structures.Vol.14(2), pp.85-112.
    Anderson, K.H., Jostad, H.P., Dyvik, R.,2008. Penetration resistance of offshore skirted foundations and anchors in dense sand [J]. Journal of Geotechnical and Geoenvironmental Engineering ASCE 134 (1),106-116.
    API RP 2SK,2005. Recommended Practice for Design and Analysis of Stationkeeping Systems for Floating Structures, third edition. Washington D.C..
    Bhattacharya S., Lombardi D., Wood D. M.,2011. Similitude relationships for physical modelling of monopile-supported offshore wind turbines [J]. International Journal of Physical Modelling in Geotechnics, Vol.11(2):28-68.
    Bhattacharya S., Adhikari S.,2011. Experimental validation of soil-structure interaction of offshore wind turbines[J]. Soil Dynamics and Earthquake Engineering, Vol.31, pp. 805-816.
    Bhattacharya S., Krishna A.M., et al.,2012. Economic MEMS based 3-axis water proof accelerometer for dynamic geo-engineering applications [J]. Soil Dynamics and Earthquake Engineering,36:111-118.
    Bhattacharya S., Cox J., Lombardi D., Wood D. M.,2012. Dynamics of offshore wind turbines supported on two foundations [J]. Geotechnical Engineering, Vol.165 (GE1):1-11.
    Bhattacharya S., Nikitas N., et al.,2013.Obserced dynamic soil-structure interaction in scale testing of offshore wind turbine foundations [J]. Soil Dynamics and Earthquake Engineering,36:47-60.
    Blevins R. D. (2001) Formulas for frequencies and mode shapes, Malabar (Florida).
    James Alexander Cox, Subhamoy Bhattacharya,2013. Dynamic characteristics of an offshore wind turbine on a number of foundations [C].Offshore Technology Conference (OTC 24109).
    Briaud, J. L., Smith, T. D.& Meyer, B. J.,1984. Using pressuremeter curve to design laterally loaded piles [C]. Proc.15th Ann. Offshore Technol. Conf., Houston, TX, paper no.4501.
    Butterfield R., Dimendional analysis for geotechnical engineers [J].Geotechnique 49, No.3, 357-366.
    Byrne B. W. (2000). Investigations of Suction Caissons in Dense Sand [D]. Ph.D. thesis, University of Oxford, Oxford, U.K.
    Byrne, B.W., Houlsby, G.T.,2003. Foundations for offshore wind turbines [J]. Phil. Trans, of the Royal Society of London, series A 361, pp.2909-2930.
    Byrne, B.W., Houlsby, G.T.,2004. Experimental Investigations of the Response of Suction Caissons to Transient Combined Loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, Vol.130 (3):240-253.
    Cater M.,2007. North Hoyle offshore wind farm:design and build [C]. Proceedings of the ICE: Energy, vol.160(1), pp.9-21.
    Chang K. T., Jeng D. S., et al.,2014. Soil response around Donghai offshore wind turbine foundation, China [C].Proceedings of the Institution of Civil Engineers Energy 167 February, Vol.167.
    Chen, W., Zhou, H., Randolph, M.F.,2009. Effect of installation method on external shaft friction of caissons in soft clay [J]. Journal of Geotechnical and Geoenvironmental Engineering ASCE 135 (5),605-615.
    Christian K.,2007. Modelling of Strain Accumulation Due to Low Level Vibrations in Granular Soils [D]. Ph.D. thesis, Ghent University, Gent, Belgium.
    Cox J., Bhattacharya S.,2013. Dynamic Characteristics of an Offshore Wind Turbine on a Number of Foundations [C]. Offshore Technology Conference. Houston,Texas,USA,6-9 May,2013.
    Cuellar P., Baebler M., Rucker W.,2009. Ratcheting convective cells of sand grains around offshore piles under cyclic lateral loads [J]. Granular Matter, Vol.11, pp.379-390.
    Det Norske Veritas,2005. Geotechnical Design and Installation of Suction Anchors in Clay. DNV Recommended Practice RP-E303, H(?)vik.
    DNV. (2001). Design of Offshore Wind Turbine Structures. Offshore Standard DNV-OS-J101. DET NORSKE VERITAS.
    DNV. (2002). Code of Practice:Guidelines for design of wind turbines. Denmark:Scanprint.
    Drnevich, V. P., Hall, J. R. Jr. and Richart, F. E. Jr.,1967. Effects of amplitude of vibration on the shear modulus of sand [C]. Proc.,Int. Symp. on Wave Propagation and Dynamic Properties of Earth Mat., Albuquerque, N.M.,189-199.
    Drnevich, V. P., and Richart, F. E. Jr.,1970. Dynamic prestraining of dry sand[J]. Journal of Soil Mechanics and Founation Engineering Division, ASCE,96(2),453-469.
    Erbrich, C.T., Tjelta, T.I.,1999. Installation of bucket foundation and suction caissons in sand-geotechnical performance[C]. Proceedings of the 31th Annual Offshore Technology Conference. Houston, Texas, OTC 10990, pp.725-735.
    Eurocode 8 (1998):Design provisions for earthquake resistance of structures-foundations, retaining structures and geotechnical aspects, Code of practice.
    Finnie, I. M.S., Randolph, M. F.,1994. Punch-through and liquefaction induced failure of shallow foundations on calcareous sediments [C]. Proceedings of International Conference on Behaviour of Offshore Structures, Boston, p.217-230.
    Fleming, W. K., Weltman, A. J., Randolph, M. F., and Elson, W.K,1992:Piling Engineering, Taylor and Francis, London.
    Gazetas G.,1983. Analysis of machine foundations:state of the art [J]. Soil Dynamics and Earthquake Engineering Vol.2, pp.2-42.
    Geradin M., Rixen D., Mechanical Vibrations, John Wiely & Sons, New York, NY, second edition,1997.
    Guo, Z., Wang, L.Z., Yuan, F., Li, L.L.,2012. Model tests on installation techniques of suction caissons in a soft clay seabed [J]. Applied Ocean Research 34,116-125.
    Gurgoze, M. (2005a), On the eigenfrequencies of a cantilever beam carrying a tip spring-mass system with mass of the helical spring considered [J]. Journal of Sound and Vibation, 282(3-5),1221-1230.
    Gurgoze, M. (2005b), On the representation of a cantilevered beam carrying a tip mass by an equivalent springmass system [J]. Journal of Sound and Vibation,282,538-542.
    http://www.4coffshore.com/windfarms/alpha-ventus-germany-de01.html
    Houlsby G. T., Ibsen L. B., Byrne B.W.,2005. Suction caissons for wind turbines [C]. Frontiers in Offshore Geotechnics:ISFOG, Perth, pp.75-93.
    Houlsby, G.T., Byrne, B.W.,2005a. Design procedures for installation of suction caissons in clay and other materials [J]. Geotechnical Engineering 158 (2),75-82.
    Houlsby, G.T., Byrne, B.W.,2005b. Design procedures for installation of suction caissons in sand[J]. Geotechnical Engineering 158 (3),135-144.
    Houlsby, G.T., Kelly R. B., Huxtable J., Byrne, B.W.,2005. Field trials of suction caissons in clay for offshore wind turbine foundations [J]. Geotechnique, Vol.55, No.4,287-296.
    Houlsby, G.T., Kelly R. B., Huxtable J., Byrne, B.W.,2006. Field trials of suction caissons in sand for offshore wind turbine foundations [J]. Geotechnique, Vol.56, No.1,3-10.
    House, A. R., Randolph, M. F., Watson, P. G.,2001. In-situ assessment of shear strength and consolidation characteristics of soft sediments [C]. Proceedings of the OTRC 2001 Conference, Austin, Texas,p.52-63.
    Inman D.J.,2003. Engineering Vibration, Prentice Hall PRT, NJ, USA.
    Kelly R. B., Houlsby G.T., Byrne B.W.,2006. A comparison of field and lab tests of caisson foundation in sand and clay [J]. Geotechnique 56(9):617-626.
    Kelly R. B., Houlsby, G.T., Byrne, B.W.,2006.Transient vertical loading of model suction caissons in a pressure chamber [J]. Geotechnique, Vol.56,665-675.
    Klar, A.,2008. Upper Bound for Cylinder Movement Using Elastic Fields and Its Possible Application to Pile Deformation Analysis, ASCE [J]. International Journal of Geomechanics,Vol.8, No.2,1662-1667.
    Koerner, R.M.,1997. Designing with Geosynthetics [M], Englewood Cliffs, NJ, USA:Prentice Hall,761-792.
    Kuhn M.,1997. Soft or stiff:A fundamental question for designers of offshore wind energy converters [C]. Proceeding of European Wind Energy Converters, EWEC.
    Kuo Y. S., Achmus M., Raham K. A.,2012. Minimum embedded length of cyclic horizontally loaded monopoles [J]. Journal of Geotechnical and Geoenvironmental Engineering, Vol.138 (3):357-363.
    LeBlanc C.,2009. Design of Offshore Wind Turbine Support Structures [D]. Ph.D. thesis, Alborg University, Alborg, Denmark.
    Leblanc C., Byrne B.W., Houlsby G. T., (2010 a). Response of stiff piles in sand to long term cyclic loading [J]. Geotechnique 60(2):79-90.
    Leblanc C., Byrne B. W., Houlsby G. T. (2010 b) Response of stiff piles to random two-way lateral loading [J]. Geotechnique 60(9):715-721.
    Lombardi D., Bhattacharya S., Wood D. M.,2013. Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil. Soil Dynamics and Earthquake Engineering [J].Vol.49, pp.165-180.
    Nogami T., Novak M.,1977. Resistance of soil to a horizontally vibrating pile [J]. International Journal of Earthquake Engineering and Structure Dynamics, Vol.5:249-261.
    Novak M, Nogami T.,1977. Soil-pile interaction in horizontal vibration [J]. Earthquake Engineering and Structural Dynamics Vol.5, pp.263-281.
    Palmeira, E.M., Fannin, R.J., Vaid, Y.P.,1996. A study on the behavior of soil-geotextile systems in filtration tests [J]. Canadian Geotechnical Journal 33,899-912.
    Randolph, M. F. and Wroth, C. P.,1979. An Analytical Solution for the consolidation Around a Driven Pile[J].International Journal for Numerical and Analalytical Methods in Geomechanics,Vol.3,217-229.
    Randolph, M.F. and Steward, D.P.,2001. Manual for the program PYGM, University of Western Australia.
    Rauch, A.F., Olson, R.E., Luke, A.M., Mecham, E.C.,2003. Measured response during laboratory installation of suction caissons [C]. Proceedings of the 13th International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA, May 25-30, pp. 780-787.
    Senders, M., Randolph, M.F.,2009. CPT-based method for the installation of suction caissons in sand [J]. Journal of Geotechnical and Geoenvironmental Engineering 135 (1):14-25.
    Senders M., Kay S. Geotechnical Suction Pile Anchors Design in Deep Water Soft Clay [C].Proceedings of the 7th Annual Conference, Deepwater Risers, Moorings and Anchorings. London, UK,2002.
    Senpere, D., Auvergne, G.A.,1982. Suction anchor piles-a proven alternative to driving or drilling [C]. Proceedings of 14th annual Offshore Technology Conference, Houston, Texas. OTC4206, pp.483-493.
    Tempel D.P., Molenaar D.P.,2002.Wind turbine structure dynamics-a review of the principles for modern power generation, onshore and offshore [J]. Wind energy,26(4),211-220.
    Timoshnko S., Young D. H., Weaver W.,1974 [M]. Vibration Problems In Engineering Fourth Edition.
    Tjelta, T.I.,2001. Suction piles:their position and applications today [C]. Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavanger, Norway, June 17-22, vol.11, pp.1-6.
    Tran, M.N., Randolph, M.F., Airey, D.W.,2007. Installation of suction caissons in sand with silt layers[J]. Journal of Geotechnical and Geoenvironmental Engineering ASCE 133 (10), 1183-1191.
    Tran M. N., Randolph M. F. Variation of suction pressure during caisson installation in sand [J]. Geotechnique,2008,58(1):1-11.
    Uscilowska A., Kolodziej J. A.,1998.Free vibration of immersed column carrying tip mass[J]. Journal of Sound and Vibration. Vol.216(1), pp.147-157.
    Vucetic M., Dobry, R.,1991.Effect of soils plasticity on cyclic response[J]. Journal of Geotechnical Engineering, ASCE,117(1), pp.898-907.
    Vucetic, M.,1994. Cyclic Threshold Shear Strains in Soils [J]. Journal of Geotechnical Engineering,120(12),2208-2228.TECHNICAL PAPERS.
    Wang L. Z., Yu L. Q., Guo Z., Wang Z. Y,2014. Seepage Induced Soil Failure and its Mitigation During Suction Caisson Installation in Silt [J]. Journal of Offshore Mechanics and Arctic Engineering 136, pp.1-11.
    Welch, P. D.,1967. The Use of Fast Fourier Transform for the Estimation of Power Spectra:A Method Based on Time Averaging Over Short, Modified Periodograms.
    Whittle, A. J., Germaine, J. T., Cauble, D.F.,1998. Behavior of miniature suction caissons in clay [C]. Offshore Site Investigation and Foundation Behavior'98. London, pp.279-300.
    Wu, C.S., Hong, Y.S., Yan, Y.W., Chang, B.S.,2006. Soil-nonwoven geotextile filtration behavior under contact with drainage materials [J]. Geotextiles and Geomembranes 24, 1-10.
    Wu J. S., Hsu S. H.,2006.A unified approach for the free vibration analysis of an elastically supported immersed uniform beam carrying am eccentric tip mass with rotary inertia [J]. Journal of Sound and Vibration. Vol.291, pp.1122-1147.
    Yang, S. L., Grande, L.O., Qi, J. F., Feng, X. L.,2003. Excessive Soil Plug and Anti-failure Mechanism of Bucket Foundation During Penetration by Suction [C]. Proceedings of the 13th International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA, May 25-30, pp.659-664.
    Youd, T. L.,1972.Compaction of sands by repeated shear straining [J]. Journal of Soil Mechanics and Founation Engineering Division, ASCE,98(7),709-725.
    Zaaijer M. B.,2002.Foundation models for the dynamic response of offshore wind turbines [C]. Marine Renewable Energy Conference (MAREC), Newcastle, UK, September,2002.
    Zaaijer M. B.,2006. Foundation modeling to assess dynamic behavior of offshore wind turbines [J]. Applied Ocean Research.Vol.28, pp.45-57.
    Zhang P. Y, Ding H. Y, et al. Seismic response of large-scale prestressed concrete bucket foundation for offshore wind turbines [J]. Journal of Renewable and Sustainable Energy, 2014.
    段郧峰,冉红玉,李凤丽.海上风电场风机基础选型设计[J].水利与建筑工程学报,2010,8(1):129-131.
    戴国亮,龚维明,沈景宁,杨超,2013.东海大桥海上风电场基础波浪理论分析[J].岩土工程学报,Vol.35, Supp.1,456-461.
    丁红岩,刘振勇,陈星.吸力锚土塞在粉质粘土中形成的模型试验研究[J].岩土工程学报,2001,23(4):441-444.
    代恒军.软土中吸力锚承载力分析[D].硕士学位论文,杭州:浙江大学,2008.
    国家能源局.可再生能源发展“十二五”规划[S].北京,2012.
    国振,王立忠,袁峰.粘土中吸力锚沉贯阻力与土塞形成试验研究[J].海洋工程,2011,29(1):9-19.
    国振.吸力锚锚泊系统安装与服役性状研究[D].博士学位论文,杭州:浙江大学,2011.
    郭玉树,Achmus Martin,等.用循环三轴试验分析海上风力发电机单桩基础侧向位移[J].岩土力学,2009,30(7):1729-1734.
    葛川,何炎平,叶宇,杜鹏飞.海上风电场的发展、构成和基础形式[J].中国海洋平台,2008,23(6):32-35.
    黄茂松,李帅,张陈蓉.海上风电桩基础竖向承载力的循环弱化特性[C].第十一届土力学及岩土工程学术会议,2011,07-15.
    黄维平,刘建军,赵战华.海上风电基础结构研究现状及发展趋势[J].海洋工程,2009,27(2):130-134.
    贺瑞.海底基础动力特性研究[D].博士学位论文,杭州:浙江大学,2014.
    李大勇,宋言江,高玉峰,等.饱和中粗砂中吸力锚的负压沉贯模式试验[J].岩土工程学报,2010,32(5):1-9.
    李大勇,王梅,刘小丽.离岸裙式吸力基础在砂土地基中沉贯性研究[J].海洋工程,2011,25(1):111-115.
    李驰,王建华,刘振纹.软土地基单桶基础循环承载力研究[J].岩土工程学报,2005,27(9):1040-1044.
    刘鲲,赵春风,王建华,王学知.软土地基桶形基础循环累积变形研究[J].岩土力学,2009,30(7):2037-2042.
    林毅峰,李健英,沈达等.东海大桥海上风电场风机地基基础特性及设计[J].上海电力,2007,No.2:153-157.
    栾茂田,武科,范庆来,等.符合加载下桶形基础循环承载性能数值分析[J].海洋工程,2007,25(3): 88-94.
    鲁晓兵,郑哲敏,张金来.海洋平台吸力式基础的研究与进展[J].力学进展,2003,33(1):27-40.
    梦殉,侯金林,于春洁,黄维平等.海上风力发电单立柱支撑结构拟静力分析[J].中国海洋大学学报,2010,40(2):89-94.
    齐剑峰,冯秀丽,林霖,等.桶形基础及其作用下的粉质土海床失稳机制研究的试验设计.[J].青岛海洋大学学报,2002,32(6):949-955.
    任贵永,许涛,孟昭瑛,等.海上平台桶基负压沉贯阻力与土体稳定性数值计算研究[J].海岸工程,1999,18(1):1-6.
    史文清,王建华,陈锦剑.考虑桩土接触面特性的水平受荷单桩数值分析[J].上海交通大学学报,2006,40(8):1457-1460.
    尚景宏,罗锐,张亮.海上风电基础结构选型与施工工艺[J].应用科技,2009,36(9):6-10.
    施晓春,徐日庆,龚晓南,等.桶形基础发展概况[J].土木工程学报,2000,33(4):68-73.
    水利水电规划设计总院.《风力发电机组塔架地基基础设计技术规定(试行)》(FD003-2007),2007.
    王庚荪,孔令伟,杨家岭,孙东昌,王泉.单桶负压下沉过程中土体与桶形基础的相互作用[J].岩土力学,2003,24(6):877-881.
    王建华,陈锦剑,柯学.水平荷载下大直径嵌岩桩的承载力特性研究[J].岩土工程学报,2007,29(8):1194-1198.
    武科.滩海吸力式桶形基础承载力特性研究[D].博士学位论文,大连:大连理工大学,2007.
    吴佳梁,李成锋.海上风力发电技术[M]北京:化学工业出版社,2010.
    吴志良,王风武.海上风电场风机基础型式及计算方法[J].水运工程,2008,No.10:249-258.
    刑作霞,陈雷,姚兴佳.海上风力发电机组基础的选择[J].能源工程,2005,No.6:34-37.
    杨少丽,李安龙,齐剑锋.桶基负压沉贯过程模型试验研究[J].岩土工程学报,2003a,25(2):236-238.
    杨少丽,Grande L.,齐剑锋,李安龙.桶基负压沉贯下粉土中水力梯度的变化过程[J].岩土工程学报,2003b,25(6):662-665.
    杨骁,徐小辉.部分水下弹性支撑等截面梁柱的自由振动分析[J].工程力学,2006,26(7):60-65.
    姚兴佳,隋红霞,刘颖明,王晓东.海上风电技术的发展与现状[J].上海电力,2007,No.2:111-118.
    杨锋,刑占清,符平,曾迪.近海风机基础结构型式研究[J].水利水电技术,2009,No.9:35-38.
    叶宇,何炎平,葛川,杜鹏飞.海上风电机组构成、安装方式及典型安装船型[J].中国海洋平台,2008,23(5):39-44.
    闫澍旺,霍知亮,孙立强,刘润.海上风电机组筒型基础工作及承载特性研究[J].岩土力学,2013,34(7):2036-2042.
    尤汉强,杨敏.循环荷载下海洋风机单桩基础简化分析模型[J].岩土工程学报,2010,32(2):13-16.
    张建红,林小静,鲁晓兵.水平荷载作用下张力腿平台吸力式基础的物理模拟[J].岩土工程学报,2007,29(1):77-81.
    周健,张刚,曾庆友.主动侧向受荷桩模型试验与颗粒流数值模拟研究[J].岩土工程学报,2007,29(5):650-656.
    赵明华,刘敦平,邹新军.横向荷载下桩-土相互作用的无网格分析[J].岩土力学,2008,29(9):2476-2480.
    章子华,刘国华,王振宇,吴志根.抗强风的索塔型风机可行性研究[J].东南大学学报(自然科学版),2009,39(增刊2):179-185.
    张永利,周勇,李杰.东海大桥海上风电场基础设计与分析[J].四川建筑科学研究,2010,36(5):188-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700