用户名: 密码: 验证码:
内蒙贺斯格乌拉南部矿区疏干水水量预测及环境评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古贺斯格乌拉煤田是新探明的大型煤田之一,生产的煤大部分就地转化,用作矿区规划的化工项目及当地电厂的原料或者民用煤。该地区水资源极其紧缺,随着矿区的煤炭资源开采规模的扩大,大量疏干水排向地表而未得到充分地利用,这样既导致了区域地下水位下降,引起水环境恶化,同时对周边生态环境造成破坏,又是对水资源的极大浪费。
     本文在充分利用前人资料的基础上,分析了研究区的地层、构造的分布特征,确定矿区含水层的岩性、厚度、富水性与水力联系,地下水的补、径、排关系以及地下水的化学成分与形成作用。
     根据所掌握的矿区地质、水文地质条件,确定出贺斯格乌拉南部露天矿区的计算范围,建立水文地质概念模型,分为第四系孔隙潜水含水层模型和白垩系承压水含水层模型,在概念模型的基础上建立相应的数学模型,并对整个区域进行三角网格剖分,运用不规则网格有限差分的方法进行数值模拟,得出贺斯格乌拉南部矿区的疏干水量,同时对不同疏干方案进行地下水疏干水位预测。
     应用前期疏干排水资料数据对模型进行识别,在识别过程中,观测孔水位的模拟值和实测值拟合较好,进行参数分区。第四系孔隙潜水含水层参数分为4个区,参数分布规律总的趋势是勘探区东部参数大于西部的参数;白垩系裂隙承压水含水层参数也分为4个区,参数分布总的趋势是中部较大,向外围变小。
     通过数值模拟得出:(1)第四系孔隙潜水含水层数值模拟期总补给量为4478.2m~3/d,总排泄量为6778.4m~3/d;(2)白垩系裂隙承压水含水层数值模拟期总补给量为1562.0m~3/d,总排泄量为34206.8m~3/d。实际资料表明白垩系裂隙承压水含水层经过1年的疏干排水,矿区范围内水位降深达22~34m,漏斗中心降深达40m。
     贺斯格乌拉南部矿区的第四系孔隙潜水含水层厚度小,易疏干,因此地下水疏干水位的预测主要是针对白垩系裂隙承压水含水层进行,分4种方案:(1)现状疏干排水条件下;(2)现状疏干排水量减少条件下;(3)二期开采条件下;(4)三期开采条件下,进行预测。总的趋势是疏干时间愈长、疏干水量愈大,水位降深就愈大。
     煤炭资源开采以后,会引发一系列的生态环境地质问题,为了推动矿山开采与环境保护的协调发展,针对矿区的水、大气、生态和固体废弃物环境进行了评价分析,并提出了相应的改进措施。
Hesigewula coalfield of Inner Mongolia is one of the newly-found large-size coalfields. The coal produced is largely converted in-place, and it is used as material in chemical projects of the coal mine planning, local power plants and civil coal. The coal mine area is extremely short of water resources. A large quantity of dewatering of deposit is discharged to surface and has been underutilized along with the expansion of exploitation scale of the coal resources. It has led to both groundwater level recession, water environmental deterioration, damage to ecological environment and the serious waste of water resources.
     Based on the previous research productions which should be made considerable use of, the paper analyzes the distribution characteristics of strata and geological structures in research region. Then we can determine lithologic property, thickness, water abundance and contact with water of aquifer; the relationship among groundwater recharge, run-off and discharge as well as the chemical constituents and formation action of groundwater.
     According to the data of geology as well as hydrogeology condition, we determine the calculation limits of surface coal mine in the south of Hesigewula and establish the conceptual model of hydrogeology, which is divided into the Quaternary pore phreatic aquifer model and the Cretaceous confined fracture aquifer model. And the corresponding mathematics model is established on the basis of the conceptual model. We use the triangular-subdivision to subdivide the whole area. Therefore, the quantity of dewatering of deposit is numerically simulated by using the irregular-grid finite difference method, and the groundwater level is forecast under different drainage programs.
     The data of prior period drainage are used to recognize the model. In the process of recognition, the simulated value and measured value of the observed water table level are matched well, so we make a subdivision of the parameters. The parameters of both the Quaternary pore phreatic aquifer and the Cretaceous confined fracture aquifer are divided into 4 zones independently. In the former, the general trend of distribution rule of the parameters is that the value of the eastern of the exploration area is higheT than that of the west. While the latter, the general tendency of distribution rule of the parameters is that the value of middle of the exploration area is higher and it decreases to the outer.
     Through the numerical simulations, the total recharge of the Quaternary pore phreatic aquifer is 4478.2m~3/d , the total discharge 6778.4m~3/d and the total recharge of the Cretaceous confined fracture aquifer is 1562.0m~3/d , the total discharge 34206.8m~3/d . The practical data show that the water level drawdown of the Cretaceous confined fracture aquifer is 22~34m after one year drainage and the core of depression drawdown is 40m .
     As the thickness of the Quaternary pore phreatic aquifer of the coal mine is very thin, it is apt to be dewatered. We make a prediction on the groundwater drainage level on the basis of the Cretaceous confined fracture aquifer. Four schemes are taken as follows: (1) the condition of current drainage; (2) the condition of current drainage reduced; (3) the exploration condition during the second period; (4) the exploration condition during the third period. The general trend is that the longer the dewatering time, the more dewatering of deposit capacity and the lowering of the water level.
     It can cause a series of the ecological environmental geological problems after exploiting the coal resources. In order to promote mining exploitation and environmental conservation under coordinative development, the factors such as ecological environment, water environment, atmospheric environment and solid waste environment are evaluated and analyzed. Besides, a number of improvement measures are given in the paper.
引文
[1]邵爱军,张发旺,邵太升,等.煤矿地下水[M].北京:地质出版社,2005,10
    [2]刘志军,胡耀青.带压开采底板破坏规律的三维数值模拟研究[J].太原理工大学学报,2004,7(4):400-402
    [3]矿井水净化及资源化成套技术与装备开发可行性报告[R].上海大屯能源股份有限公司,2000,9
    [4]王学杰.马路坪矿段深部开采涌水量预洲及防治研究[D].中南大学硕士学位论文,2004,5
    [5]周彦章.山东夏甸金矿床矿井涌水机理构造控制模式研究[D].吉林大学硕士学位论文,2007,6
    [6]叶艳妹.矿坑涌水量预测研究现状[J].地质科技管理,1991(3):-61-64.34
    [7]郑世书,胡友彪,等.专门水文地质学[M].徐州:中国矿业大学出版社,1999
    [8]J.Boonstra,N.A.de Ridder.Numerical modeling of groundwater basins[M].ILRI Wageningen,The Netherlands
    [9]尹尚先.露天矿田疏干的边界元法模拟与管理[D].西安:煤炭科学研究总院西安分院,1988
    [10]武强,金玉洁.华北型煤田矿井防治水决策系统[M].北京:煤炭工业出版社,1995
    [11]武强.评价煤层顶板涌(突)水条件的“三图-双预测法”[J].煤炭学报,2000,25(1):60-65
    [12]田开铭,陈铭佑.裂隙水偏流[M].北京:学苑出版社,1989
    [13]田开铭,万力.各向异性裂隙介质渗透性的研究与评价[M].北京:学苑出版社,1989
    [14]Bear J.Groundwater Hydraulics[M].New York:McGraw-Hill Inc.,1983
    [15]Snow D T.Rock fracture specings,openings,and porosities[J].J.Soil Mech.Found.Div.Proc.ASCE94,1968:73-79
    [16]Louis C.Groundwater flow in rock masses and its influence on stability[J].Rock Mech.Res.Report 10.Imperial college.UK,1969
    [17]Long J C S et al.Porous media equivalents for networks of discontinuous fractures[J].Water Resources Research,1982,18(3)
    [18]Barenblatt et al.Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J].J.Appl.Math.Mech,Egl.Transl,1960(5)
    [19]Biot M A.General theory of three-dimensional consolidation[J].J.Appl.Phys.,1941,12:155-164
    [20]Biot M A.The theory of elasticity and consolidation for a porous anisotropic solid[J].J.Appl.Phys.,1954.1385-1391
    [21]Hoyakorn P S et al.Finite element techniques for modeling ground water flow in fractured aquifers[J].Water Resources Reseach,1983,19(5)
    [22]Tsang Y W,Tsang C F.Channel model offlow through fractured media[J].Water Resources Research,1987,3(23)
    [23]Witherspoon P A etal.New approaches to problems of fluid flow in fractured rock mass[J].Proc.U.S.Symp.Rock Mech.22nd,1981
    [24]Keith J Halford,Dann Yobbi.Estimating Hydraulic Properties using a Moving-Model.Approach and Multiple Aquifer Tests[J].Ground Water,2006,44(2):284-291
    [25]Singer P C,Stumm W.Acidic mine drainage:The rate-determining step[J].Science,1970,167:1121-1123
    [26]Wang,M,Li,J.Technology of mine water control in China[J].Int J Mine Water,1987,6(3):25-38
    [27]Bill Koffs.Mining Fresh Water for Aquaculture Appalachia[J].Journal of the American Water Works Association,2000,95(8):235-237
    [28]Robert Kleinmann.Mine Water and the Environment[J].Journal of the International Mine Water Association(IMWA),2000,94(12):23-25
    [29]A.M.Ebraheem,S.Riad,P.Wycisk,A.M.Sefelnasr.A local-scale groundwater flow model for groundwater resources management in Dakhla Oasis,SW Egypt[J].Hydrogeology Journal,2004,(12):71-722
    [30]Mark S.Nemethl,Helena M.Solo-Gabriele Evaluation of the use of reach transmissivity to quantify exchange between groundwater and surface water[J].Journal of Hydronautics,2002,(5):201-208
    [31]Renard,Philippe.Approximate discharge for constant head test with recharging boundary[J].Ground Water,2005,v43(n3):439-442
    [32]Meiri,David.Unconfined groundwater flow calculation into a tunnel[J].Journal of Hydronautics,1985,v82(n 1-2):69-75
    [33]谢洪毅.弱渗透裂隙介质深埋长隧洞水文地质模型及其涌水量预测研究[D].河海大学硕士学位论文,2006,9
    [34]傅莉,周念清,江思珉.三门峡铝土矿地下水疏排数值模拟[J].勘察科学技术,2008(5):46-49
    [35]毛邦燕.复杂岩溶介质矿井涌水量的三维数值模拟研究[D].成都理工大学硕士学位论文,2005,5
    [36]郭文雅.石人沟铁矿露天转地下开采地下涌水预测研究[D].河北理工大学硕士学位论文,2005,3
    [37]魏军.矿井涌水量的数值模拟研究[D].辽宁工程技术大学硕士学位论文,2006,12
    [38]胡宏清.喀斯特煤矿山矿井突水预测及水害防治研究——以贵州黔西新红林煤矿为例[D].贵州大学硕士研究生学位论文,2007,6
    [39]李保珠.会泽铅锌矿区水文地质条件及麒麟厂深部矿坑涌水量预测[D].昆明理工大学研究生学位论文,2001,3
    [40]刘娟,杨国勇,孟茜.新驿煤矿矿井涌水量预测[J].山东煤炭科技,2008(1):74-76
    [41]于峰.区域地下水数值模拟[D].山东大学硕士学位论文,2005,5
    [42]北京华宇工程有限公司.内蒙古自治区贺斯格乌拉煤田矿区总体规划环境影响报告书简本 [R].2008,4
    [43]房佩贤,卫中鼎,廖资生主编.专门水文地质学[M].北京:地质出版社,1996,11
    [44]薛禹群主编.地下水动力学[M].北京:地质出版社,2003,7
    [45]邵爱军.内蒙贺斯格乌拉南部矿区水文地质报告[R].2007
    [46]邵爱军,刘唐生,邵太升.煤矿地下水与底板突水[M].北京:地震出版社,2001,6
    [47]张蔚榛主编.地下水与土壤水动力学[M].北京:中国水利水电出版社,1996
    [48]王大纯,张人权,史毅虹等编著.水文地质学基础[M].北京:地质出版社,1998,8
    [49]葛亮涛,叶贵钧.中国煤田水文地质学[M].北京:煤炭工业出版社,2001
    [50]杜绍敏,姜英俊,王国春.抽水试验中的参数计算问题[J].黑龙江水专学报,1994(4):15-22
    [51]石中平.单孔稳定抽水试验水位恢复资料确定含水层参数[J].西安工程学院学报,2000,22(2):73-74
    [52]陈小烽.抽水试验中常遇问题的分析[J].探矿工程(岩土钻掘工程),2001(5):43-51
    [53]郭建青,李彦,王洪胜等.分析供水边界含水层抽水试验数据的新方法[J].水利学报,2006,37(7):808-811
    [54]朱春龙.非稳定流抽水试验参数计算的优化算法[J].水利学进展,1999,10(1):76-78
    [55]周志芳,汤瑞凉,汪斌.基于抽水试验资料确定含水层水文地质参数[J].河海大学学报,1999,27(3):5-8
    [56]于传宁,宗先国,张利红等.利用抽水试验资料确定水文地质参数[J].地下水,2006,28(1):44-50
    [57]白连生.利用抽水试验资料确定水文地质参数K[J].地下水,2001,23(1):90-92
    [58]刘忠贤,秦毅,赵尔慧.利用单井抽水试验确定含水层系数[J].地下水,1995,17(2):57-61
    [59]滕凯,陈贺,汪涛.利用单孔两次稳定流抽水试验资料确定水文地质参数[J].地下水,1995,17(2):59-61
    [60]孙雪峰,齐学斌.利用非稳定流抽水试验资料确定含水层参数的两种有效方法[J].地下水,1996,18(3):108-110
    [61]滕凯,刘敬莲,周玉清.利用非稳定流抽水试验资料确定水文地质参数的解析法[J].地下水,1994,16(2):47-54
    [62]刘振宇.利用群孔抽水试验水位恢复资料计算水文地质参数的新方法[J].内蒙古煤炭经济,2002(2):80-82
    [63]滕凯,胡秀华.利用水位恢复期的降深比值求解水文地质参数的解析法[J].工程勘察,1996(4):34-42
    [64]徐高强.山西省煤矿区矿井水涌水量预测模型研究[D].太原理工大学硕士学位论文,2008,10
    [65]吴志刚.浅谈数学模型在矿山水文地质中的应用[J].化工矿物与加工,2004(2):33-34
    [66]杨兰合.水文地质模型的研究[J].山东矿业学院学报,1995,14(2):133-139
    [67]黄卓广,黄钟焕,黄梅新.比拟法在矿区矿坑涌水量预测应用实例[J].西部探矿工程,2006(3):93-94
    [68]魏林宏,束龙仓,郝振纯.地下水流数值模拟的研究现状和发展趋势[J].重庆大学学报(自然科学版),2000(10):50-52
    [69]秦雅飞.吉林西部地下水模拟预报及生态效应探讨[D].吉林大学硕士学位论文,2008,10
    [70]杨丽,阮清波.灌区地下水开采条件下数值模拟分析[J].广西水利水电,2006(4):5-10
    [71]卢文喜.地下水运动数值模拟过程中边界条件问题探讨[J].水利学报,2003(3):33-36
    [72]武强,薛东,连会青.矿山环境评价方法综述[J].水文地质工程地质,2005(3):84-88
    [73]国家环境保护总局监督管理司编.中国环境影响评价培训教材[M].北京:化学工业出版社,2000
    [74]鞠美婷,张裕芬,李洪远等.能源规划环境影响评价[M].北京:化学工业出版社,2006,1
    [75]徐玉宏.我国环境影响评价现状监测中存在的问题[J].环境与可持续发展,2009(2):41-43
    [76]童志权主编.大气污染控制工程[M].北京:机械工业出版社,2006,9
    [77]熊振湖.大气污染防治技术及工程应用[M].北京:机械工业出版社,2003,7
    [78]吴忠标主编.实用环境工程手册——大气污染控制工程[M].北京:化学工业出版社,2001,9
    [79]汪宝华.最新中华人民共和国固体废弃物污染环境防治法实施手册[M].北京:中国环境保护出版社,2005,3
    [80]钱易,唐孝炎.环境保护与可持续发展——面向21世纪课程教材[M].北京:高等教育出版社,2004,4
    [81]王雪峰.矿山环境保护与治理措施分析[J].管理观察,2009(2):172-173
    [82]奚旦立,孙裕生,刘秀英.环境监测[M].北京:高等教育出版社,2004,12
    [83]张立钦,吴甘霖.农业生态环境污染防治与生物修复[M].北京:中国环境科学出版社,2005
    [84]申力.抚顺西露天矿北帮地质环境综合治理工程实践[J].露天采矿技术,2008(6):18-23
    [85]周怀东,彭文启等编著.水污染与水环境修复——现代水资源环境[M].北京:化学工业出版社,2005,5
    [86]钱家忠.中国北方型裂隙岩溶水模拟及水环境质量[M].安徽:合肥工业大学出版社,2003,1
    [87]于宗保主编.环境保护基础[M].北京:化学工业出版社,2003,8
    [88]郑振欣.石灰石矿开采对环境影响的评估及其防治措施[J].化学工程与装备,2008(11):133-135
    [89]管恩太,武强.矿井涌水量预测评述[J].中州煤炭,2005(1):7-8
    [90]高晓,李坷凌,陈蕾.小型煤矿矿井涌水量预测方法探讨[J].地下水,2009(1):28-32
    [91]肖广惠.计算矿坑涌水量需考虑的有关影响因素探讨[J].四川建材,2008(6):286-287
    [92]郭文雅,温继满.谈矿井涌水量预测方法的发展[J].黑龙江科技信息,2008(25):22
    [93]马志永,黄志强.河南省罗村钼矿床水文地质特征及涌水量预测[J].华北国土资源,2008(2):47-49
    [94]邵军战,周士荣.罗园井田水文地质特征及矿井涌水量预测[J].中国煤炭地质,2008(5):32-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700