用户名: 密码: 验证码:
长江三角洲扬泰靖地区地下水同位素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扬(州)泰(州)靖(江)地区位于长江三角洲的长江北岸,包括扬州和泰州的南部及如皋地区,区内第四系赋存丰富的孔隙地下水。由于以往对研究区地下水的补径排条件、地下水成因等研究的不足,致使难以合理开发利用及有效管理其地下水资源,地下水长期过量开采、水位大幅度持续下降,极易造成浅层地下水对深层地下水的越流补给与污染。同时,扬泰靖地区作为整个长江三角洲的顶部地区,属于地下水系统的补给区及始径流区,其地下水的污染势必会对整个长江三角洲地区地下水产生威胁。因此,本文依据地下水中的同位素和水化学组分具有丰富水循环信息的特性,采用同位素水文学及水文地球化学等方法对地下水进行综合分析。
     通过对氘氧氚同位素以及水化学特征研究表明潜水接受大气降水与长江水的共同补给,与地表水水力联系密切;而承压水则主要接受古水的补给,与长江水及潜水的水力联系较差。潜水与大气降水具有相近的氢氧同位素均值(潜水:-45.5‰、-7.43‰;大气降水:-44.83‰、-7.36‰),与长江水的氢氧同位素值具有很好的相关性(R2=0.93)。在沿江地段,由于受到了长江水的侧向补给与稀释作用,潜水中60mg/L的Cl-等值线与长江岸线近似平行。地表水与潜水之间离子浓度共振现象明显,水化学类型一致,主要为HCO3-Ca型。承压水与潜水的同位素特征和水化学特征则存在一定差异。各层位承压水的水化学类型呈现逐步演化的特点,由Ⅰ承压水的HCO3-Ca型渐变至Ⅱ承压水的HCO3-Ca-Na型及Ⅲ承压水的HCO3-Na型。
     结合水化学数据,对硫同位素分析表明地表水与潜水遭受了一定程度的污染,硫同位素值约为10‰;而承压水则基本未受污染,硫同位素值的大小与不同地段的水文地质条件密切相关。在研究区顶部及沿江地段,承压含水层径流条件好、封闭性差并处于氧化环境,承压水中的硫酸盐主要来源于硫化物的氧化,硫同位素值为负值;在中部地区,承压含水层径流条件差、封闭性好、处于还原环境,硫同位素值均大于20‰,而且由于经受了硫酸盐的还原作用,硫同位素值最高可达70‰之多。承压水中硫酸盐浓度与硫同位素值之间呈现正相关的特点,表明中部地区的硫酸盐主要来源于沿程径流补给和滞留海源硫酸盐的补给。
     利用碳-14进行年龄计算并结合水化学剖面分析显示承压水整体的流向自西往东,伴随着明显的离子交换作用。沿程往东水动力情况变缓,Na+、Cl-易溶成分增加而Ca2+、Mg2+、HCO3-等难溶成分减少,年龄逐渐增大。在研究区顶部及沿江地段Ⅰ、Ⅱ承压水年龄小于5000年,在研究区中东部Ⅲ承压水年龄达到20000多年。
Yangzhou-Taizhou-Jingjiang area, located in the northern part of the Yangtze River Delta, includes the southern part of Yangzhou and Taizhou region and Rugao region, with abundant pore water in the Quaternary deposits. Since the previous studies on the conditions of recharge, runoff and discharge and the origin of groundwater were insufficient, it is difficult to rationally exploit and effectively manage groundwater resource, and has resulted in long-term over-exploitation of groundwater and continuous drop of water table, which would easily cause leakage recharge and contamination from shallow groundwater to deep groundwater system. Meanwhile, as the top section of the Yangtze River Delta, Yangzhou-Taizhou-Jingjiang area belongs to the recharge area and the initial runoff area of groundwater system. Therefore, contamination of groundwater will inevitably threaten groundwater quality of the entire Yangtze River Delta. According to the isotopic and hydrochemical components in groundwater with rich information on water cycle, it had been analyzed comprehensively with methods of isotope hydrology and hydrogeochemistry in this paper.
     Through analyzing the characteristics of D, 18O, T and hydrochemical components, the results indicate that in Yangzhou-Taizhou-Jingjiang area phreatic water receives recharge both from local precipitation and Yangtze River water, and has close hydraulic connection with surface water; confined water is mainly recharged from ancient water, and has poor hydraulic connection with phreatic water and Yangtze River water. The average values of D and 18O in phreatic water (-45.5‰,-7.43‰) are similar with that of precipitation (-44.83‰,-7.36‰), and has good correlation with that of Yangtze River water (R2=0.93). In the section along the Yangtze River, phreatic water has been laterally recharged and diluted, and the contour line of Cl-concentration (60mg/L) is almost parallel to the coastline of the Yangtze River. The hydrochemical types of surface water and phreatic water is similar, mainly HCO3-Ca water, with significant resonance in concentrations between them. The isotopic and hydrochemical characteristics of confined water are different with phreatic water, and the hydrochemical types gradually change from HCO3-Ca water in the 1st confined aquifer to HCO3-Ca·Na water in the 2nd confined aquifer and to HCO3-Na water in the 3rd confined aquifer.
     According to the study of sulfur isotope and hydrochemistry, it shows that Surface water and phreatic water are subjected to a certain degree of contamination, withδ34S values about 10‰, and confined water is basically not contaminated, withδ34S values closely related to the hydrogeological conditions in different sections of the studied area. In shallow confined water along the Yangtze River and at the top of the study area, sulfates with negativeδ34S values originate from oxidation of sulfides, which is related to the sand-dominated lithologic character, good runoff condition, poor sealing property and aerobic environment. In deep confined water of the central section, sulfates withδ34S values more than 20‰are related to the clay-dominated lithologic character, poor runoff condition, good sealing property and anaerobic environment. And due to reduction of sulfates, someδ34S values is up to 70‰. The positive correlation between sulfate concentrations andδ34S values proves that sulfates in the central section recharge from runoff and detained marine sulfate.
     By means of calculating 14C age of groundwater and hydrochemical profile analysis, it illustrates that the overall flow direction of the confined water is from west to east with hydrodynamic situation gradually slowing, contents of soluble components, such as Na+ and Cl-, increasing, contents of insoluble components, such as Ca2+, Mg2+ and HCO3-, decreasing, and groundwater age increasing. Ion exchange occurred significantly in the process of groundwater runoff. Along the Yangtze River and at the top of the study area, age of the 1st and 2nd confined water was less than 5000 years, and gradually increased to 20,000 years of the 3rd confined water in the eastern part of the study area.
引文
[1]江苏省统计局,国家统计局江苏调查总队.江苏统计年鉴2008[M].北京:中国统计出版社,2008.
    [2]李从先,李萍,成鑫荣.海洋因素对镇江以下长江河段沉积的影响[J].地理学报,1983,38(2):128-140.
    [3]汪珊,孙继朝,李政红.长江三角洲地区地下水环境质量评价[J].水文地质工程地质,2005(06):30-33+37.
    [4]仇晓燕,章林,张小平.扬州市地下水开采与地质环境影响分析.[J].江苏国土资源,2003(008):21-22.
    [5]黄晓燕,王彩会,刘晓玲,等.江苏泰州市第Ⅳ承压水可采资源量的确定[J].江苏地质,2007,31(004):335-337.
    [6]缪卫东,朱锦旗,沈鲁勤.扬州市城区地面沉降现状与防治对策[J].灾害学,2006,21(003):58-63.
    [7]薛小平.泰州市地面沉降问题的探讨[J].现代测绘,2006,29(002):26-27.
    [8]刘波,长江三角洲地区区城市水资源承裁力量化研究2006,华东师范大学:上海.p.71.
    [9]张永勤,缪启龙.长江三角洲地区水资源供需平衡的估算模型研究[J].水文,2002,22(002):6-9.
    [10]姜月华,贾军元,许乃政,等.苏锡常地区地下水同位素组成特征及其意义[J].中国科学(D辑:地球科学),2008,38(04):493-500.
    [11]陆徐荣,朱锦旗,王彩会,等.同位素技术释解苏锡常地区浅层地下水水循环机制[J].水文地质工程地质,20.06(04):52-55.
    [12]哈承佑,赵继昌.南通地区地下水系统[J].水文地质工程地质,1990(004):8-11.
    [13]Mook W, Rozanski K. Environmental isotopes in the hydrological cycle [J]. IAEA Publish,2000.
    [14]Clark I D, Fritz P. Environmental Isotopes in Hydrogeology:CRC Press,1997.
    [15]Ambach W, Dansgaard W, Eisner H, et al. The altitude effect on the isotopic composition of precipitation and glacier ice in the Alps [J]. Tellus,1968,20(4):595-600.
    [16]Payne B. Water balance of Lake Chala and its relation to groundwater from tritium and stable isotope data [J]. J. Hydrol,1970,11:47-58.
    [17]Jenkins W J, Clarke W B. The distribution of 3He in the western Atlantic Ocean [J]. Deep-Sea Res, 1976,23(6):481-494.
    [18]Doney S C, Glover D M,Jenkins W J. A model function of the global bomb tritium distribution in precipitation,1960-1986 [J]. Journal of Geophysical Research (ISSN,1992,97(C4):5481-5492.
    [19]Hoehn E, Santschi P H. Interpretation of Tracer Displacement During Infiltration of River Water to Groundwater [J]. Water Resources Research WRERAQ,1987,23(4):633-640.
    [20]Rozanski K, Araguas-Araguas L,Gonfiantini R. Isotopic patterns in modern global precipitation [J]. Climate Change in Continental Isotopic Records. Amer. Geophys. Union Geophys. Mono,1993., 78:1-36.
    [21]Merlivat L, Jouzel J. Global climatic interpretation of the deuterium-oxygen-18 relationship for precipitation [J]. Journal of Geophysical Research,1979,84(C8):5029-5033.
    [22]Jouzel J, Merlivat L. Deuterium and oxygen-18 in precipitation:Modeling of the isotopic effects during snow formation [J]. Journal of Geophysical Research,1984,89(D7).
    [23]Vandenschrick G, van Wesemael B, Frot E, et al. Using stable isotope analysis (δD-δ18O) to characterise the regional hydrology of the Sierra de Gador, south east Spain [J]. Journal of Hydrology,2002,265(1-4):43-55.
    [24]Kebede S, Travi Y, Alemayehu T, et al. Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia [J]. Applied Geochemistry,2005, 20(9):1658-1676.
    [25]Peng T R, Wang C H, Lai T C, et al. Using hydrogen, oxygen, and tritium isotopes to identify the hydrological factors contributing to landslides in a mountainous area, central Taiwan [J]. Environmental Geology,2007,52(8):1617-1629.
    [26]顾慰祖.集水区降雨径流响应的环境同位素实验研究[J].水科学进展,1992(04):246-254.
    [27]Pearce A J, Stewart M K,Sklash M G. Storm runoff generation in humid headwater catchments:1. Where does the water come from [J]. Water Resour. Res,1986,22(8):1263-1271.
    [28]Bazemore D E, Eshleman K N,Hollenbeck K J. The role of soil water in stormflow generation in a forested headwater catchment:Synthesis of natural tracer and hydrometric evidence [J]. Journal of Hydrology(Amsterdam),1994,162(1):47-75.
    [29]Brown V A, McDonnell J J, Burns D A, et al. The role of event water, a rapid shallow flow component, and catchment size in summer stormflow [J]. J Hydrol,1999,217(3):171-190.
    [30]Lee E S, Krothe N C. A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers [J]. Chemical Geology, 2001,179(1-4):129-143.
    [31]Negrel P, Petelet-Giraud E, Barbier J, et al. Surface water-groundwater interactions in an alluvial plain:chemical and isotopic systematics [J]. Journal of Hydrology,2003,277(3-4):248-267.
    [32]Marechal J C, Etcheverry D. The use of 3H and 18O tracers to characterize water inflows in Alpine tunnels [J]. Applied Geochemistry,2003,18(3):339-351.
    [33]James E R, Manga M, Rose T P, et al. The use of temperature and the isotopes of O, H, C, and noble gases to determine the pattern and spatial extent of groundwater flow [J]. Journal of Hydrology, 2000,237(1-2):100-112.
    [34]Mathieu R, Bariac T. An isotopic study (2H and 18O) of water movements in clayey soils under a semi-arid climate [J]. Water Resources Research,1996,32(4):779-789.
    [35]Boronina A, Balderer W, Renard P, et al. Study of stable isotopes in the Kouris catchment (Cyprus) for the description of the regional groundwater flow [J]. Journal of Hydrology,2005,308(1-4): 214-226.
    [36]Batsche H, Moser H,Stichler W. Measurements of deuterium and oxygen-18 contents of karst waters [J]. Geol. Jahrb., Reihe C, no.2, pp.275-288,1972,12.
    [37]Stellato L, Petrella E, Terrasi F, et al. Some limitations in using 222Rn to assess river-groundwater interactions:the case of Castel di Sangro alluvial plain (central Italy) [J]. Hydrogeology Journal, 2008,16(4):701-712.
    [38]Torssander P, Mo"rth C-M,Kumpulainen R. Chemistry and sulfur isotope investigation of industrial wastewater contamination into groundwater aquifers, Pitea County, N. Sweden [J]. Journal of Geochemical Exploration,2006,88(1-3):64-67.
    [39]刘存富.一种应用氧同位素确定地下水在含水层中的停留时间的新方法[J].地质科技情报,1984(04):147-150.
    [40]Kamensky I L.3H-3He dating:A case for mixing of young and old groundwaters [J]. Geochimica et Cosmochimica Acta GCACAK,1991,55(10).
    [41]王恒纯.同位素水文地质概论[M].北京:地质出版社,1991.
    [42]Geyh M A. Basic Studiesin Hydrology and C-14 and H-3 Measurements [J].1972.
    [43]Verhagen B T, Mazor E,Sellschop J P F. Radiocarbon and tritium evidence for direct rain recharge to ground waters in the northern Kalahari [J]. Nature,1974,249(5458):643-644.
    [44]Cresswell R G, Jacobson G, Wischusen J, et al. Ancient groundwaters in the Amadeus Basin, Central Australia:evidence from the radio-isotope 36Cl [J]. Journal of Hydrology,1999,223(3-4): 212-220.
    [45]Lehmann B E, Loosli H H, Rauber D, et al.81Kr and85Kr in groundwater, Milk River aquifer, Alberta, Canada [J]. Applied Geochemistry,1991,6(4):419-423.
    [46]Lehmann B E, Love A, Purtschert R, et al. A comparison of groundwater dating with 81Kr, 36Cl and 4He in four wells of the Great Artesian Basin, Australia [J]. Earth and Planetary Science Letters, 2003,211(3-4):237-250.
    [47]Andres G, Egger R. New Tritium Interface Method for Determining the Recharge Rate of Deep Groundwater in the Bavarian Molasse Basin [J]. Journal of Hydrology JHYDA 7,1985,82(1/2).
    [48]Dincer T, Al-Mugrin A,Zimmermann U. Study of the infiltration and recharge through the sand dunes in arid zones with special reference to the stable isotopes and thermonuclear tritium [J]. J. Hydrol,1974,23(1-2):71-109.
    [49]Guendouz A, Michelot J-L. Chlorine-36 dating of deep groundwater from northern Sahara [J]. Journal of Hydrology,2006,328(3-4):572-580.
    [50]张人权.国外水文地质研究中应用同位素方法的现状[J].水文地质工程地质,1981(06):55-57+41.
    [51]郑淑蕙,侯发高,倪葆龄.我国大气降水的氢氧稳定同位素研究[J].科学通报,1983(13):801-806.
    [52]于津生,虞福基,刘德平.中国东部大气降水氢,氧同位素组成[J].地球化学,1987(001):22-26.
    [53]赵家成,魏宝华,肖尚斌.湖北宜昌地区大气降水中的稳定同位素特征[J].热带地理,2009,29(6):526-531.
    [54]张琳,陈立,刘君,等..香港地区大气降水的D和180同位素研究[J].生态环境学报,2009,18(2):572-577.
    [55]吴旭东.成都地区大气降水稳定同位素组成反应的气候特征[J].四川地质学报,2009,29(1):52-54.
    [56]李晖,蒋忠诚,王月,等.新疆地区大气降水中稳定同位素的变化特征[J]_水土保持研究,2009,16(5):1 57-161.
    [57]王锐,刘文兆,宋献方.长武塬区大气降水中氢氧同位素特征分析[J].水土保持学报,2008,22(3):56-59.
    [58]黄天明,聂中青,袁利娟.西部降水氢氧稳定同位素温度及地理效应[J].干旱区资源与环境,2008,22(8):76-81.
    [59]徐庆,刘世荣,安树青,等.卧龙地区大气降水氢氧同位素特征的研究[J].林业科学研究,2006,19(6):679-686.
    [60]涂林玲,王华,冯玉梅.桂林地区大气降水的D和18O同位素的研究[J].中国岩溶,2004,23(4):304-309.
    [61]田立德,Stievenard.M,等.青藏高原南北降水中δD和δ18O关系及水汽循环[J].中国科学:D辑,2001,31(3):214-220.
    [62]王军,刘天仇.西藏雅鲁藏布江中,下游地区大气降水同位素分布特征[J].地质地球化学, 2000,28(1):63-67.
    [63]宁爱凤,刘天仇.拉萨河地区的大气降水同位素分布特征[J].矿物岩石,2000,20(3):95-99.
    [64]蔡明刚,金德秋,等.厦门大气降水的氢氧同位素研究[J]_台湾海峡,2000,19(4):446-453.
    [65]尹政,崔振卿,巴建文,等.天然环境同位素技术判定金川矿区井巷排水补给来源[J].甘肃地质,2009,18(4):56-59.
    [66]徐彦泽,田小伟,郑跃军,等.沧州小山地区地下水的补给研究[J].水文地质工程地质,2009,36(3):51-54.
    [67]丁宏伟,姚吉禄,何江海.张掖市地下水位上升区环境同位素特征及补给来源分析[J].干旱区地理,2009,32(1):1-8.
    [68]武倩倩,任加国,许模.新疆叶尔羌河流域地下水同位素特征及其补给来源分析[J].中国地质,2008,35(2):331-336.
    [69]马金珠,黄天明,丁贞玉,等.同位素指示的巴丹吉林沙漠南缘地下水补给来源[J]_地球科学进展,2007,22(9):922-930.
    [70]陈宗宇,万力,聂振龙,等.利用稳定同位素识别黑河流域地上水的补给来源[J]_水文地质工程地质,2006,33(6):9-14.
    [71]毛健全,陈阳.对贵州省温泉中氚含量及氢、氧稳定同位素组成的初步研究[J].地质地球化学,1987(01):64-65.
    [72]宋献方,李发东,于静洁,等.基于氢氧同位素与水化学的潮白河流域地下水水循环特征[J].地理研究,2007(01):11-21.
    [73]于静洁,宋献方,刘相超,等.基于δD和δ180及水化学的永定河流域地下水循环特征解析[J].自然资源学报,2007(03):415-423.
    [74]张莹,苏小四,董维红,等.六盘山岩溶水与白垩系地下水的水力联系研究[J].人民黄河,2010(1):55-56.
    [75]徐学选,张北赢,田均良.黄土丘陵区降水-土壤水-地下水转化实验研究[J].水科学进展,2010,21(1):16-22.
    [76]苏小四,万玉玉,董维红,等.马莲河河水与地下水的相互关系:水化学和同位素证据[J].吉林大学学报:地球科学版,2009,39(6):1087-1094.
    [77]宋献方,刘鑫,夏军,等.基于氢氧同位素的岔巴沟流域地表水—地下水转化关系研究[J].应用基础与工程科学学报,2009(01):8-20.
    [78]袁仁茂,马凤山,秦四清,等.山东文登抽水蓄能电站尾水洞段地下水连通性的环境同位素和水化学研究[J].第四纪研究,2008(01):26-34.
    [79]吴文业,王恩德,胡成,等.利用环境同位素技术研究沈阳浑河与地下水的水力联系[J].气象与环境学报,2007,23(3):19-22.
    [80]宋献方,刘相超,夏军,等.基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究[J1_中国科学:D辑,2007,37(1):102-110.
    [81]崔振卿,杨丽萍,赵艳娜.张掖盆地东段“三水”转化同位素特征[J]_水资源保护,2007,23(4):15-17.
    [82]王东升.氮同位素比(15N/14N)在地下水氮污染研究中的应用基础[J].地球学报:中国地质科学院院报,1997,18(2):220-223.
    [83]邢萌,刘卫国.西安浐河、灞河硝酸盐氮同位素特征及污染源示踪探讨[J]_地球学报,2008,29(6):783-789.
    [84]陈惟财,陈伟琪,张珞平,等.九龙江流域地表水中硝酸盐来源辨析[J].环境科学,2008,29(6):1484-1487.
    [85]张翠云,郭秀红.氮同位素技术的应用:土壤有机氮作为地下水硝酸盐污染源的条件分析[J]. 地球化学,2005,34(5):533-540.
    [86]金赞芳,王飞儿,陈英旭,等.城市地下水硝酸盐污染及其成因分析[J].土壤学报,2004,41(2):252-258.
    [87]张翠云,王昭,程旭学.张掖市地下水硝酸盐污染源的氮同位素研究[J].干旱区资源与环境,2004,18(01):79-85.
    [88]肖化云,刘丛强.氮同位素示踪贵州红枫湖河流季节性氮污染[J].地球与环境,2004,32(1):71-75.
    [89]毕二平,李政红,等.石家庄市地下水中氮污染分析[J].水文地质工程地质,2001,28(2):31-34.
    [90]吴登定,姜月华,贾军远,等.运用氮、氧同位素技术判别常州地区地下水氮污染源[J]_水文地质工程地质,2006,33(3):11-15.
    [91]杨琰,蔡鹤生,刘存富,等.N03-中15N和18O同位素新技术在岩溶地区地下水氮污染研究中的应用——以河南林州食管癌高发区研究为例[J].中国岩溶,2004,23(3):206-212.
    [92]周爱国,蔡鹤生,等.硝酸盐中15N和18O的测试新技术及其在地下水氮污染防治研究中的进展[J].地质科技情报,2001,20(4):94-98.
    [93]周爱国,陈银琢,等.水环境硝酸盐氮污染研究新方法—15N和180相关法[J].地球科学:中国地质大学学报,2003,28(2):219-224.
    [94]张丽芬,张树明,潘家永,等.酸雨的硫源及其硫同位素组成[J].同位素,2006,19(1):53-56.
    [95]段光武,梁永平.应用34S同位素分析阳泉市岩溶地下水硫酸盐污染[J].西部探矿工程,2006,117(01):100-103.
    [96]张鸿斌,胡霭琴,等.华南地区酸沉降的硫同位素组成及其环境意义[J].中国环境科学,2002,22(2):165-169.
    [97]朱莉娜,王瑞久,等.用环境同位素研究灰场灰水对周围地下水的影响[J].环境科学研究,2002,15(4):31-34.
    [98]郎赞超,刘丛强,Satake H,等.贵阳地表水—地下水的硫和氯同位素组成特征及其污染物示踪意义[J].地球科学进展,2008,23(02):151-159.
    [99]吴攀,刘丛强,张国平,等.矿山环境地表水系的硫同位素研究——以贵州赫章后河为例[J].矿物岩石地球化学通报,2007,26(3):224-227.
    [100]杨郧城,沈照理,文冬光,等.鄂尔多斯白垩系地下水盆地硫酸盐的水文地球化学特征及来源[J].地球学报,2008,29(5):553-562.
    [101]范基姣,马致远,何锦,等.渭北东部奥陶灰岩地下水硫酸盐起源的化学同位素研究[J]_地下水,2005,27(5):344-346.
    [102]马致远,范基姣.陕西渭北东部岩溶地下水中硫酸盐的形成[J].煤田地质与勘探,2005,33(3):45-48.
    [103]顾慰祖,林曾平.环境同位素硫在大同南寒武—奥陶系地下水资源研究中的应用[J].水科学进展,2000,11(1):14-20.
    [104]李小倩,周爱国,刘存富,等.河北平原地下水硫酸盐34S和180同位素演化特征[J].地球学报,2008,29(6):745-751.
    [105]吴龙华,张长波,章海波,等.铅稳定同位素在土壤污染物来源识别中的应用[J]_环境科学,2009,30(1):227-230.
    [106]路远发,杨红梅,周国华,等.杭州市土壤铅污染的铅同位素示踪研究[J].第四纪研究,2005,25(3):355-362.
    [107]高永娟,马腾,凌文黎,等.铬稳定同位素分析技术及其在水污染研究中的应用[J1.科学通报,2009,6:821-826.
    [108]胡宝伽,马腾,刘存富,等.湖北黄石市天然水铬污染及其同位素特征[J].安全与环境工程, 2007,14(4):20-23.
    [109]贾秀梅,孙继朝,陈玺,等.银川平原承压水氢氧同位素组成与14C年龄分布特征[J].现代地质,2009,23(1):15-22.
    [110]王新娟,谢振华,李世君,等.北京市城近郊区地下水的环境同位素研究[J].地学前缘,2006,13(1):205-210.
    [111]秦大军,庞忠和,Jeffrey, et al.西安地区地热水和渭北岩溶水同位素特征及相互关系[J].岩石学报,2005,21(5):1489-1500.
    [112]杨郧城,侯光才,马思锦.鄂尔多斯盆地地下水中氚的演化及其年龄[J]_西北地质,2004,37(2):97-100.
    [113]刘丹,李启彬.利用环境氚定量确定秦岭特长隧道地下水年龄[J]_西南交通大学学报,2002,37(006):601-605.
    [114]杨丽芝,张光辉,刘中业,等.鲁北平原地下水同位素年龄及可更新能力评价[J].地球学报,2009.2:235-242.
    [115]杨志,李红霞,吴学华,等.利用放射性氚估算银川平原地下水系统的更新速率[J].宁夏工程技术,2007,6(1):84-87.
    [116]马致远,牛光亮,刘方,等.陕西渭北东部岩溶地下水强径流带的环境同位素证据及其可更新性评价[J].地质通报,2006,25(6):756-761.
    [117]陈宗宇,陈京生,费宇红,等.利用氚估算太行山前地下水更新速率[J].核技术,2006,29(006):426-431.
    [118]张光辉,聂振龙,谢悦波,等.甘肃西部平原区地下水同位素特征及更新性[J].地质通报,2005,24(2):149-155.
    [119]苏小四,林学钰.银川平原地下水循环及其可更新能力评价的同位素证据[J].资源科学,2004,26(2):29-35.
    [120]田华,王文科,荆秀艳,等.玛纳斯河流域地下水氚同位素研究[J].干旱区资源与环境,2010(3):98-102.
    [121]董悦安,何明,蒋崧生,等.河北平原第四系深层地下水36C1同位素年龄的研究[J].地球科学-中国地质大学学报,2002(01):105-109.
    [122]葛秀珍.用放射性同位素36C1对加德满都盆地深部含水层及地下水年龄的初步评估[J].水文地质工程地质技术方法动态,2001,5:7-9.
    [123]陈美铎,王福臻,陈祥华,等.中华人民共和国区调水文地质报告南通市幅[R].1979,江苏省地质局第一水文地质队:南京.
    [124]江苏省地质矿产局,浙江省地质矿产局,上海市地质矿产局,等.长江三角洲地区水文地质工程地质综合评价报告[R].1987.
    [125]顾镇南,金德秋,周锡煌,等.长江水中氢氧同位素组成的季节性变化[J].北京大学学报(自然科学版),1989(04):408-411.
    [126]Kendall C, McDonnell J J. Isotope tracers in catchment hydrology:Elsevier Amsterdam,1998.
    [127]甘义群,李小倩,周爱国,等.黑河流域地下水氘过量参数特征[J].地质科技情报,2008,27(002):85-90.
    [128]尹观,倪师军.地下水氘过量参数的演化[J].矿物岩石地球化学通报,2001,10(4):487-494.
    [129]Haefner R J. A sulfur-isotope mixing model to trace leachate from pressurized fluidized bed combustion byproducts in an abandoned-coal-mine setting [J]. Fuel,2001,80(6):829-836.
    [130]张鸿斌,陈毓蔚,刘德平.广州地区酸雨硫源的硫同位素示踪研究[J].地球化学,1995,24(S1):126-133.
    [131]Otero N, Soler A. Sulphur isotopes as tracers of the influence of potash mining in groundwater salinisation in the Llobregat Basin (NE Spain) [J]. Water Research,2002,36(16):3989-4000.
    [132]Kno"ller K, Fauville A, Mayer B, et al. Sulfur cycling in an acid mining lake and its vicinity in Lusatia, Germany [J]. Chemical Geology,2004,204(3-4):303-323.
    [133]Habicht K S, Canfield D E,Rethmeier J r. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite [J]. Geochimica et Cosmochimica Acta,1998, 62(15):2585-2595.
    [134]Trettin R, Gla'cer H R, Schultze M, et al. Sulfur isotope studies to quantify sulfate components in water of flooded lignite open pits-Lake Goitsche, Germany [J]. Applied Geochemistry,2007, 22(1):69-89.
    [135]Bo"ttcher M E, Schale H, Schnetger B, et al. Stable sulfur isotopes indicate net sulfate reduction in near-surface sediments of the deep Arabian Sea [J]. Deep-Sea Research Part Ⅱ,2000,47(14): 2769-2783.
    [136]Bo"ttcher M E,Thamdrup B. Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2 [J]. Geochimica et Cosmochimica Acta,2001,65(10):1573-1581.
    [137]Schippers A, Jorgensen B B. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments [J]. Geochimica et Cosmochimica Acta,2002,66(1):85-92.
    [138]Toran L, Harris R F. Interpretation of sulfur and oxygen isotopes in biological and abiological sulfide oxidation [J]. Geochimica et Cosmochimica Acta,1989,53(9):2341-2348.
    [139]Brunner B, Bernasconi S M. A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria [J]. Geochimica et Cosmochimica Acta,2005,69(20): 4759-4771.
    [140]Rees C E. A steady-state model for sulphur isotope fractionation in bacterial reduction processes [J]. Geochimica et Cosmochimica Acta,1973,37(5):1141-1162.
    [141]Massmann G, Tichomirowa M, Merz C,et al. Sulfide oxidation and sulfate reduction in a shallow groundwater system (Oderbruch Aquifer, Germany) [J]. Journal of Hydrology,2003,278(1-4): 231-243.
    [142]苏小四,林学钰,董维红,等.银川平原深层地下水’4C年龄校正[J].吉林大学学报:地球科学版,2006,36(005):830-836.
    [143]哈承佑.残荷雨声集.论文篇:南通市地下水系统的咸淡水形成演化规律[M].北京:华龄出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700