用户名: 密码: 验证码:
云南梁河来利山锡矿控矿地质因素与成矿作用分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梁河来利山锡矿床是滇西锡矿带西亚带的主要的矿床类型之一。该矿床位于印度板块与欧亚板块碰撞带前缘的腾冲—梁河弧形构造的转折部位,东邻三江构造带。矿床与喜山期的花岗岩岩浆活动有着密切的时空关系和成因联系,经过热液作用形成了由老熊窝、淘金处、三个洞矿段组成的矿化富集区。
     经过野外地质调研和收集前人的资料,综合分析研究了组成矿床的矿体形态、规模和产状,矿石的类型、结构构造、矿石成分、围岩蚀变,通过对矿床的控矿地质因素与成矿作用分析,取得以下成果:
     1、通过对来利山锡矿成矿地质条件的研究,成矿物质主要来源于喜山期的花岗岩,在成矿作用过程中,围岩中也有部分锡进入成矿流体,从而为成矿提供了物质基础。矿床属于黄铁矿—云英岩型热液矿床。
     2、区内矿体主要赋存在中石炭统丝光坪组上段第三层(C2s2-3)和第五层(C2s2-5)的构造破碎带中。矿体与围岩呈渐变过渡关系。矿体主要产于85-62勘探线之间,走向40-80°,受弧形断裂破碎带控制,倾向北西、倾角60-90°,作北东向展布,呈一向南东凸出的弧形,平面上呈“S”型。主断裂的规模越大,矿体规模越大,反之亦然。矿体在空间上成雁行状排列,在平面上呈脉状、分枝复合脉状、透镜状,在剖面上呈楔形尖灭。部分矿体由于受后期构造的改造,出现变薄和增厚的现象。
     3、该区喜山期花岗岩的侵位为成矿提供了主要的物质来源,在成矿作用过程中围岩也提供了部分成矿物质,从而构成形成锡矿体的物质基础。强烈的构造运动为含矿热液提供了交代、运移、沉淀的条件;持续的构造运动和连续的岩浆分异,使之多期次的成矿物质叠加,形成锡矿床。成矿期后构造作用,虽使矿体遭到破碎,但基本保留了原来的面貌。
     4、成矿严格受构造控制,它不仅是成矿流体的运移的通道,也是成矿物质沉淀的场所。断裂给含矿热液提供了交代、运移、沉淀的有利通道和场所。
     5、直接找矿标志为:铁帽,云英岩化、黄铁矿化、硅化和褪色蚀变;间接标志为受花岗岩外接触带中北东向构造破碎带控制的石炭系中统丝光坪组上段(C2s2)地层。
     6、大致圈定了三个有利的成矿地段:三个硐南部—老熊窝矿段的北部一带、潘家坟—淘金处之间和白沙坡—蛇洞一带。
The Lianghe Lailishan tin ore deposit is a main deposit type in the western subzone of the Western Yunnan tin ore zone. This ore deposit is located at the transition spot of Tengchong-lianghe arc structure,that ramed east neighbour three rivers structure belt,which is in the preceding plart of the Indian and Eurasia tectonic plates collision belt. There are close time and space relations and origin relation between the ore deposit and the granitic magma activity of the Ximalaya mountain time, formed after the hydrothermal process by the Laoxiongwo, has panned for Taojinchu the mineralization which place, Sangedong ore section was composed to concentrate the area.
     After geological research on the field and the collection of previous information, and analyzing comprehensively and researching ore-body shape, size and occurrence which composed the deposit, the ore types, structure, mineral composition, wall rock alteration, we achieved the following results through analyzing the ore-controlling geological factors of deposits and metallogenesis:
     1. We know that ore-forming materials come mainly from the Himalayan granite by studying the ore-forming geological conditions of Tin on the Laili Mountain, and there were parts of Tin in the wall rock going in the ore-forming fluids at the process of mineralization, so as to provide a material basis for ore-forming. The deposits belonged to Pyrite-Cloud British rock type hydrothermal deposits.
     2. The ore-body in the zone exists mainly in the tectonic belt broken of the Upper Carboniferous Ping mercerizing upper third layer (C2s2-3) and fifth layer (C2s2-5). Ore body and surrounding rock was gradually transiting.The ore-body is mainly in the 85~62 exploration line, in the way 40~80°, inclined to the North West, angle 60~90°, for distribution to the North East, showed a protrusion arc though south and east, and "S" type on the plane as controlled by the arc fault fracture zone. The larger was the scale of main faults, the larger the ore-body was, and vice versa. The ore body was up into a flying-geese-like arrangement in space, on vein in the plane, composite vein branches, lenticular, and pinch-out wedge-shaped at section on. Parts of ore-body emerged the phenomenon of thinning and thickening due to the transformation of the late tectonic.
     3. Emplacement of Himalayan granite provided the main material source for the ore-forming, and wall rock also provided some ore-forming materials at the process of mineralization, thus constituted the material basis of forming the body of tin. Strong tectonic movement provided the condition of account, migration, sedimentation for ore-bearing hydrothermal; Sustained tectonic movements and continuous magma differentiation made so many stages of minerals into the superposition, and took shape tin deposits.
     4. Strictly controlled mineralization, the tectonic is not only the migration channel of Ore-forming fluid, but also the place of minerals precipitate. Fracture provided the favorable channel and places of account, migration, sedimentation for ore-bearing hydrothermal.
     5. Logo for direct prospecting are rail cap, cloud of the British rock, pyritization, silicification and bleaching alteration; and indirect signs are Carboniferous in the EC group on mercerizing Ping paragraph (C2s2) formation which is controlled by the tectonic fracture zone in the way of North East.in the granite outside the contact zone.
     6. We delineated roughly three favorable metallogenic lot:southern part of Three holes-northern section of Laoxiong brood paragraph mine, between Panjia grave and Gold Rush Service, and Baisha slpoe-Snake hole area.
引文
[1]孟良义,花岗岩与成矿[M],科学出版社,1993
    [2]马东生,华南中、低温成矿带元素组合和流体性质的区域分布规律[J]。矿床地质,1999,18(4)
    [3]季克检等,热液矿床的矿源、水源和热源及矿床分布规律[M],北京科学技术出版社,1989.
    [4]涂光炽,中国层控矿床地球化学[M],科学出版社,1984..
    [5]李景略,梁河来利山锡矿床地质特征及其成因.云南地质,1984,3(1):47-58.
    [6]唐良栋,腾冲—梁河地区来利山锡矿床成因类型探讨.云南地质,1992,3(11):283~288.
    [7]高子英,腾冲—梁河间来利山紫苏花岗岩的特征及成因.云南地质,1992,11(1):9-14.
    [8]施琳,唐良栋,赵珉等.腾冲—梁河地区原生锡矿床类型及成矿机理.云南地质,1991,10(3):290~322.
    [9]张兴润,三江东部锡矿带的花岗岩类和锡矿地质特征.云南地质,1987,6(1):14~29.
    [10]李宗玉,丝光坪锡矿地质特征及矿床成因初探.地质与勘探,1991,11:23~27.
    [11]范承钧,云南锡矿带之划分及其区域成矿地质特点.云南地质,1988,7(1):1-12.
    [12]李光勋,滇西锡矿带区域控岩控矿构造和矿田构造浅析.云南地质,1989,8(1):11-23.
    [13]陈吉琛,滇西花岗岩类形成的构造环境及岩石特征.云南地质,1989,8(3、4):205-212.
    [14]张志信,肖景霞.我国锡矿的成矿地质特征及成矿远景区划浅析.云南地质,1984,3(1):1-10.
    [15]云南省地质科研所锡矿组,滇西不同类型花岗岩及其与锡矿的关系.云南地质,1984,3(1):19-35.
    [16]康玉廷,云南锡矿微量元素地球化学特征.云南地质,1984,3(2):131~140.
    [17]陈吉琛,林文信,陈良忠.腾冲—梁河地区含锡花岗岩序列—单元研究.云南地质,1991,10(3):241-289.
    [18]陈华慧等,腾冲—梁河地区砂锡矿形成条件及富集规律研究.云南地质,1991,10(4):337-361.
    [19]刘素芳,腾冲—梁河锡矿带砂锡矿成矿机理及普查勘探方法研究.云南地质,1991,10(4):385-393.
    [20]叶俊林,黄定华,张俊霞.地质学概论.第一版.北京:地质出版社,1996
    [21]王世称,陈永良,夏立显.综合信息矿产预测理论与方法.第一版.北京:科学出版社,2000.3
    [22]赵鹏大,胡旺亮,李紫金.矿床统计预测.地质出版社,1994.
    [23]云南省梁河县来利山锡矿区老熊窝矿段地质报告,云南省地质矿产局第四地质大队.1996.10
    [24]张志信,肖景霞,我国锡矿的成矿地质特征及成矿远景区划浅析,云南地质,1984.
    [25]吴上龙,滇西地区主要金属矿田地球化学模式与物化探方法适应性,云南地质,1991,10(4):417-442.
    [26]杨永义,腾冲—梁河地区斑岩地质特征及含矿性判别,云南地质,1998,17(2):137-144.
    [27]施琳等,滇西锡矿带成矿规律.北京:地质出版社,1987.
    [28]李春星等,亚洲大地构造说明书.北京:地质出版社,1982.
    [29]朱炳泉,印度与欧亚板块东部碰撞带边界-腾冲火山岩的Nd-Sr同位素与微量元素研究,地球化学,1983,1.
    [30]张理刚,稳定同位素在地质科学中的应用.西安:陕西科学技术出版社,1985.
    [31]徐文炘等,矿物包裹体成分数据热力学计算方法及应用,矿产地质,1985年第1期.
    [32]B.巴尔苏科夫,热水溶液中锡的搬运形态,地质译丛,1956年第1期.
    [33]施琳,陈吉琛,滇西含锡花岗岩与板块活动的成因关系,中国区域地质,1984年第10期.
    [34]陈吉琛,滇西花岗岩类时代划分及同位素年龄值选用讨论,云南地质,1987,6(2)
    [35]范承钧,滇西区域地质特征,云南地质,1982,1(4)
    [36]杨树锋,成对花岗岩带和板块构造.北京:科学出版社1987.
    [37]季克俭等,热液矿床的矿源、水源和热源及矿床分布规律,北京科学技术出版.
    [38]闻光.成矿专属性研究.锡矿地质参考资料(三).1979.
    [39]武俊德,个旧锡矿高松矿田成矿预测[D].昆明理工大学工程硕士论文.昆明:昆明理工大学,2003.
    [40]高建国,个旧矿区龙树脚矿段综合信息成矿预测与资源合理开发利用,云南科技出版社,2004.
    [41]彭程电,试论个旧锡矿成矿地质条件及矿床类型模式[J].云南地质,1985,4(1):17-32.
    [42]唐尚涛,个旧锡矿床空间分布特征及控矿模式[J]地质与勘探1985,21(12):17~21.
    [43]秦德先,陈建文,田毓龙,广西大厂长坡锡矿床地质及成因[J],地质找矿丛论,1988,7(3):146-151.
    [44]云南省地质科研所陈吉琛滇,西A-型花岗岩的确定及其意义,云南地质,1984年第3卷第2期201.
    [45]王开华,内蒙古安乐锡多金属矿床特征及成矿模式[J]矿产与地质,1998,12(6):404-409.
    [46]卢焕章,等.包裹体地球化学.北京:地质出版社,1990.
    [47]矿床地球化学,中国科学院矿床地球化学开放研究实验室著,地质出版社.
    [48]A.H.G.米切尔,1981,显生宙东南亚大陆板块边界:喜马拉雅山脉和西藏(李玲译),国外地质科技,1982年2期,地质出版社.
    [49]D.I.Groves.1972澳大利亚他斯玛立亚兰兽岩基内含锡花岗岩的地球化学演化《国外地质资料》1976,2.马镇坤译.
    [50]R.D.Schuiling.1967环大西洋大陆的锡矿带.锡矿地质译文集.
    [51]Z.G.Karayeve等.1979.近地表云英岩型锡矿.锡矿地质译文集.
    [52]H.B.德特罗夫斯卡娅,矿物学在建立热液矿床分类系统上德应用,国外地质科技,1983年第1期.
    [53]Faure, G.., Principles of Isotope Geology, John Wiley&Sones,1986.
    [54]I.N.Tomson.N.T.Kochneva and V.S.Krovtsov 1983 Systems and types of concentric structures and the nature of their ore occurences International Geology Review vol.25.No.3.
    [55]Taylor.R.G, Ggeology of tin deposits, Elsevier Scientific Publishing Company, Amsterdam Oxford New York:1979.
    [56]Schelov A.D., Tin ore deposit and mantle, Global Tectonics and Metallogeny,1991,4(2):69~74.
    [57]Durasova N.A., Some problem of the geochemistry of tin, Geochem Int.,1967,4:671~681.
    [58]Taylor S.R.Mcleannan S., The continental crust:its composition and evplution, London:Blackwell, 1985.
    [59]Cook, D.R., The Evolution of Mineral Exploration Technology-Past, Present, and Future, Integrated Methods in Explomuon and Discovery,1993
    [60]Vinogradov.A.P.,1962, The average contents of the chemical element in the main types of eruptive rocks, Genkhimiya 7(1962)(Russian).
    [61]A.D.Shcheglov, Tin ore deposits and the mantle[J].Global Tectonic Metallogency.1991,41(1):69~ 74.
    [62]Wedepohl K.H.,handbook of geochemistry,berlin,springer,1969:1~4.
    [63]Qin Dexian,Liu Chunxue Emanation-sedimentay metallogenic series and models of the kangdian axia [J]. Acta Geological Sinica.2000,74(3):466-472.
    [64]Oinkhimovskiy V.V.,Problem of the origin of tin-posits,Metallization Associated with Acid Magmatism.
    [65]Pattou L.,Lorand J.P. and Gros M.,Non-chondritic platinum-group element ratios in the Earth's mantle[J],Nature,1996,379:712~715.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700