用户名: 密码: 验证码:
串联混合动力汽车能量优化管理策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机和环境恶化的加剧,对混合动力汽车的研究正如火如荼进行,论文以串联混合动力汽车能量管理策略为研究内容,其主要研究工作如下:
     本文以实验建模为主、理论建模为辅的建模方法,建立了串联混合动力汽车前向仿真模型,为能量管理策略的研究提供了必要的仿真平台。并对串联混合动力汽车控制策略的工作原理进行了系统、全面的分析,最后明确了能量管理策略需要解决的问题,即在满足汽车需求功率的前提下,如何分配各能量源的输出功率使得整车的耗油量、排放最少,同时满足电池的荷电状态平衡。本文旨在提出优化效果接近全局优化算法的实时能量管理策略,首先结合动态规划和猴群算法理论获得全局最优控制规则,将这些规则作为预选样本,提出了基于模糊C均值的BP实时能量管理策略。
     基于各部件模型及能量管理策略要解决的问题,以发动机效率曲线和电池充放电效率曲线为依据,建立了串联混合动力汽车能量管理最优化数学模型。对于给定工况下的能量管理最优控制问题,通过离散化将一个多阶段决策问题转化为多个单阶段决策问题,并对整个工况的燃油最小化做了机理分析,针对问题的特点,结合动态规划理论,提出了改进的动态规划算法。仿真结果表明,该算法不仅能获得全局最优解,还使得运算时间大大减少。
     在建立的整个工况的离散化数学模型基础上,应用新的智能算法—猴群算法,设计了串联混合动力汽车的猴群算法能量管理策略,建立了以发动机输出功率为决策变量、以电池荷电状态平衡为约束的功率分配策略。在原算法的基础上增加了混沌搜索、合作过程和随机扰动机制使之快速收敛。仿真结果表明,该算法能获得全局最优解,可以有效解决串联混合动力汽车的能量管理优化问题。
     通过对改进动态规划算法的分析与仿真,将能量管理策略总结为二输入单输出的非线性映射,设计了基于模糊C均值的BP神经网络实时能量管理策略。将全局优化算法结合多个典型工况得到的控制规则作为神经网络的训练样本,采用模糊C均值算法对样本进行预选取,将样本分类,选取每一类中的典型样本离线进行训练,得到与分类数相同个BP神经网络。对于实时进入网络的数据,计算其与各聚类中心的距离,选取距离最近的聚类中心所对应的BP网络输出作为能量管理器的输出。仿真结果表明,基于模糊C均值的BP神经网络能量管理策略不仅能够模拟全局优化算法的控制规则,从而保证混合动力汽车具有很好的燃油经济性,而且还可以实现能量管理策略的实时控制。
As the energy crises and environmental degradation are getting more and more remarkable in the world, researches of hybrid electric vehicles(HEV) are progressing gradually. And this dissertation studies energy management strategy(EMS) for HEV. The main work of this paper is described as follows:
     Based on empirical modeling approach with the aid of theoretical modeling, a forward model is presented which provides the necessary simulation platform for the development of EMS. Furthermore, this paper gives a systematical and comprehensive analyses to the working principle of series HEV’s control strategy(CS), and thus the problems of series HEV’s EMS to be resolved are ascertained, that is how to split the instantaneous power required between the two energy sources in order to minimize fuel consumption while the vehicle performs a given driving cycle, at the same time, the state of charge(SOC)of battery is balanced. The aim of the paper is to propose a real-time EMS which closer to global optimation, first combine theories of dynamic programming (DP) and monkey algorithm(MA), we get the control rules of global optimization, the rules are selected as pretreatment samples, then BP neural network based on fuzzy C-means clustering is proposed.
     Based on models of all parts and the problems to be solved by EMS, an optimized mathematical model of HEV is established according to the efficiency curve of engine and battery. For a given driving cycle, optimization problem of EM is a multi-stage decision problem, which can be converted to single-stage decision by discretization. Mechanism of minimization the fuel consumption in a given driving cycle is analyzed. Combining the characteristic of the problem and the theory of DP, improved DP(IDP) is presented. Simulation results show that IDP not only can get global optimal solution,but also can greatly reduce the computing time.
     Based on discretization mathematical model of whole driving cycle, a new intelligent algorithm, MA, is applied for solving the optimization problem. Output power of engine is used as a decision variable; balance of SOC is used as constraint equation. Chaotic-search, cooperation process and stochastic disturbance are added in original algorithms for fast convergence. The simulation results show that MA can get global optimal solution, and is effective to solve EM optimization problem of series HEV.
     Through analysis and simulation of IDP, EMS is abstracted as a nonlinear mapping of two inputs and one output, then BP neural network is designed for real-time EMS on the basis of fuzzy C-means clustering. The global optimum algorithm is adopted in several typical driving cycles, and the principles are taken as training samples for BP neural network. Training samples are classified by fuzzy C-means clustering algorithm, and then typical samples in each class are used for training neural networks off line, thus BP controllers corresponding to each class can be obtained. For the real-time data transmitted into the network, its distance to each cluster center is calculated respectively, and the BP network corresponding to the cluster center with minimal distance to the real-time data is selected, and the output of this BP network is used as the output of EMS. Simulation results show that BP neural network EMS based on fuzzy C-means clustering algorithm not only can simulate the global optimum principles, which can ensure a good fuel economy of HEV, but also can realize real-time control.
引文
[1]王军,申金升.国内外混合动力电动汽车开发动态及发展趋势[J],公路交通科技,2000,17(1):1-14
    [2]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M],北京:北京理工大学出版社,2002
    [3]余志生.汽车理论(第3版)[M],北京:机械工业出版社,2001
    [4]刘旭东.串联式混合动力电动汽车控制策略及其应用技术研究[D],北京工业大学,2008
    [5] Szumanowski A著,陈清泉,孙逢春译.混合电动车辆基础[M],北京:北京理工大学出版社,2001
    [6] Chan C C. The state of the art of electric and hybrid vehicles[C],Proc of IEEE,2002,90(2):247-275
    [7]鲍辰宇,冯旭云.混合动力汽车研究现状和发展趋势[J],中国科技信息,2006,18:119-121
    [8]朱正礼.并联式混合动力轿车动力系统性能匹配与优化研究[D],上海交通大学,2004
    [9]麻友良,陈全世.混合动力电动汽车的发展[J],公路交通科技,2001,18(1):78-80
    [10]何洪文,祝嘉光,李剑.混合动力电动汽车技术发展与现状[J],车辆与动力技术,2004,(2):50-55
    [11]Morita K. Automotive power source in 21st century[J],JSAE Review,2003,24(1): 3-7
    [12]Okamoto K. Overview of current and future hybrid technology[C],Proc of the Symposium on Advanced Automotive Power plants and Energy Resources[C], Beijing:China SAE,2002:89-94
    [13]Santini D J,Vyas A D,Moore J,et al.Comparing cost estimates for US fuel economy improvement by advanced electric drive vehicles[C], Proceedings of the 19th International Electric Vehicle Symposium,Busan, Korea,2002:474-493
    [14]Maggetto G,Mierlo J V. Electric vehicles, hybrid electric vehicles and fuel cell electric vehicles: state of the art and perspectives. Ann. Chim. Sci. Mat,2001,26(4):9-26
    [15]Chau K T,Wong Y S. Overview of power management in hybrid electric vehicles[J],Energy Conversion and Management, 2002,43(15):1953-1968
    [16]Harding G G. Electric vehicles in the next millennium[J],Journal of Power Sources,1999,78(1-2):193-198
    [17]Wyczalek F A. Hybrid electric vehicles year 2000 status[J],IEEE AES Systems Magazine,2001,16(3):15-19
    [18]Vroemen B G,Vall Dmten R M,Serrarens A. The road to the most profitable hybrid drivetrain[C],Proceedings of the 19th International Electric Vehicle Symposium,Busan,Korea,2002:449-460
    [19]Nagasaka A,NadaM,Hamada H,et a1. Development of the hybrid battery ECU for the Toyota hybrid system[C],SAE Paper,1998,981122
    [20]Kelly K J,Rajagopalan A. Benchmarking of OEM hybrid electric vehicles at NREL,Technical Report NREL/TP一540—3086,National Renewable Energy Laboratory,USA,2001
    [21]张卫青.混合动力汽车的发展现状及其关键技术[J],重庆工学院学报,2006,20(5):19—22
    [22]彭涛,陈全世,田光宇等.并联混合动力电动汽车动力系统的参数匹配[J],机械工程学报,2003,39(2):69-73
    [23]Ehsani M,Rahman K M,Toliyat H A. Propulsion system design of electric and hybrid vehicles[J],IEEE Transactions on Industrial electronics,1997,44(1):19-27
    [24]Guzzella L,Amstutz A. CAE tools for quasi-static modeling and optimization of hybridpowertrains[J],IEEE Transactions on Vehicular Technology,1999,48(6): 1762-1769
    [25]Fish S,Savoie T B. Simulation-based optimal sizing of hybrid electric vehicle components for specific combat missions[J],IEEE Transactions on Magnetics, 2001, 37 (1): 485-488
    [26]罗玉涛.混联式混合动力电动汽车的关键技术研究[D],华南理工大学,2002
    [27]杨为琛.混合电动公交车总体匹配、仿真及其控制系统研究[D],北京理工大学,2002
    [28]初亮.混合动力总成的控制算法和参数匹配研究[D],吉林大学,2002
    [29]Chang T C. Hybrid electric vehicle design to minimize energy use[D],the University of Texas at Arlington, USA,1996.
    [30]田光宇,彭涛,林成涛等.混合动力电动汽车关键技术[J],汽车技术,2002,(1):8-11
    [31]孙冬野,秦大同.基于无级变速传动的并联式混合动力汽车动力学仿真研究[J],机械工程学报,2003,39(1):79-83
    [32]Sureshbabu N,Powell B K,Dunn M T. An integrated procedure for fixed-point controlimplementation[C],Proceedings of the American Control Conference, Philadelphia, Pennsylvania,IEEE,1998:3096-3099
    [33]Barsali S,Ceraolo M,Possenti A. Techniques to control the electricity generation in a serieshybrid electric vehicle[J],IEEE Transactions on Energy Conversion, 2002,17(2): 260-266
    [34]舒红,秦大同,胡建军.混合动力汽车控制策略研究现状及发展趋势[J],重庆大学学报(自然科学版),2001,24(6):28-31
    [35]Butler K L, Stevens K M,Ehsani M. A versatile computer simulation tool for design andanalysis of electric and hybrid drive trains[C],SAE Paper,1997:970199
    [36]Cuddy M R,Wipke K B. Analysis of the fuel economy benefit of drivetrain hybridization[C],SAE Paper,1997: 970289
    [37]Kimura A,Abe T,Sasaki S. Drive force control of a parallel-series hybrid system[J],JSAE Review,1999,20(3):337-341
    [38]Rahman Z,Butler K L,Ehsani M. A comparison study between two parallel hybrid control concepts[C],SAE Paper,2000:2000-01-0994
    [39]Ehsani M,Gao Yimin,Butler K L. Application of electrically peaking hybrid (ELPH)propulsion system to a full-size passenger car with simulated design verification[J],IEEE Transactions on Vehicular Technology,1999,48(6): 1779-1787
    [40]Jalil N,Kheir N A, Salman M. A rule-based energy management strategy for a series hybrid vehicle,Proc of the American Control Conference,Albuquerque, New Mexico,USA,1997:689-693
    [41]Johnson V H,Wipke K B,Rausen D J. HEV control strategy for real-time optimization of fuele conomy and emissions[C],SAE Paper ,2000:2000-01-1543
    [42]Paganelli G,Ercole G,Brahma A,et al. General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles[C],JSAE Review, 2001,22(4): 511-518
    [43]Paganelli G,Tateno M. Control development for a hybrid-electric sport-utility vehicle: strategy,implementation and field test results[C],Proceeding of the American Control Conference,Arlington,VA,USA,2001:5064-5069
    [44]Paganelli G,Guerra T M,Delprat S,et al. Simulation and assessment of power control strategies for a parallel hybrid car,Proc Institution Mechanical Engineers, Part D: Journal of Automobile Engineering,2000,214(7):705-717
    [45]Wagener A,Korner C,Seger P,et al. Cost function based adaptive energymanagement in hybrid drivetrains[C],Proceedings of the 18th International Electric Vehicle Symposium,Berlin,Germany,2001
    [46]Seiler J,Schroder D. Hybrid vehicle operating strategies[C], Proceedings of the 15th International Electric Vehicle Symposium,Brussels,Belgium,1998
    [47]Paganelli G,Santin J-J,Guerra T M,et al. Conception and control of parallel hybrid car powertrain[C],Proc of the 15th International Electric Vehicle Symposium, Brussels,Belgium,1998
    [48]Baumann B M,Washington G,Glenn B C,et al. Mechatronic design and control of hybrid electric vehicles[J],IEEE/ASME Transactions on Mechatronics,2000,5(1): 58-72
    [49]Brahma A,Glenn B,Guezennec B,et al. Modeling,performance analysis and control design of a hybrid sport-utility vehicle[C]. Proc of IEEE International Conference on Control Applications,Hawaii,USA,1999:448-453
    [50]Schouten N J,Salman M A,Kheir N A. Fuzzy logic control for parallel hybrid vehicles[J]. IEEE Transactions on Control Systems Technology,2002,10(3): 460-468
    [51]Schouten N J,Salman M A,Kheir N A. Energy management strategies for parallel hybrid vehicles using fuzzy logic[J],Control Engineering Practice,2003,11(2): 171-177
    [52]Salman M A,Schouten N J,Kheir N A. Control strategies for parallel hybrid vehicles[C],Proc American Control Conference,Chicago,USA,2000:524-528
    [53]Lee H-D,Sul S-K. Fuzzy-logic-based torque control strategy for parallel-type hybrid electric vehicle[J],IEEE Transactions on Industrial Electronics,1998,45(4): 625-632
    [54]Koo E-S,Lee H-D,Sul S-K,et al. Torque control strategy for a parallel-hybrid vehicle using fuzzy logic[J],Proc of the 33rd IEEE Industrial Applications Society Annual Conference, St. Louis, MO,USA,1998:1715-1720
    [55]Gagliardi F,Piccolo A,Vaccaro A, et al. A fuzzy based control unit for the optimal power flow management in parallel hybrid electric vehicles[C],Proc of the 19th International Electric Vehicle Symposium, Busan,Korea,2002:876-887
    [56]Won J-S,Langari R. Fuzzy torque distribution control for a parallel hybrid vehicle. Proc Joint ADVISOR/PSAT Vehicle Systems Modeling User Conference, Southfield,Michigan,USA,2001
    [57]Farrall S D,Jones R P. Energy management in an automotive electric/heat enginehybrid powertrain using fuzzy decision making[C],Proc of the International Symposium on Intelligent Control,1993:463-468
    [58]Wang A,Chen Y,Zhang R. A novel design of energy management system for hybrid electric vehicles using evolutionary computation[C],Proc of the 18th International Electric Vehicle Symposium,Berlin,Germany,2001
    [59]Galdi V,Ippolito L,Piccolo A. Multiobjective optimization for fuel economy and emissions of HEV using the goal attainment method[C],Proc of the 18th International Electric Vehicle Symposium,Berlin,Germany,2001
    [60]Rimaux S,Delhom M,Combes E. Hybrid vehicle powertrain:modeling and control[C],Proceedings of the 16th International Electric Vehicle Symposium, Beijing,China,1999
    [61]Delprat S,Guerra T M,Rimaux J. Optimal control of a parallel powertrafrom global optimization to real time control strategy[C],Proc of the 18th International Electric Vehicle Symposium, Berlin,Germany,2001
    [62]Lyshevski S E. Energy conversion and optimal energy management in diesel-electric drivetrains of hybrid-electric vehicles.Energy Conversion and Management[J],2000,41(1):13-24
    [63]Phillips A M,Jankovic M,Bailey K E. Vehicle system controller design for a hybrid electric vehicles[C], Proceedings of the 2000 IEEE International Conference on Control Applications, Anchorage,Alaska,USA,2000:297-302
    [64]Zhang Rongjun,Chen Yaobin. Control of hybrid dynamical systems for electric vehicles[C],Proceedings of the American Control Conference,Arlington,VA,USA, 2001:2884-2889
    [65]Galdi V,Ippolito L,Piccolo A. A genetic based methodology for hybrid electric vehicle sizing[J], Soft Computing,2001,5(6):451-457
    [66]Piccolo A,Ippolito L,Galdi V,et al. Optimization of energy flow management in hybrid electric vehicles via genetic algorithms[C],Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Como,Italy,2001:434-439
    [67]Ippolito L, Loia V,Siano P. Extended fuzzy c-means and genetic algorithms to optimize power flow management in hybrid electric vehicles[C],Proc IEEE Conference on Control Applications, Istanbul, Turkey,2003:115-119
    [68]Markel T, Wipke K. Optimization techniques for hybrid electric vehicle analysis using ADVISOR[C],Proc.ASME Int. Mechanical Engineering Congress and Exposition, New York,USA,2001
    [69]Wipke K, Markel T,Nelson D. Optimizing energy management strategy and degree of hybridization for a hydrogen fuel cell SUV[C],Proc. the 18th International Electric Vehicle Symposium, Berlin, Germany,2001
    [70]Delprat S, Guerra T M,Paganelli G,et al. Control strategy optimization for a hybrid parallel powertrain[C],Proceedings of the American Control Conference. Arlington,VA,USA, 2001:1315-1320
    [71]Steinmauer G,del Re L. Optimal control of dual power sources[C],Proceedings of the 2001 IEEE International Conference on Control Applications,Mexico City, Mexico,2001:422-427
    [72]Delprat S,Paganelli G,Guerra T M,et al. Algorithmic optimization tool for eveluation of HEV control strategies[C],Proceedings of the 16th International Electric Vehicle Symposium, Beijing,China,1999
    [73]Kiencke U,Thierer C.The OSEK/VDX standard for automotive applications– current status[C],SAE Paper,2000: 2000-01-0385
    [74]Emaus B D. Current vehicle network architecture trends[C],SAE Paper,2000:2000-01-0146
    [75]秦明华.汽车电器与电子技术[M],北京:北京理工大学出版社,2003
    [76]Miller J M,Wu B,Strangas E. DSP applications in hybrid electric vehicle powertrain[C], Proc of the American Control Conference, San Diego, California, IEEE,1999:2137-2138
    [77]周云山.汽车电控系统理论与设计,北京:北京理工大学出版社,1999
    [78]Pusca R,Ait-Amirat Y,Berthon A,et al. Advanced control applied to hybrid electrical vehicle[C],Proceedings of the 19th International Electric Vehicle Symposium, Busan, Korea,2002:604-615
    [79]Yeo H, Kim T,Kim C, et al. Performance analysis of regenerative braking system for parallel hybrid electric vehicle using HILS[C],Proceedings of the 19th International Electric Vehicle Symposium, Busan, Korea,2002:438-448
    [80]Gao Hongwei,Gao Yimin,Ehsani M. A neural network based SRM drive control strategy for regenerative braking in EV and HEV[C],Proc IEEE Electric Machines and Drives Conference, Cambridge, MA,USA,2001:571-575
    [81]Apter R, Prathaler M. Regeneration of power in hybrid vehicles[C],Proc IEEE 55th Vehicular Technology Conference, Birmingham,AL,USA,2002:2063-2069
    [82]吴剑.并联混合动力汽车能量管理策略优化研究[D],山东大学,2008
    [83]Jefferson C M,Barnard R H. Hybrid vehicle propulsion,Southampton,UK:WITPress,2002
    [84]Nelson R F. Power requirements for batteries in hybrid electric vehicles[J], Journal of Power Sources,2000,91(1):2-26
    [85]Corson D W. High power battery systems for hybrid vehicles[J],Journal of Power Sources,2002,105(2):110-113
    [86]浦金欢.混合动力汽车能量优化管理与控制策略的研究[D],上海交通大学,2004
    [87]ANDERSON C,PETTIT E. The Effects of APU Characteristics on the Design of Hybrid Control Strategies for Hybrid Electric Vehicle[C],SAE950493,1995
    [88]Hochgrat C, Ryan M,Wiegman H. Engine control strategy for a series hybrid electric vehicle in corporating load-leveling and computer controlled energy management[C],SAE 960230:11-24
    [89]Stefano Barsali.Techniques to control the electricity generation in a series hybrid electric vehicle[J],IEEE Transaction On Energy conversion,2002,17(2):260-266
    [90]Satoshi Aoyagi,Yusuke Hasegawa,Takahiro Yone kura,et al. Energy efficiency improvement of series hybrid vehicle[J],JSAE Review,2001,22(3):259-264
    [91]曾小华,王庆年,王伟华.串联混合动力汽车控制策略分析及控制参数优化[C], SAE-C2003P005:21-27
    [92]L. P′erez,Elvio A.Pilotta. Optimal power split in hybrid electric vehicle using direct transcription of an optimal control problem[J],Mathematics and computers in simulation,2009,79(6):1959–1970
    [93]L. P′erez,E. Oliva. Optimization of power management in an hybrid electric vehicle using dynamic programming[J],Mathematics and computers in simulation, 2006,73(1):244–254
    [94]Weiwei Xiong,Yong Zhang,Chengliang Yin. Optimal energy management for a series–parallel hybrid electric bus[J],Energy Conversion and management, 2009,50(7):1730-1738
    [95]Chan Chiao Lin,Huei Pen,Jessy W. Power Management Strategy for a Parallel Hybrid Electric Truck[J],IEEE Transaction on Control Systems Technology, 2003,38(11):839-849
    [96]Paganelli.G,Delprat.S. Equivalent Consumption Minimization Strategy for Parallel Hybrid Powertrains[C],IEEE Vehicular Technology Conference,2002, 4:2076-2081
    [97]Xiaolin Hu,Zhongfan Wang,Lianying Liao. Multi-objective optimization of HEVfuel economy and emissions using evolutionary computation[C],SAE Paper,2004:2004-01-1153
    [98]朱元,田光宇,陈全世等.混合动力汽车能量管理策略的四步骤设计方法[J],械工程学报,2004,40(8):128-133
    [99]房立存,秦世引.并联混合动力电动汽车最优控制及实例仿真[J],系统仿真学报,2007,19(1):110-113
    [100]Delprat S,Lauber J,Guerra T M. Control of a Parallel Hybrid Powertrain: Optimal Control[J],IEEE Trans.Veh.Techn,2004,53(3):872-881
    [101]Guzzella L,Sciarretta A. Vehicle propulsion systems:introduction to modeling and optimization[J],Berlin:2005
    [102]段岩波,张武高,黄震.混合动力汽车模糊逻辑控制策略仿真[J],内燃机工程,2003,24(2):66-69
    [103]Francesco Gagliardi,Antonio Piccolo,Alfredo Vaccaro. A Fuzzy—based Control Unit for the Optimal Power Flow Management in Parallel Hybrid Electric Vehicles[C],EVSl9,2002:876-887
    [104]王大志,王建辉,顾树生.基于FNN白适应控制的HEV控制策略[J],东北大学学报(自然科学版),2003,24(6):523-526
    [105]Wang D Z,Gu S S. Control Strategy and Identification of Hybrid Electric Vehicle Using Artificial Neural Networks[C],2th Intemational Conference on Control and Automation,Xiamen:Xiamen University,2002:623-627
    [106]浦金欢,殷承良,张建武.遗传算法在混合动力汽车控制策略优化中的应用[J],中国机械工程,2005,16(7):648-652
    [107]卢兰光,包成,欧阳明高.燃料电池客车混合动力系统能量分配的遗传优化组合算法[J],汽车技术,2004,(2):11-14
    [108]Huang Miaohua,Yu Houyu. Optimal control strategy based on PSO for powertrain of parallel hybrid electric vehicle[C],IEEE International Conference on Vehicular Electronics and Safety,ICVES 2006:352-355
    [109]Wh J, Zhang C H,Cui N X. PSO Algorithm—based Parameter Optimization for HEV Powertrain and Its Control Strategy[J],International Journal of Automotive Technology,2008,9(1):53-69
    [110]C. C.CHAN,Heliang ZHOU,Liqing SUN. Recent Progress of EV in China along with the Worldwide Trend,EVS2 1,Monaco,France,2005
    [111]胡寿松,王执,胡维礼.最优控制理论与系统[M],北京:科学出版社,2005
    [112]Powell B K,Bailey K E,Cikanek S R. Dynamic modeling and control of hybridelectric vehicle powertrain systems[J],IEEE Control Systems Magazine,1998, 18(5):17-33
    [113]Markel T,Brooker A,Hendricks T. ADVISOR: a systems analysis tool for advanced vehicle modeling, Journal of Power Sources,2002,110(2):255-266
    [114]Hauer K-H. Analysis tool for fuel cell vehicle hardwareand software controls with an application to fuel economy comparisons of alternative system designs[D],University of California Davis,USA,2001
    [115]Lin C-C,Filipi Z,Gravante S. Validation and use of Simulink integrated, high fidelity,engine-in-vehicle simulation of the international class VI truck[C],SAE Paper,2000:2000-01-0288
    [116]Wipke K B,Cuddy M R,Burch S D. ADVISOR 2.1:a user-friendly advanced powertrain simulation using a combined backward/forward approach[C],IEEE Transactions on Vehicular Technology, 1999,48(6):1751-1761
    [117]Butler K L,Ehsani M, Kamath Preyas. A Matlab-based modeling and simulation package for electric and hybrid electric vehicle design[J], IEEE Transactions on Vehicular Technology,1999,48(6):1770-1778
    [118]Rizzoni G,Guzzella L,Baumann B M. Unified modeling of hybrid electric vehicle drivetrains[J],IEEE/ASME Transactions on Mechatronics,1999,4(3): 246-257
    [119]Rizzoni G, Guezennec Y,Brahma A. VP-SIM: a unified approach to energy and power flow modeling simulation and analysis of hybrid vehicle[C],SAE Paper,2001:2000-01-1565
    [120]Wilkins S,Lamperth M U. An object-oriented modeling tool of hybrid powertrains for vehicle performance simulation[C],Proceedings of the 19th International Electric Vehicle Symposium, Busan,Korea,2002:1079-1089
    [121]Lin C-C,Filipi Z,Wang Y. Integrated, feed-forward hybrid electric vehicle simulation in Simulink and its use for power management studies[C],SAE Paper,2001:2001-01-1334
    [122]Tillaart E,Eelkema J,Vink W. A modular simulation environment for vehicle and powertrain design and analysis[C],Proceedings of the 19th International Electric Vehicle Symposium, Busan, Korea,2002:1044-1056
    [123]Bolognesi P,Conte F V,Bianco G L. Hy-Sim: a modular simulator for hybrid electric vehicles[C],Proceedings of the 18th International Electric Vehicle Symposium, Berlin, Germany,2001
    [124]Jeanneret B,Trigui R,Badin F,et al. New hybrid concept simulation tools, evaluation on the Toyota Prius car[C],Proceedings of the 16th International Electric Vehicle Symposium,Beijing,China,1999
    [125]Trigui R,Badin F,Jeanneret B. Hybrid light duty vehicles evaluation program[C],Proceedings of the 19th International Electric Vehicle Symposium, Busan,Korea,2002:888-899
    [126]PSAT Training Part 2:Capabilities,www.transportation.anl.gov/ software /PSAT /psat_publications.html
    [127]Karl-Heinz Hauer. An analysis tool for fuel cell vehicle hardware and software controls with an application to fuel economy comparisons of alternative system designs[D],Davis,USA,2001
    [128]严运兵.并联混合动力电动汽车的动态控制研究[D],武汉理工大学,2008
    [129]李士勇.模糊控制、神经控制和智能控制论[M],哈尔滨:哈尔滨工业大学出版,1996:447-449
    [130]陈家瑞.汽车构造[M],北京:机械工业出版社,2003
    [131]余志生.汽车理论[M],北京:机械工业出版社,2000
    [132]陈全世.先进电动汽车技术[M],化学工业出版社,2007
    [133]Stephen M,Eshani M,Texas A&M. An empirically based electro source horizon lead-acid battery model,strategies in electric and hybrid vehicle design, SP-1156,1996:135-138
    [134]魏敏.锂电池剩余容量的预测方法[J],农村电气化,2008,7:15-16
    [135]Ruiqing Zhao,Wangsheng Tang. Monkey Algorithm for Global Numerical Optimization[J],Journal of uncertain system,2008,2(3):164-175
    [136]江亚东,吴竹青.一种改进的基于混沌搜索策略的小波神经网络遗传学习算法[J],装备指挥技术学院学报,2002,13(2):49-52
    [137]喻宗泉.神经网络控制[M],西安:西安电子科技大学出版社,2009
    [138]Hornik K,Stinchcombe M,White H. Multiplayer feed—forward networks are universal approximators[J],Neural Networks,1989(2):359-366
    [139]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M],北京:电子工业出版社,2005
    [140]A.H.加卢什金著,阎平凡译.神经网络理论[M],清华大学出版社,2002
    [141]高隽.人工神经网络原理及仿真实例[M],北京:机械工业出版社,2003
    [142]戴群亮,张邦成,赵丁选.工程车辆并行自适应神经网络自动换挡控制[J],农业机械学报,2007,38(9):34-36
    [143]Shumeet Baluja. Evolution of all artificial neural network based autonomous land vehicle controller[J],IEEE TR ANSACTIONS ON SYSTEMS,MAN, ANDCYBERNETICS—PART B CYBERNETICS,1996,26(3):450-464
    [144]吕广明,孙立宁,薛渊.神经网络在液压挖掘机工装轨迹控制中的应用[J],机械工程学报,2005,41(5):191-122
    [145]常钢,张建龙,李丽雅.神经网络及其应用[J],航空计算技术,1999(4):50-53
    [146]Yosuke Ito,Sigeru Omatu. Extended LVQ neural network approach to land cover Mapping[J],IEEE Transactions on genoscience and remote sensing, 1999,37(1):313-317
    [147]N.Ranganathan,Minesh I.Patel. An intelligent system for failure detection and control in an autonomous underwater vehicle[J],IEEE Transactions on systems,man and cyberneti-part a: systems and humans,2001,31(6):762-767
    [148]陈水利.模糊集理论及其应用[M],北京:科学出版社,2005:84-134
    [149]吴立国,马钺.基于改进的模糊C均值的BP分类器设计[J],人工智能,2006,12(2):191-193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700