用户名: 密码: 验证码:
微生物发酵中的非线性动力系统及最优控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以生物化工领域中的一个实际课题——甘油微生物歧化方法生产1,3-丙二醇的间歇和批式流加发酵——为背景,研究了两类非线性动力系统的参数辨识与最优控制问题。首先根据发酵过程的特性和动态行为,分别建立符合各自特性的非线性动力系统,论述了系统的主要性质并对其中的参数进行了辨识。此外为了寻找最优策略,建立了最优控制模型,研究了最优控制问题的最优性条件。该项研究,一方面可以丰富非线性动力系统、最优控制理论与算法的理论和应用,另一方面可以降低消耗、节约成本为1,3-丙二醇的大规模产业化生产提供理论指导,因此该项研究具有一定的理论意义与应用价值。本论文研究的内容与取得的主要结果可概括如下:
     1.在甘油微生物歧化生产1,3-丙二醇的间歇发酵过程中,依微生物的生长特点将整个发酵过程分为发育期、生长期和稳定期三个阶段,利用在不同阶段上发酵过程的动态行为不相同这一特点建立了描述间歇发酵过程的非线性多阶段动力系统,论述了系统解的存在唯一性。为了确定系统中参数的值,建立了参数辨识模型,并证明了参数的可辨识性。然后构造求解参数辨识问题的优化算法,数值结果显示辨识后的模型较已有的模型计算值与实验值之间的误差要小的多,说明该非线性多阶段动力系统更适合描述间歇发酵过程。
     2.根据甘油微生物歧化生产1,3-丙二醇批式流加发酵的特点,分别用连续函数和离散函数描述发酵过程中的连续动态行为和离散事件,建立了描述批式流加过程的混杂动力系统,讨论了系统解的存在唯一性,解对参数的连续依赖性,并根据实验数据建立了参数辨识模型,构造了求解参数辨识问题的优化算法,数值结果显示经参数辨识后的混杂动力系统不仅有效地克服了已有模型中甘油浓度的计算值会出现负值的缺陷,而且计算值与实验值之间的平均相对误差由已有模型的18.36%降低到1.9%,说明了混杂动力系统在描述批式流加发酵过程上的有效性。
     3.对于间歇发酵,建立以初始状态为控制变量,以描述发酵过程的非线性多阶段动力系统为约束的终端最优控制模型,论证了最优控制问题的可控性,并推导出该最优控制问题的一阶最优性条件,为求解最优控制问题的优化算法的停机准则设计和收敛性分析提供理论依据。然后,以批式流加发酵过程为背景,建立以离散时刻添加甘油的量为控制变量,以高彩霞建立的描述批式流加发酵过程的非线性脉冲动力系统为约束的终端最优控制模型,并研究了此类最优控制问题的一阶最优性条件。此外,还研究了以混杂动力系统为约束的终端最优控制问题,并构造了求解该最优控制问题的优化算法。数值结果显示本文算法将生产强度从38.448mmol/(L·h)提高到42.13mmol/(L·h),该结论为1,3-丙二醇的实际生产提供了理论指导。
This dissertation investigates the nonlinear dynamical systems and their optimal control problems with the bio-dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in the background. Two different kinds of nonlinear dynamical systems are presented to describe the batch and the fed-batch fermentation. Properties of these systems and their parameters identification problem are discussed as well. Moreover, in order to find the optimal control strategy we propose optimal control models and obtain optimality conditions. These results can not only develop the theory and the application of nonlinear dynamical systems and optimal control, but also reduce experimental cost and provide certain guidance for industrialization of 1,3-propanediol production. Therefore, this research is very interesting in both theory and practice. The main results, obtained in this dissertation, are summarized as bellow:
     1. The batch fermentation of glycerol to 1,3-Propanediol could be divided into three stages according to the growth habit of Klebsiella pneumoniae, which are development stage, growth stage and steady stage, and on different stage the dynamical system is different as well. Using this property, we employ a nonlinear multistage dynamical system to describe batch fermentation and discuss the existence and uniqueness of solution to system. In order to identify values of parameters of this system such that the model can simulate the fermentation as exactly as possible, a parameters identification model is proposed and the existence of optimal solution is proved. Then an optimization algorithm is constructed to solve this problem. Numerical results show that errors between experimental and computational results are less than before, which implies that the nonlinear multistage dynamical system is fit for simulating such fermentation.
     2. The hybrid dynamical system of fed-batch fermentation and its parameters identification problem are investigated. Since there are continuously dynamic behavior and discrete events in the process of fed-batch fermentation of glycerol to 1,3-Propanediol, we propose a hybrid dynamical system to describe this kind of fermentation. The existence of solution to system together with the dependence of solution to parameters is discussed. Moreover, a parameters identification model is developed and an optimization algorithm is constructed to solve this parameters identification problem. Numerical results show that the average relative error of computational and experimental results of this system is only 1.9%, but that of the other system is 18.36%, which demonstrates that hybrid system has much advantage in describing fed-batch fermentation.
     3. Optimal control problems of the nonlinear multistage dynamical system and the nonlinear impulsive dynamical system are investigated. For batch fermentation, we present an optimal control model in which control variable is initial state and the nonlinear multistage dynamical system is constraint condition. The existence of solution to control model is discussed and the optimality condition is obtained. Then we propose an optimal control model for fed-batch fermentation, where volume of glycerol adding at impulsive moments are control variables and nonlinear impulsive dynamical system is constraint condition. The optimality condition of this problem is obtained as well. Furthermore, an optimal control problem with hybrid dynamical system as constraint condition is investigated and an optimization algorithm is constructed. Numerical result shows that the intensity of production of glycerol at terminal moment is improved from 38.448mmol/(L·h) to 42.13mmol/(L·h), which shows that the optimal control is necessary. The result provides guidance for the industrialization of 1,3-propanediol production by fermentation.
引文
[1]Poincaré H.Sur les ēquations de la dynamique et le probléme des trois corps.Acta Math.1890,13:1-270.
    [2]Lyapunov AM.Stability of Motion.New York:Academic Press,1966.
    [3]叶彦谦.极限环论.上海:上海科学技术出版社,1984。
    [4]叶彦谦.多项式微分系统定性理论.上海:上海科学技术出版社,1995。
    [5]张芷芬,丁同仁.微分方程定性理论.北京:科学出版社,1985。
    [6]张芷芬.关于方程X+μsin+X=0在|X|≤n(n+1)上恰好存在n个极限环的定理.中国科学,1980,10(10):941-948.
    [7]Ding Tongren,Iannacci R,Zanolin F.Existence and multiplicity results for periodic solutions of semilinear Duffing equations.Journal of differential equations.1993,105(2):364-409.
    [8]Arrowsmith DK,Taha KI.Bifurcations of a Particular Forced Van der Pol Oscillator.Meccanica.1983,18(4):195-204.
    [9]Arrowsmith DK and Place CM.Bifurcations at a Cusp Singularity with Applications.Acta Applicadae Mathematicae.1984,2(2):101-138.
    [10]Bajaj AK.Resonant Parametric Perturbations of the Hopf Bifurcation.J.of Math.Anal.Applications.1986,115(1):214-224.
    [11]Bajaj AK.Bifurcations in a Parametrically Excited Nonlinear Oscillator.Int.J.Nonlinear Mech..1987,22(1):47-59.
    [12]Bogdanov RI.Bifurcations of a Limit Cycle of a Family of Vector Fields on the Plane.Sel.Math.Sov.1981,1:373-388.
    [13]Bogdanov RI.Versal Deformation of A Singularity of a Vector Field on the Plane in the Case of Zero Eigenvalues.Sel.Math.Sov.1981,1:389-421.
    [14]Chow SN and Hale JK.Methods of Bifurcation Theory.New York:Springer-Verlag,1982.
    [15]Guchenheimer J and Holmes P.Nonlinear Oscillations,Dynamical Systems and Bifurcation of Vector Fields.New York:Springer-Verlag,1983.
    [16]Edward N.Lorenz.The Essence of Chaos.Seattle:University of Washington Press,1993.
    [17]Edward Ott.Chaos in Dynamical Systems.Cambridge:Cambridge University Press,2002.
    [18]陈予恕.非线性振动系统的分叉与混沌理论.北京:高等教育出版社,1993。
    [19]陈予恕,唐云,陆启韶等.非线性动力学中的现代分析方法.北京:科学出版社,1992。
    [20]唐云.对称性分叉理论基础.北京:科学出版社,1998。
    [21]陈启韶.常微分方程的定性方法和分叉.北京:北京航空航天大学出版社,1989。
    [22]陈启韶.分叉与奇异性.上海:上海科技教育出版社,1995。
    [23]闻邦椿,刘树英等.振动机械的理论与动态设计方法.北京:机械工业出版社,2001。
    [24]GD Birkhoff.Dynamical systems.New York:American Mathematical Society,1927.
    [25]S Smale.Differentiable dynamical systems.Bull.Amer.Math.Soc.1967,73:747-817.
    [26]P Billingsley.Ergodic theory and information.New York:Wiley,1965.
    [27]RS MacKay,JD Meiss.Hamiltonian Dynamical Systems:A Reprint Selection.CRC Press,1987.
    [28]Roger Temam.Infinite-Dimensional Dynamical Systems in Mechanics and Physics.New York:Springer,1997.
    [29]郭伯灵,井竹君.无穷维动力系统.数学的研究与实践.1996,26(2):90-96。
    [30]Guo Yuzhen,Feng Enmin.Nonlinear Dynamical Systems of trajectory design for 3D horizontal well and their optimal controls.Journal of Computational and Applied Mathematics.2008,212(2):179-186.
    [31]陈兰荪,陈健.非线性生物动力系统.北京:科学出版社,1993。
    [32]Caixia Gao,Enmin Feng,Zongtao Wang,et al.Nonlinear dynamical systems of bio-dissimilation of glycerol to 1,3-propanediol and their optimal controls.Journal of Industrial and Management Optimization .2005,1(3):377-388.
    [33]Lawrence C.Evans.Partial Differential Equations.New York:American Mathematical Society,1998.
    [34]胡海岩.非线性时滞动力系统的研究进展.力学进展,1999,29(4):501-512。
    [35]Bai Yila,Zhao Haiqing,Zhang Xu,et al.The Model of Heat Transfer of The Arctic Snow-Ice Layer in Summer and Numerical Simulation.Journal of Industrial and Management Optiminzation.2005,1(3):405-414.
    [36]白乙拉,李志军,冯恩民等.静水条件下淡水冰有效导温系数的优化辨识.计算力学学报.2007,24(2):187-197。
    [37]Bal Yila,Cong Longfei,Feng Enmin,et al.Numerical Simulatioin and Parameter Identification of the Temperature Field in the Oil-immersed Self-cooled Three-phase Transformer.2004 8th International Conference on Control,Automation,Robotics and Vision,Kunming,2004:2164-2168.
    [38]Ma Yongfeng,Sun Lihua,Feng Enmin.Bifurcation and chaos analysis of microbial continuous culture model with time delay.International Journal of Nonlinear Sciences and Numerial Simulation.2006,7(3):305-308.
    [39]RE Bellman.Dynamic Programming.Courier Dover Publications,2003.
    [40]Loewen PD,Rockafellar RT.New Necessary Conditions for the Generalized Problem of Bolza.SIAM J.Control Optim.1996,34(5):1496-1551.
    [41]Loewen PD,Rockafellar RT.Bolza Problems with General Time Constraints.SIAM J.Control Optim.1997,35(6):2050-2069.
    [42]Clarke FH,Ledyaev S,Stern RJ,et al.Nonsmooth analysis and control theory.New York:SpringeVerlag ,1998.[
    43]Hartl RF,Sathi SE Vickson RG.A Survey of the Maximum Principles for Optimal control problem with state Constraints.SIAM Rev.1995,37(2):181-218.
    [44]Zeiden V.The Riccati Equation for Optimal Control Problems with Mixed State-control Constraints:necessity and sufficiency.SIAM J.Control Optim.1994,32(5):1297-1321.
    [45]Elijah Polak.Optimization Algorithms and Consistent Approximations.New York:Springer-Verlag,1997.
    [46]Dontchev AS,Hager WW,Poore A B,et al.Optimality,Stability and Convergence in Nonlinear Control.J.Applied Mathematics and Optimization.1995,31(3):297-326.
    [47]Hage WW.Multiolier Methods of Nonlinear Control.SIAM J.Numerical Analysis.1990,27(4):1060-1080.
    [48]Schwartz A,Polak E.Consistent Approximations for Optimal Control Problems Based on Runge-Kutta Integration.SIAM J.Control and Optim.1996,34(4):1235-1269.
    [49]Wang Gengsheng,Wang Lijuan.State-constrained Optimal Control Governed by Nonwell-posed Parabolic Diffcrential Equations.SIAM J.Control Optim.2002,40(5):1517-1539.
    [50]Wang Gengsheng,Wang Lijuan.The Carlman Inequality and its application to periodic optimal control governed by semilinear parabolic differential equations.Journal of Optimization Theory and Applications .2003,118(2):429-461.
    [51]Lou Hongwei.Existence of Optimal Controls for Semilinear Parabolic Equations without Cesari Type Conditions.J.Appl.Math.Optim.2003,47(2):121 - 142.
    [52]Lou Hongwei.Maximum Principle of Optimal Control for Degenerate Quasilincar Elliptic Equations.SIAM J.Control Optim.2003,42(1):1-23.
    [53]高夯.半线性椭圆方程支配系统的最优性条件.数学学报.2001,44(2):319-332.
    [54]Li Xunjing,Yong Jongmin.Optimal Control Theory for Infinite Dimensional Systems.Boston:Birkhauser,1995.
    [55]江胜宗.侧钻水平井轨道三维优化设计模型及应用.石油学报.2001,22(3):98-105.
    [56]江胜宗,冯恩民.三维水平井井眼轨迹设计最优控制模型及算法.大连理工大学学报.2002,42(3):261-264.
    [57]Jiang Shengzong,Feng Enmin,Wei Yanhua.The Multi-Objective Optimal Control Model and Algo-rithm for Designing 3D Trajectory in Horizontal Wells and its Application.The 2002 International Conference on Control and Automation,Xiamen,2002.
    [58]李健全,陈任昭.时变种群系统最优生育率控制的非线性问题.应用数学学报.2002,25(4):626-641.
    [59]王康宁.最优控制的数学基础.北京:国防工业出版社,1995。
    [60]Yu Wenhuan.Necessary Conditons for Optimality in the Identification of Elliptic System with Pointwise Parameter Constraints.J.Optim.Appl.1996,88(3):725-742.
    [61]Bryson AE,Ross SE.Optimum Rocket Trajectories with Aerodynamic Drag.Pasadena:Jet propulsion,1958.
    [62]Breakwell JV.The Optimization of Trajectories.Journal of the Society for Industrial and Applied Mathematics .1959,7(2):215-247.
    [63]Miele A.Method of Particular Solutions for Linear Two-point Boundary-value Problems.J.Optim.Theory Appl.1968,2(4):315-334.
    [64]Kelley HJ.Gradient Theory of Optimal Flight Paths.J.Acket Soc.1960,30(10):115-123.
    [65]Breakwell J,Speyer J,Bryson AE.Optimization and Control of Nonliear Systems Using the Second Variation.SIAM J.Control.1963,1(2):193-223.
    [66]Tsang TH,et al.Optimal Control via Collocation and Nonlinear Programming.Int.J.Control.1975,21(5):763-768.
    [67]Tanartkit P,Biegler LT,A Nested Simultaneous Approach for Dynamic Optimization Problems.Comput .Chem.Eng.1996,20(6):735-741.
    [68]Dennis JE,Vicente LN.Trust-region Interior-point SQP Algorithms for a Class of Nonlinear Programming Problems.SIAM J.Control Optim.1998,36(5):1750-1794.
    [69]Levin AU,Mareendra KS.Control of Nonlinear Dynamical Systems Using Neural Networks Ⅱ.Observability ,identification and control,Neural Networks,IEEE Transactions on.1996,7(1):30-42。
    [70]Biebl H,Menzel K,Zeng AP,et al.Microbial production of 1,3-propanediol.Applied Microbiology and Biotechnology.1999,52(3):289-297.
    [71]Zeng AP,Rose A,Biebl H,et al.Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation.Biotechnology and Bioengineering.1994,44(5):549-560.
    [72]Menzel K,Zeng AP,Biebl H,et al.Kinetic,dynamic,and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture.1.The phenomena and characterization of oscillation and hysteresis.Biotechnology and Bioengineering.1996,52(5):549-560.
    [73]Zeng AP,Menzel K,Deckwer WD.Kinetic,dynamic,and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture.2.Analysis of metabolic rates and pathways under oscillation and steady-state conditions.Biotechnology and Bioengineering.1996,52(5):561-571.
    [74]Ahrens K,Menzel K,Zeng AP,et al.Kinetic,dynamic,and pathway studies of glycerol metabolism by Kiebsiella pneumoniae in anaerobic continuous culture:3.Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation.Biotechnology and Bioengineering.1998,59(5):544-552.
    [75]Menzel K,Zeng AP,Deckwer WD.High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Kiebsiella pneumoniae.Enzyme and Microbial Technology.1997,20(2):82-86.
    [76]Xiu ZL,Zeng AP,Deckwer WD.Model analysis concerning effects of growth rate and intracellular tryptophan level on the stability and dynamics of tryptophan operon and tryptophan biosynthesis in bacteria.Journal of Biotechnology.1997,58(2):125-140.
    [77]Xiu ZL,Zeng AP,Deckwer WD.Multiplicity and stability analysis of microorganisms in continuous culture:effects of metabolic overflow and growth inhibition.Biotechnology and Bioengineering.1998,57(3):251-261:
    [78]Xiu ZL,Zeng AP,Deckwer WD.Estimation of rates of oxygen uptake and carbon dioxide evolution of animal cell culture using material and energy balance.Cytotechnology.1999,29(3):159-166.
    [79]Chert X,Xiu ZL,Wang J,et al.Stoiehiometric analysis and experimental investigation of glycerol bioconversion to 1,3-propanediol by Kiebsiella pneumoniae under microaerobic conditions.Enzyme Microbial Technol.2003,33(4):386-394.
    [80]Chert X,Zhang DJ,Qi WT,et al.Microbial Fed-batch Production of 1,3-Propanediol by Klebsiella pneumoniae under Micro-aerobic Conditions.Applied Microbiology and Biotechnoiogy.2003,63(2):143-146.
    [81]Xiu ZL,Song BH,Wang ZT,et al.Optimization for biodissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one- and two-stage continuous anaerobic cultures.Biochemical Engineering Journal.2004,19(3):189 - 197.
    [82]綦文涛,修志龙.甘油生物歧化为1,3.丙二醇过程的代谢和基因调控机理研究进展.中国生物工程杂志.2003,23(2):64-68。
    [83]修志龙,曾安平,安利佳.甘油连续生物歧化过程的过渡行为及其数学模型.高校化学工程学报.2000,14:53-58。
    [84]修志龙、曾安平、安利佳.甘油生物歧化过程动力学数学模拟和多稳态研究.大连理工大学学报.2000,40(4):428-433。
    [85]马永峰,孙丽华,修志龙.连续时滞对微生物连续培养过程中动态行为的影响.高校应用数学学报.2003,18(1):1-7。
    [86]马永峰,孙丽华,修志龙.微生物连续培养过程中振荡的理论分析.工程数学学报.2003,20(1):1-6。
    [87]孙丽华,宋炳辉,修志龙.微生物连续培养过程中动态行为研究.大连理工大学学报.2003,43(4):433-437。
    [88]孙丽华,郭庆广,修志龙.一类具有时滞的生化反应模型的Hopf分支.生物数学学报.2002,17(3):286-292。
    [89]Gao CX,Feng EM,Wang ZT,et al,Nonlinear Dynamical Systems of Bio-dissimilation of Glycerol to 1,3-Propanediol and Their Optimal Controls.Journal of Industrial and Management Optiminization.2005,1(3):377-388.
    [90]Gao CX,Feng EM,Xiu ZL.Identification and Optimization of the Nonlinear Impulsive System in Microbial Fed-batch fermentation.Dynamics of Continuous Discrete and Impulsive systems-series A-Mathmatical Analysis.2006,13:625-632.
    [91]Gao CX,Li KZ,Feng EM.Nonlinear Impulsive System of Fed-batch Culture in Fermentative Production and its Properties.Chaos,Solitons & Fractals.2006,28(1):271-277.
    [92]Gao Calxia,tang Yanhual,Feng Enmin,et al.Nonlinear impulsive system of microbial production in fed-batch culture and its optimal control.Journal of Applied Mathematics and Computing.2005,19(1):203 - 214.
    [93]李晓红,冯恩民,修志龙.微生物连续发酵稳定模型的算法与收敛性.清华大学学报(自然科学版).2007,47(s2):1907.1909.
    [94]李晓红,冯恩民,修志龙.微生物连续培养过程平衡点的稳定分析.高校应用数学学报B辑.2005,20(4):377-383.
    [95]李晓红,冯恩民,修志龙.微生物连续培养非线性动力系统的性质及最优性条件.工程数学学报.2006,23(1):7-12.
    [96]李晓红,冯恩民,修志龙.微生物间歇发酵非线性动力系统的性质及最优控制.运筹学学报.2005,9(4):89-96.
    [97]Edwards R,Siegelmann H T,Gauss L.Symbolic Dynamics and Computation in Model Gene Networks.Chaos.2001,11(1):160-169.
    [98]Voit EO.Computational Analysis of Biochemical Systems:a Practical Guide for Biochemist and Molecular Biologists.Cambridge:Cambridge University Press,2000.
    [99]Smolen E Baxter DA,Byrne JH.Modeling Transcriptional Control in Gene Networks:Methods,Recent Results and Future Directions.Bull Math Biology.2000,62(2):247-292.
    [100]单锋,冯恩民,李艳杰等.非线性动力系统多阶段辨识模型、算法及应用.运筹与管理.2006,15(3):6-12.
    [101]马知恩,周义仓.常微分方程定性与稳定性方法.北京:科学出版社,2005。
    [102]袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,1999.
    [103]高彩霞,王宗涛,冯恩民等.微生物间歇发酵生产1,3-丙二醇过程的辨识与优化.大连理工大学学报.2006,46(5):771-774.
    [104]修志龙,张代佳,王剑峰.用克雷伯氏菌批式流加发酵生产1,3-丙二醇.食品与发酵工业.2001,27(7):4-7。
    [105]Li YJ,Feng EM,Zhu L,et al.Th.e optimization algorithm and application of the identification model of nonlinear impulsive system with time delays.Dynamics of Continuous Discrete and Impulsive Systems -Series A - Mathematical Analysis.2006,13:1504-1511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700